Abstract
In the title compound, C13H9ClF3N, the quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclopropyl ring.
Related literature
For general background to quinolines see: Kayser & Novak (1987 ▶); Rudin et al. (1984 ▶); Mao et al. (2009 ▶); Bermudez et al. (2004 ▶); Jayaprakash et al. (2006 ▶); Andries et al. (2005 ▶). For related structures, see: Skörska et al. (2005 ▶); Devarajegowda et al. (2010 ▶); Li et al. (2005 ▶).
Experimental
Crystal data
C13H9ClF3N
M r = 271.66
Monoclinic,
a = 13.8482 (19) Å
b = 5.0534 (8) Å
c = 18.048 (3) Å
β = 107.503 (17)°
V = 1204.5 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.33 mm−1
T = 293 K
0.22 × 0.15 × 0.12 mm
Data collection
Oxford Diffraction Xcalibur diffractometer
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010 ▶) T min = 0.942, T max = 0.961
11631 measured reflections
2105 independent reflections
946 reflections with I > 2σ(I)
R int = 0.092
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.081
S = 0.78
2105 reflections
164 parameters
H-atom parameters constrained
Δρmax = 0.13 e Å−3
Δρmin = −0.17 e Å−3
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and CAMERON (Watkin et al., 1993) ▶; software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003746/wn2420sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003746/wn2420Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.
supplementary crystallographic information
Comment
1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)- 3-quinolinecarboxylic acid (ciprofloxacin) is a widely used broad-spectrum antibiotic, which is active against both Gram-positive and Gram-negative bacteria (Kayser & Novak, 1987; Rudin et al., 1984). 2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is another popular quinoline derivative used in the treatment of malaria. Furthermore, studies have reported that it also possesses important structural features required for antimicrobial activity (Mao et al., 2009; Bermudez et al., 2004; Jayaprakash et al., 2006). Quinoline is the essential structural feature found in these drugs and recently developed antimycobacterial drugs (Andries et al., 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations, we have synthesized a quinoline derivative, with a cyclopropyl group and a trifluoromethyl group as substituents, expecting that the newly designed hybrid molecule would exhibit some antibacterial activity. In this paper we report the crystal structure of 6-chloro-2-cyclopropyl-4-(trifluoromethyl)quinoline.
The asymmetric unit of the 6-chloro-2-cyclopropyl-4-(trifluoromethyl) quinoline contains one molecule (Fig. 1). The quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclopropyl ring. Bond distances and bond angles in the quinoline ring system are in good agreement with those observed in related crystal structures (Skörska et al., 2005; Devarajegowda et al., 2010; Li et al., 2005). The packing of the molecules, when viewed along the b axis, is shown in Fig. 2.
Experimental
A mixture of cyclopropyl acetylene (0.012 mol), anhydrous zinc(II) (0.012 mol), triethylamine (1.67 ml, 0.012 mol), and toluene (25 ml) was stirred at 50°C for 2 h and cooled to 25°C. 4-Chloro- 2-trifluoroacetylaniline (0.01 mol) was added and the reaction mixture was stirred at 25°C for 4 h, then at 50°C for 4 h. After cooling to room temperature, the mixture was added to water (10 ml) and extracted three times with ethyl acetate (20 ml). The combined organic phase was washed with brine and dried over anhydrous sodium sulfate. After removal of solvent, the residue was purified by column chromatography on silica gel (hexane/ethyl acetate; 20:1). M.p. 335 K.
Refinement
All H atoms were placed at calculated positions; C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H; C—H = 0.98 Å for methine H. They were refined using a riding model with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The packing of molecules, viewed down the b axis.
Crystal data
| C13H9ClF3N | F(000) = 552 |
| Mr = 271.66 | Dx = 1.498 Mg m−3 |
| Monoclinic, P21/c | Melting point: 335 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 13.8482 (19) Å | Cell parameters from 2105 reflections |
| b = 5.0534 (8) Å | θ = 2.4–25.0° |
| c = 18.048 (3) Å | µ = 0.33 mm−1 |
| β = 107.503 (17)° | T = 293 K |
| V = 1204.5 (3) Å3 | Plate, colourless |
| Z = 4 | 0.22 × 0.15 × 0.12 mm |
Data collection
| Oxford Diffraction Xcalibur diffractometer | 2105 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 946 reflections with I > 2σ(I) |
| graphite | Rint = 0.092 |
| Detector resolution: 16.0839 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
| ω scans | h = −16→16 |
| Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | k = −6→6 |
| Tmin = 0.942, Tmax = 0.961 | l = −21→21 |
| 11631 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
| wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.78 | (Δ/σ)max = 0.004 |
| 2105 reflections | Δρmax = 0.13 e Å−3 |
| 164 parameters | Δρmin = −0.17 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0045 (8) |
Special details
| Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.24504 (7) | −0.53695 (16) | 0.14138 (5) | 0.0724 (3) | |
| F1 | 0.53230 (12) | 0.2294 (4) | 0.43406 (12) | 0.1017 (8) | |
| F2 | 0.49335 (13) | 0.1618 (4) | 0.31203 (13) | 0.0964 (7) | |
| F3 | 0.49773 (12) | −0.1595 (4) | 0.38888 (11) | 0.0896 (7) | |
| N9 | 0.15811 (17) | 0.2481 (4) | 0.35357 (14) | 0.0463 (6) | |
| C1 | 0.1215 (2) | 0.4767 (6) | 0.49521 (17) | 0.0629 (9) | |
| H1A | 0.0846 | 0.3137 | 0.4779 | 0.076* | |
| H1B | 0.1300 | 0.5228 | 0.5490 | 0.076* | |
| C2 | 0.2051 (2) | 0.5449 (6) | 0.46255 (18) | 0.0612 (9) | |
| H2 | 0.2623 | 0.6398 | 0.4980 | 0.073* | |
| C3 | 0.1078 (2) | 0.6908 (6) | 0.43962 (19) | 0.0695 (10) | |
| H3A | 0.1077 | 0.8701 | 0.4588 | 0.083* | |
| H3B | 0.0624 | 0.6610 | 0.3878 | 0.083* | |
| C4 | 0.2319 (2) | 0.3623 (5) | 0.40752 (17) | 0.0486 (8) | |
| C5 | 0.3343 (2) | 0.3113 (6) | 0.41542 (17) | 0.0542 (9) | |
| H5 | 0.3843 | 0.3978 | 0.4540 | 0.065* | |
| C6 | 0.3612 (2) | 0.1390 (6) | 0.36802 (17) | 0.0463 (8) | |
| C7 | 0.2855 (2) | 0.0029 (5) | 0.30968 (16) | 0.0401 (7) | |
| C8 | 0.1844 (2) | 0.0691 (5) | 0.30551 (16) | 0.0405 (7) | |
| C10 | 0.4703 (3) | 0.0937 (8) | 0.3759 (2) | 0.0678 (10) | |
| C11 | 0.3025 (2) | −0.1850 (5) | 0.25749 (16) | 0.0452 (8) | |
| H11 | 0.3683 | −0.2290 | 0.2591 | 0.054* | |
| C12 | 0.2229 (2) | −0.3017 (5) | 0.20490 (16) | 0.0456 (8) | |
| C13 | 0.1232 (2) | −0.2394 (6) | 0.19959 (16) | 0.0489 (8) | |
| H13 | 0.0699 | −0.3229 | 0.1630 | 0.059* | |
| C14 | 0.1044 (2) | −0.0553 (6) | 0.24840 (16) | 0.0464 (8) | |
| H14 | 0.0378 | −0.0105 | 0.2442 | 0.056* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0857 (7) | 0.0722 (6) | 0.0640 (6) | −0.0003 (5) | 0.0296 (5) | −0.0188 (5) |
| F1 | 0.0448 (12) | 0.1346 (18) | 0.1136 (18) | −0.0181 (12) | 0.0057 (12) | −0.0505 (15) |
| F2 | 0.0542 (13) | 0.148 (2) | 0.1014 (19) | −0.0123 (12) | 0.0445 (12) | 0.0029 (14) |
| F3 | 0.0516 (12) | 0.0939 (15) | 0.1143 (18) | 0.0143 (11) | 0.0113 (11) | −0.0095 (13) |
| N9 | 0.0436 (15) | 0.0528 (16) | 0.0448 (16) | −0.0020 (14) | 0.0165 (13) | −0.0026 (14) |
| C1 | 0.085 (3) | 0.058 (2) | 0.057 (2) | 0.0067 (19) | 0.0374 (19) | −0.0017 (19) |
| C2 | 0.049 (2) | 0.071 (2) | 0.066 (2) | −0.0092 (19) | 0.0205 (19) | −0.024 (2) |
| C3 | 0.095 (3) | 0.051 (2) | 0.068 (3) | 0.011 (2) | 0.032 (2) | 0.0001 (19) |
| C4 | 0.044 (2) | 0.055 (2) | 0.051 (2) | −0.0035 (17) | 0.0208 (18) | −0.0058 (17) |
| C5 | 0.044 (2) | 0.063 (2) | 0.054 (2) | −0.0126 (17) | 0.0135 (17) | −0.0157 (17) |
| C6 | 0.037 (2) | 0.055 (2) | 0.049 (2) | 0.0002 (16) | 0.0153 (17) | −0.0012 (16) |
| C7 | 0.036 (2) | 0.0463 (19) | 0.0404 (18) | −0.0017 (15) | 0.0158 (15) | 0.0033 (16) |
| C8 | 0.044 (2) | 0.0452 (18) | 0.0351 (18) | −0.0051 (16) | 0.0169 (16) | 0.0028 (15) |
| C10 | 0.051 (3) | 0.078 (3) | 0.077 (3) | −0.003 (2) | 0.023 (2) | −0.013 (2) |
| C11 | 0.0381 (19) | 0.0523 (19) | 0.049 (2) | 0.0010 (16) | 0.0191 (17) | 0.0017 (17) |
| C12 | 0.053 (2) | 0.0478 (19) | 0.0413 (19) | −0.0054 (17) | 0.0221 (17) | −0.0045 (15) |
| C13 | 0.045 (2) | 0.055 (2) | 0.046 (2) | −0.0110 (17) | 0.0128 (17) | −0.0012 (17) |
| C14 | 0.0364 (18) | 0.056 (2) | 0.048 (2) | −0.0007 (16) | 0.0144 (17) | −0.0033 (17) |
Geometric parameters (Å, °)
| Cl1—C12 | 1.741 (3) | C4—C5 | 1.406 (4) |
| F1—C10 | 1.329 (3) | C5—C6 | 1.349 (3) |
| F2—C10 | 1.330 (4) | C5—H5 | 0.9300 |
| F3—C10 | 1.335 (3) | C6—C7 | 1.420 (3) |
| N9—C4 | 1.314 (3) | C6—C10 | 1.492 (4) |
| N9—C8 | 1.376 (3) | C7—C11 | 1.406 (3) |
| C1—C3 | 1.449 (4) | C7—C8 | 1.419 (3) |
| C1—C2 | 1.490 (4) | C8—C14 | 1.413 (3) |
| C1—H1A | 0.9700 | C11—C12 | 1.354 (3) |
| C1—H1B | 0.9700 | C11—H11 | 0.9300 |
| C2—C3 | 1.481 (4) | C12—C13 | 1.392 (3) |
| C2—C4 | 1.482 (4) | C13—C14 | 1.359 (3) |
| C2—H2 | 0.9800 | C13—H13 | 0.9300 |
| C3—H3A | 0.9700 | C14—H14 | 0.9300 |
| C3—H3B | 0.9700 | ||
| C4—N9—C8 | 117.5 (3) | C5—C6—C10 | 120.2 (3) |
| C3—C1—C2 | 60.5 (2) | C7—C6—C10 | 119.8 (3) |
| C3—C1—H1A | 117.7 | C11—C7—C8 | 119.0 (3) |
| C2—C1—H1A | 117.7 | C11—C7—C6 | 126.1 (3) |
| C3—C1—H1B | 117.7 | C8—C7—C6 | 114.9 (3) |
| C2—C1—H1B | 117.7 | N9—C8—C14 | 117.0 (3) |
| H1A—C1—H1B | 114.8 | N9—C8—C7 | 124.4 (3) |
| C3—C2—C4 | 120.8 (3) | C14—C8—C7 | 118.6 (3) |
| C3—C2—C1 | 58.35 (19) | F1—C10—F2 | 106.5 (3) |
| C4—C2—C1 | 120.1 (3) | F1—C10—F3 | 105.9 (3) |
| C3—C2—H2 | 115.3 | F2—C10—F3 | 105.7 (3) |
| C4—C2—H2 | 115.3 | F1—C10—C6 | 113.0 (3) |
| C1—C2—H2 | 115.3 | F2—C10—C6 | 112.2 (3) |
| C1—C3—C2 | 61.12 (19) | F3—C10—C6 | 113.0 (3) |
| C1—C3—H3A | 117.7 | C12—C11—C7 | 119.9 (3) |
| C2—C3—H3A | 117.7 | C12—C11—H11 | 120.0 |
| C1—C3—H3B | 117.7 | C7—C11—H11 | 120.0 |
| C2—C3—H3B | 117.7 | C11—C12—C13 | 122.1 (3) |
| H3A—C3—H3B | 114.8 | C11—C12—Cl1 | 119.5 (2) |
| N9—C4—C5 | 122.0 (3) | C13—C12—Cl1 | 118.5 (2) |
| N9—C4—C2 | 118.4 (3) | C14—C13—C12 | 119.3 (3) |
| C5—C4—C2 | 119.6 (3) | C14—C13—H13 | 120.3 |
| C6—C5—C4 | 121.1 (3) | C12—C13—H13 | 120.3 |
| C6—C5—H5 | 119.4 | C13—C14—C8 | 121.1 (3) |
| C4—C5—H5 | 119.4 | C13—C14—H14 | 119.5 |
| C5—C6—C7 | 120.0 (3) | C8—C14—H14 | 119.5 |
| C3—C1—C2—C4 | −109.7 (3) | C6—C7—C8—N9 | −0.6 (4) |
| C4—C2—C3—C1 | 108.6 (3) | C11—C7—C8—C14 | −0.5 (4) |
| C8—N9—C4—C5 | 1.6 (4) | C6—C7—C8—C14 | 179.3 (2) |
| C8—N9—C4—C2 | −176.8 (2) | C5—C6—C10—F1 | 2.5 (5) |
| C3—C2—C4—N9 | −27.5 (4) | C7—C6—C10—F1 | −178.5 (3) |
| C1—C2—C4—N9 | 41.4 (4) | C5—C6—C10—F2 | −118.0 (3) |
| C3—C2—C4—C5 | 154.1 (3) | C7—C6—C10—F2 | 61.0 (4) |
| C1—C2—C4—C5 | −137.1 (3) | C5—C6—C10—F3 | 122.6 (3) |
| N9—C4—C5—C6 | −0.8 (5) | C7—C6—C10—F3 | −58.3 (4) |
| C2—C4—C5—C6 | 177.6 (3) | C8—C7—C11—C12 | −0.7 (4) |
| C4—C5—C6—C7 | −0.9 (4) | C6—C7—C11—C12 | 179.5 (3) |
| C4—C5—C6—C10 | 178.2 (3) | C7—C11—C12—C13 | 0.9 (4) |
| C5—C6—C7—C11 | −178.7 (3) | C7—C11—C12—Cl1 | −179.23 (19) |
| C10—C6—C7—C11 | 2.2 (4) | C11—C12—C13—C14 | 0.2 (4) |
| C5—C6—C7—C8 | 1.5 (4) | Cl1—C12—C13—C14 | −179.7 (2) |
| C10—C6—C7—C8 | −177.6 (3) | C12—C13—C14—C8 | −1.5 (4) |
| C4—N9—C8—C14 | 179.1 (2) | N9—C8—C14—C13 | −178.4 (2) |
| C4—N9—C8—C7 | −0.9 (4) | C7—C8—C14—C13 | 1.6 (4) |
| C11—C7—C8—N9 | 179.5 (2) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2420).
References
- Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., et al. (2005). Science, 307, 223–227. [DOI] [PubMed]
- Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558. [DOI] [PMC free article] [PubMed]
- Devarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237–o2238. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593–597. [DOI] [PubMed]
- Kayser, F. H. & Novak, J. (1987). Am. J. Med. 82 (suppl. 4A), 33–39 [PubMed]
- Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235–o2236.
- Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978. [DOI] [PubMed]
- Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
- Rudin, J. E., Norden, C. W. & Shinners, E. M. (1984). Antimicrob. Agents Chemother. 26, 597–598. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853. [DOI] [PubMed]
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003746/wn2420sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003746/wn2420Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


