Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):o564. doi: 10.1107/S1600536811003746

6-Chloro-2-cyclo­propyl-4-(trifluoro­meth­yl)quinoline

H C Devarajegowda a,*, H K Arunkashi a, Suresh Babu Vepuri b, N Chidananda c, V D Jagadeesh Prasad c
PMCID: PMC3051946  PMID: 21522327

Abstract

In the title compound, C13H9ClF3N, the quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclo­propyl ring.

Related literature

For general background to quinolines see: Kayser & Novak (1987); Rudin et al. (1984); Mao et al. (2009); Bermudez et al. (2004); Jayaprakash et al. (2006); Andries et al. (2005). For related structures, see: Skörska et al. (2005); Devarajegowda et al. (2010); Li et al. (2005).graphic file with name e-67-0o564-scheme1.jpg

Experimental

Crystal data

  • C13H9ClF3N

  • M r = 271.66

  • Monoclinic, Inline graphic

  • a = 13.8482 (19) Å

  • b = 5.0534 (8) Å

  • c = 18.048 (3) Å

  • β = 107.503 (17)°

  • V = 1204.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) T min = 0.942, T max = 0.961

  • 11631 measured reflections

  • 2105 independent reflections

  • 946 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.081

  • S = 0.78

  • 2105 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003746/wn2420sup1.cif

e-67-0o564-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003746/wn2420Isup2.hkl

e-67-0o564-Isup2.hkl (101.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

supplementary crystallographic information

Comment

1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)- 3-quinolinecarboxylic acid (ciprofloxacin) is a widely used broad-spectrum antibiotic, which is active against both Gram-positive and Gram-negative bacteria (Kayser & Novak, 1987; Rudin et al., 1984). 2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is another popular quinoline derivative used in the treatment of malaria. Furthermore, studies have reported that it also possesses important structural features required for antimicrobial activity (Mao et al., 2009; Bermudez et al., 2004; Jayaprakash et al., 2006). Quinoline is the essential structural feature found in these drugs and recently developed antimycobacterial drugs (Andries et al., 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations, we have synthesized a quinoline derivative, with a cyclopropyl group and a trifluoromethyl group as substituents, expecting that the newly designed hybrid molecule would exhibit some antibacterial activity. In this paper we report the crystal structure of 6-chloro-2-cyclopropyl-4-(trifluoromethyl)quinoline.

The asymmetric unit of the 6-chloro-2-cyclopropyl-4-(trifluoromethyl) quinoline contains one molecule (Fig. 1). The quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclopropyl ring. Bond distances and bond angles in the quinoline ring system are in good agreement with those observed in related crystal structures (Skörska et al., 2005; Devarajegowda et al., 2010; Li et al., 2005). The packing of the molecules, when viewed along the b axis, is shown in Fig. 2.

Experimental

A mixture of cyclopropyl acetylene (0.012 mol), anhydrous zinc(II) (0.012 mol), triethylamine (1.67 ml, 0.012 mol), and toluene (25 ml) was stirred at 50°C for 2 h and cooled to 25°C. 4-Chloro- 2-trifluoroacetylaniline (0.01 mol) was added and the reaction mixture was stirred at 25°C for 4 h, then at 50°C for 4 h. After cooling to room temperature, the mixture was added to water (10 ml) and extracted three times with ethyl acetate (20 ml). The combined organic phase was washed with brine and dried over anhydrous sodium sulfate. After removal of solvent, the residue was purified by column chromatography on silica gel (hexane/ethyl acetate; 20:1). M.p. 335 K.

Refinement

All H atoms were placed at calculated positions; C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H; C—H = 0.98 Å for methine H. They were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of molecules, viewed down the b axis.

Crystal data

C13H9ClF3N F(000) = 552
Mr = 271.66 Dx = 1.498 Mg m3
Monoclinic, P21/c Melting point: 335 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.8482 (19) Å Cell parameters from 2105 reflections
b = 5.0534 (8) Å θ = 2.4–25.0°
c = 18.048 (3) Å µ = 0.33 mm1
β = 107.503 (17)° T = 293 K
V = 1204.5 (3) Å3 Plate, colourless
Z = 4 0.22 × 0.15 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 2105 independent reflections
Radiation source: Enhance (Mo) X-ray Source 946 reflections with I > 2σ(I)
graphite Rint = 0.092
Detector resolution: 16.0839 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω scans h = −16→16
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) k = −6→6
Tmin = 0.942, Tmax = 0.961 l = −21→21
11631 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3
S = 0.78 (Δ/σ)max = 0.004
2105 reflections Δρmax = 0.13 e Å3
164 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0045 (8)

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.24504 (7) −0.53695 (16) 0.14138 (5) 0.0724 (3)
F1 0.53230 (12) 0.2294 (4) 0.43406 (12) 0.1017 (8)
F2 0.49335 (13) 0.1618 (4) 0.31203 (13) 0.0964 (7)
F3 0.49773 (12) −0.1595 (4) 0.38888 (11) 0.0896 (7)
N9 0.15811 (17) 0.2481 (4) 0.35357 (14) 0.0463 (6)
C1 0.1215 (2) 0.4767 (6) 0.49521 (17) 0.0629 (9)
H1A 0.0846 0.3137 0.4779 0.076*
H1B 0.1300 0.5228 0.5490 0.076*
C2 0.2051 (2) 0.5449 (6) 0.46255 (18) 0.0612 (9)
H2 0.2623 0.6398 0.4980 0.073*
C3 0.1078 (2) 0.6908 (6) 0.43962 (19) 0.0695 (10)
H3A 0.1077 0.8701 0.4588 0.083*
H3B 0.0624 0.6610 0.3878 0.083*
C4 0.2319 (2) 0.3623 (5) 0.40752 (17) 0.0486 (8)
C5 0.3343 (2) 0.3113 (6) 0.41542 (17) 0.0542 (9)
H5 0.3843 0.3978 0.4540 0.065*
C6 0.3612 (2) 0.1390 (6) 0.36802 (17) 0.0463 (8)
C7 0.2855 (2) 0.0029 (5) 0.30968 (16) 0.0401 (7)
C8 0.1844 (2) 0.0691 (5) 0.30551 (16) 0.0405 (7)
C10 0.4703 (3) 0.0937 (8) 0.3759 (2) 0.0678 (10)
C11 0.3025 (2) −0.1850 (5) 0.25749 (16) 0.0452 (8)
H11 0.3683 −0.2290 0.2591 0.054*
C12 0.2229 (2) −0.3017 (5) 0.20490 (16) 0.0456 (8)
C13 0.1232 (2) −0.2394 (6) 0.19959 (16) 0.0489 (8)
H13 0.0699 −0.3229 0.1630 0.059*
C14 0.1044 (2) −0.0553 (6) 0.24840 (16) 0.0464 (8)
H14 0.0378 −0.0105 0.2442 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0857 (7) 0.0722 (6) 0.0640 (6) −0.0003 (5) 0.0296 (5) −0.0188 (5)
F1 0.0448 (12) 0.1346 (18) 0.1136 (18) −0.0181 (12) 0.0057 (12) −0.0505 (15)
F2 0.0542 (13) 0.148 (2) 0.1014 (19) −0.0123 (12) 0.0445 (12) 0.0029 (14)
F3 0.0516 (12) 0.0939 (15) 0.1143 (18) 0.0143 (11) 0.0113 (11) −0.0095 (13)
N9 0.0436 (15) 0.0528 (16) 0.0448 (16) −0.0020 (14) 0.0165 (13) −0.0026 (14)
C1 0.085 (3) 0.058 (2) 0.057 (2) 0.0067 (19) 0.0374 (19) −0.0017 (19)
C2 0.049 (2) 0.071 (2) 0.066 (2) −0.0092 (19) 0.0205 (19) −0.024 (2)
C3 0.095 (3) 0.051 (2) 0.068 (3) 0.011 (2) 0.032 (2) 0.0001 (19)
C4 0.044 (2) 0.055 (2) 0.051 (2) −0.0035 (17) 0.0208 (18) −0.0058 (17)
C5 0.044 (2) 0.063 (2) 0.054 (2) −0.0126 (17) 0.0135 (17) −0.0157 (17)
C6 0.037 (2) 0.055 (2) 0.049 (2) 0.0002 (16) 0.0153 (17) −0.0012 (16)
C7 0.036 (2) 0.0463 (19) 0.0404 (18) −0.0017 (15) 0.0158 (15) 0.0033 (16)
C8 0.044 (2) 0.0452 (18) 0.0351 (18) −0.0051 (16) 0.0169 (16) 0.0028 (15)
C10 0.051 (3) 0.078 (3) 0.077 (3) −0.003 (2) 0.023 (2) −0.013 (2)
C11 0.0381 (19) 0.0523 (19) 0.049 (2) 0.0010 (16) 0.0191 (17) 0.0017 (17)
C12 0.053 (2) 0.0478 (19) 0.0413 (19) −0.0054 (17) 0.0221 (17) −0.0045 (15)
C13 0.045 (2) 0.055 (2) 0.046 (2) −0.0110 (17) 0.0128 (17) −0.0012 (17)
C14 0.0364 (18) 0.056 (2) 0.048 (2) −0.0007 (16) 0.0144 (17) −0.0033 (17)

Geometric parameters (Å, °)

Cl1—C12 1.741 (3) C4—C5 1.406 (4)
F1—C10 1.329 (3) C5—C6 1.349 (3)
F2—C10 1.330 (4) C5—H5 0.9300
F3—C10 1.335 (3) C6—C7 1.420 (3)
N9—C4 1.314 (3) C6—C10 1.492 (4)
N9—C8 1.376 (3) C7—C11 1.406 (3)
C1—C3 1.449 (4) C7—C8 1.419 (3)
C1—C2 1.490 (4) C8—C14 1.413 (3)
C1—H1A 0.9700 C11—C12 1.354 (3)
C1—H1B 0.9700 C11—H11 0.9300
C2—C3 1.481 (4) C12—C13 1.392 (3)
C2—C4 1.482 (4) C13—C14 1.359 (3)
C2—H2 0.9800 C13—H13 0.9300
C3—H3A 0.9700 C14—H14 0.9300
C3—H3B 0.9700
C4—N9—C8 117.5 (3) C5—C6—C10 120.2 (3)
C3—C1—C2 60.5 (2) C7—C6—C10 119.8 (3)
C3—C1—H1A 117.7 C11—C7—C8 119.0 (3)
C2—C1—H1A 117.7 C11—C7—C6 126.1 (3)
C3—C1—H1B 117.7 C8—C7—C6 114.9 (3)
C2—C1—H1B 117.7 N9—C8—C14 117.0 (3)
H1A—C1—H1B 114.8 N9—C8—C7 124.4 (3)
C3—C2—C4 120.8 (3) C14—C8—C7 118.6 (3)
C3—C2—C1 58.35 (19) F1—C10—F2 106.5 (3)
C4—C2—C1 120.1 (3) F1—C10—F3 105.9 (3)
C3—C2—H2 115.3 F2—C10—F3 105.7 (3)
C4—C2—H2 115.3 F1—C10—C6 113.0 (3)
C1—C2—H2 115.3 F2—C10—C6 112.2 (3)
C1—C3—C2 61.12 (19) F3—C10—C6 113.0 (3)
C1—C3—H3A 117.7 C12—C11—C7 119.9 (3)
C2—C3—H3A 117.7 C12—C11—H11 120.0
C1—C3—H3B 117.7 C7—C11—H11 120.0
C2—C3—H3B 117.7 C11—C12—C13 122.1 (3)
H3A—C3—H3B 114.8 C11—C12—Cl1 119.5 (2)
N9—C4—C5 122.0 (3) C13—C12—Cl1 118.5 (2)
N9—C4—C2 118.4 (3) C14—C13—C12 119.3 (3)
C5—C4—C2 119.6 (3) C14—C13—H13 120.3
C6—C5—C4 121.1 (3) C12—C13—H13 120.3
C6—C5—H5 119.4 C13—C14—C8 121.1 (3)
C4—C5—H5 119.4 C13—C14—H14 119.5
C5—C6—C7 120.0 (3) C8—C14—H14 119.5
C3—C1—C2—C4 −109.7 (3) C6—C7—C8—N9 −0.6 (4)
C4—C2—C3—C1 108.6 (3) C11—C7—C8—C14 −0.5 (4)
C8—N9—C4—C5 1.6 (4) C6—C7—C8—C14 179.3 (2)
C8—N9—C4—C2 −176.8 (2) C5—C6—C10—F1 2.5 (5)
C3—C2—C4—N9 −27.5 (4) C7—C6—C10—F1 −178.5 (3)
C1—C2—C4—N9 41.4 (4) C5—C6—C10—F2 −118.0 (3)
C3—C2—C4—C5 154.1 (3) C7—C6—C10—F2 61.0 (4)
C1—C2—C4—C5 −137.1 (3) C5—C6—C10—F3 122.6 (3)
N9—C4—C5—C6 −0.8 (5) C7—C6—C10—F3 −58.3 (4)
C2—C4—C5—C6 177.6 (3) C8—C7—C11—C12 −0.7 (4)
C4—C5—C6—C7 −0.9 (4) C6—C7—C11—C12 179.5 (3)
C4—C5—C6—C10 178.2 (3) C7—C11—C12—C13 0.9 (4)
C5—C6—C7—C11 −178.7 (3) C7—C11—C12—Cl1 −179.23 (19)
C10—C6—C7—C11 2.2 (4) C11—C12—C13—C14 0.2 (4)
C5—C6—C7—C8 1.5 (4) Cl1—C12—C13—C14 −179.7 (2)
C10—C6—C7—C8 −177.6 (3) C12—C13—C14—C8 −1.5 (4)
C4—N9—C8—C14 179.1 (2) N9—C8—C14—C13 −178.4 (2)
C4—N9—C8—C7 −0.9 (4) C7—C8—C14—C13 1.6 (4)
C11—C7—C8—N9 179.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2420).

References

  1. Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., et al. (2005). Science, 307, 223–227. [DOI] [PubMed]
  2. Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558. [DOI] [PMC free article] [PubMed]
  3. Devarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237–o2238. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593–597. [DOI] [PubMed]
  7. Kayser, F. H. & Novak, J. (1987). Am. J. Med. 82 (suppl. 4A), 33–39 [PubMed]
  8. Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235–o2236.
  9. Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978. [DOI] [PubMed]
  10. Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  11. Rudin, J. E., Norden, C. W. & Shinners, E. M. (1984). Antimicrob. Agents Chemother. 26, 597–598. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853. [DOI] [PubMed]
  14. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003746/wn2420sup1.cif

e-67-0o564-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003746/wn2420Isup2.hkl

e-67-0o564-Isup2.hkl (101.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES