Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o715–o716. doi: 10.1107/S1600536811006465

2-(2-Hy­droxy-3-meth­oxy­phen­yl)-6H-perimidin-6-one

Hoong-Kun Fun a,*,, Kullapa Chanawanno b, Suchada Chantrapromma b,§
PMCID: PMC3051947  PMID: 21522458

Abstract

The mol­ecule of the title perimidine derivative, C18H12N2O3, is essentially planar, the dihedral angle between the benzene and perimidine rings being 3.25 (5)°. The hy­droxy and meth­oxy groups lie in the plane of the benzene ring to which they are bound [O—C—C—C = 179.96 (11)° and C—O—C—C = −177.96 (12)°]. An intra­molecular O—H⋯N inter­action generates an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯O inter­actions into dimers, which generate S(16) ring motifs. These dimers are arranged into sheets parallel to the ac plane and further stacked down the b axis by π–π inter­actions, with centroid–centroid distances in the range 3.5066 (8)–3.7241 (7) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For background to perimidines and their applications, see: Claramunt et al. (1995); del Valle et al. (1997); Herbert et al. (1987); Llamas-Saiz et al. (1995); Pozharskii & Dalnikovskaya (1981); Varsha et al. (2010). For related structures, see: Llamas-Saiz et al. (1995); Varsha et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0o715-scheme1.jpg

Experimental

Crystal data

  • C18H12N2O3

  • M r = 304.30

  • Monoclinic, Inline graphic

  • a = 25.4718 (17) Å

  • b = 7.0666 (3) Å

  • c = 15.0815 (6) Å

  • β = 94.373 (3)°

  • V = 2706.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.67 × 0.11 × 0.05 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.933, T max = 0.994

  • 42939 measured reflections

  • 6529 independent reflections

  • 3471 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.210

  • S = 1.02

  • 6529 reflections

  • 255 parameters

  • All H-atom parameters refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006465/sj5107sup1.cif

e-67-0o715-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006465/sj5107Isup2.hkl

e-67-0o715-Isup2.hkl (319.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.91 (2) 1.73 (2) 2.5583 (15) 151 (2)
C15—H15⋯O2i 0.970 (18) 2.437 (18) 3.3686 (17) 160.8 (12)

Symmetry code: (i) Inline graphic.

Acknowledgments

KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University, for a research assistance fellowship. Generous support by the Prince of Songkla University is gratefully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Perimidines (peri-naphtho-fused perimidine ring systems) have received wide interests due to their applications in photophysics (del Valle et al., 1997), usage as coloring materials for polyester fibers (Claramunt et al., 1995) and fluorescent materials (Varsha et al., 2010). They are also noted for their biological activity displaying antiulcer, antifungal, antimicrobial and antitumor properties (Claramunt et al., 1995; Herbert et al., 1987; Pozharskii & Dalnikovskaya, 1981). In an attempt to synthesize a Co(II) Schiff base complex by the reaction of o-vanillin, 1,8-diaminonaphthalene and CoCl2.6H2O, the unexpected product was the perimidine derivative, (I), reported here, Fig 1.

In the molecule of the title perimidine derivative (I), C18H12N2O3, the perimidine ring system (N1–N2/C7–C17) is planar with an r.m.s deviation 0.0126 (11)Å. The whole molecule is essentially planar with the dihedral angle between the perimidine and phenyl rings being 3.25 (5)°. Both the hydroxy and methoxy groups are co-planar with the attached benzene ring with torsion angles O2–C2–C3–C4 = 179.96 (11)° and C18–O3–C3–C2 = -177.96 (12)°. An intramolecular O—H···N interaction generates an S(6) ring motif (Bernstein et al., 1995) and helps to stabilize the planarity of the molecule (Fig. 1). Bond distances are normal (Allen et al., 1987) and are comparable to those found in related structures (Llamas-Saiz et al., 1995; Varsha et al., 2010).

In the crystal structure (Fig. 2), the molecules are linked by two C—H···O interactions (Table 1) into dimers which generate S(16) ring motifs. These dimers are arranged into sheets parallel to the ac plane and further stacked down the b axis by π–π interactions with centroid to centroid distances Cg1···Cg2ii= 3.7241 (7) Å; Cg2···Cg3ii= 3.5066 (8) Å; Cg2···Cg4ii= 3.7055 (8) Å and Cg2···Cg4iii= 3.5988 (8) Å (symmetry codes (ii) = 2 - x, 1 - y, 1 - z and (iii) = 2 - x, 2 - y, 2 - z). Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1–N2/C7–C8/C6–C17, C1–C6, C8–C12/C17, and C12–C17 rings, respectively.

Experimental

The title compound was synthesized by adding a solution of 1,8-diaminonaphthalene (0.50 g, 3.16 mmol) in ethanol (20 ml) dropwise to a solution of o-vanillin (0.96 g, 6.32 mmol) in ethanol (10 ml). The reaction mixture was stirred for 0.5 h at room temperature and a pale-orange precipitate was obtained. After filtration, the pale-orange solid was washed with diethyl ether. A solution of the pale-orange solid (0.20 g, 0.47 mmol) in ethanol (20 ml) was slowly added to a solution of CoCl2.6H2O (0.11 g, 0.47 mmol) in 10 ml of ethanol followed by triethylamine (0.06 ml, 0.47 mmol). The mixture was refluxed for 3 h. The title compound was obtained as a purple solid and washed with diethyl ether. The purple needle-shaped single crystals of the unexpected perimidine derivative of the title compound suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days, Mp. 507–508 K.

Refinement

All H atoms (except H13) were located in difference maps and refined isotropically. H13 was refined with Uiso constrained to be 1.2Ueq (C13). The highest residual electron density peak is located at 0.68 Å from C16 and the deepest hole is located at 0.48 Å from C16.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. An intramolecular hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the b axis. Hydrogen bonds were drawn as dashed lines.

Crystal data

C18H12N2O3 F(000) = 1264
Mr = 304.30 Dx = 1.493 Mg m3
Monoclinic, C2/c Melting point = 507–508 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 25.4718 (17) Å Cell parameters from 6529 reflections
b = 7.0666 (3) Å θ = 1.6–36.3°
c = 15.0815 (6) Å µ = 0.10 mm1
β = 94.373 (3)° T = 100 K
V = 2706.8 (2) Å3 Needle, purple
Z = 8 0.67 × 0.11 × 0.05 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 6529 independent reflections
Radiation source: sealed tube 3471 reflections with I > 2σ(I)
graphite Rint = 0.072
φ and ω scans θmax = 36.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −42→34
Tmin = 0.933, Tmax = 0.994 k = −11→11
42939 measured reflections l = −24→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.110P)2] where P = (Fo2 + 2Fc2)/3
6529 reflections (Δ/σ)max = 0.001
255 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.20986 (4) 0.86652 (17) 0.36853 (7) 0.0390 (3)
O2 0.93604 (4) 0.76137 (15) 0.66009 (7) 0.0305 (2)
H1O2 0.9692 (9) 0.784 (3) 0.6441 (15) 0.068 (7)*
O3 0.83728 (4) 0.69274 (15) 0.67439 (7) 0.0307 (2)
N1 1.00314 (4) 0.71962 (15) 0.40931 (7) 0.0230 (2)
N2 1.01534 (4) 0.77988 (14) 0.56606 (7) 0.0217 (2)
C1 0.92971 (5) 0.68964 (16) 0.50224 (9) 0.0213 (2)
C2 0.90819 (5) 0.70778 (17) 0.58472 (9) 0.0229 (3)
C3 0.85404 (5) 0.66982 (18) 0.59105 (9) 0.0245 (3)
C4 0.82297 (5) 0.61425 (18) 0.51641 (10) 0.0269 (3)
H4 0.7846 (8) 0.588 (3) 0.5190 (13) 0.053 (5)*
C5 0.84470 (5) 0.59241 (19) 0.43503 (9) 0.0271 (3)
H5 0.8242 (6) 0.542 (2) 0.3839 (11) 0.032 (4)*
C6 0.89730 (5) 0.62922 (18) 0.42762 (9) 0.0242 (3)
H6 0.9121 (6) 0.608 (3) 0.3716 (12) 0.039 (5)*
C7 0.98576 (5) 0.73220 (16) 0.49261 (9) 0.0208 (2)
C8 1.05351 (5) 0.75829 (17) 0.40160 (9) 0.0222 (2)
C9 1.07449 (5) 0.7429 (2) 0.31468 (9) 0.0271 (3)
H9 1.0495 (6) 0.696 (2) 0.2625 (11) 0.027 (4)*
C10 1.12551 (5) 0.7780 (2) 0.30472 (9) 0.0281 (3)
H10 1.1420 (6) 0.761 (2) 0.2446 (11) 0.031 (4)*
C11 1.16293 (5) 0.83502 (19) 0.37912 (9) 0.0269 (3)
C12 1.14203 (5) 0.84961 (17) 0.46741 (9) 0.0233 (3)
C13 1.17405 (5) 0.89476 (19) 0.54295 (9) 0.0268 (3)
H13 1.2155 (6) 0.916 (2) 0.5341 (11) 0.032*
C14 1.15283 (5) 0.90293 (19) 0.62651 (10) 0.0284 (3)
H14 1.1753 (6) 0.931 (2) 0.6784 (10) 0.029 (4)*
C15 1.10056 (5) 0.86583 (18) 0.63559 (9) 0.0257 (3)
H15 1.0859 (6) 0.865 (2) 0.6931 (12) 0.036 (4)*
C16 1.06736 (5) 0.81935 (16) 0.55893 (9) 0.0218 (2)
C17 1.08818 (5) 0.81121 (16) 0.47560 (8) 0.0206 (2)
C18 0.78320 (6) 0.6497 (2) 0.68447 (12) 0.0338 (3)
H18A 0.7621 (7) 0.737 (3) 0.6464 (12) 0.039 (5)*
H18B 0.7746 (6) 0.521 (3) 0.6683 (10) 0.032 (4)*
H18C 0.7805 (7) 0.666 (2) 0.7467 (12) 0.035 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0255 (5) 0.0525 (7) 0.0408 (6) −0.0050 (5) 0.0157 (4) 0.0022 (5)
O2 0.0225 (5) 0.0393 (6) 0.0313 (5) −0.0060 (4) 0.0121 (4) −0.0095 (4)
O3 0.0201 (4) 0.0387 (6) 0.0353 (5) −0.0036 (4) 0.0158 (4) −0.0050 (4)
N1 0.0213 (5) 0.0227 (5) 0.0261 (6) 0.0006 (4) 0.0090 (4) 0.0043 (4)
N2 0.0189 (5) 0.0195 (5) 0.0278 (6) −0.0018 (4) 0.0099 (4) −0.0012 (4)
C1 0.0201 (5) 0.0168 (5) 0.0282 (6) 0.0001 (4) 0.0088 (5) 0.0031 (4)
C2 0.0204 (6) 0.0202 (5) 0.0290 (7) −0.0007 (4) 0.0089 (5) −0.0003 (4)
C3 0.0222 (6) 0.0220 (5) 0.0309 (7) 0.0002 (4) 0.0112 (5) 0.0011 (5)
C4 0.0186 (6) 0.0244 (6) 0.0383 (8) −0.0017 (5) 0.0073 (5) 0.0059 (5)
C5 0.0235 (6) 0.0268 (6) 0.0313 (7) −0.0019 (5) 0.0036 (5) 0.0066 (5)
C6 0.0245 (6) 0.0234 (6) 0.0254 (6) −0.0002 (4) 0.0066 (5) 0.0054 (5)
C7 0.0213 (5) 0.0171 (5) 0.0253 (6) 0.0013 (4) 0.0092 (5) 0.0019 (4)
C8 0.0212 (5) 0.0196 (5) 0.0266 (6) 0.0013 (4) 0.0079 (5) 0.0041 (4)
C9 0.0265 (6) 0.0316 (6) 0.0244 (6) 0.0006 (5) 0.0096 (5) 0.0042 (5)
C10 0.0273 (6) 0.0330 (7) 0.0254 (7) 0.0006 (5) 0.0118 (5) 0.0051 (5)
C11 0.0249 (6) 0.0271 (6) 0.0304 (7) 0.0000 (5) 0.0127 (5) 0.0043 (5)
C12 0.0204 (5) 0.0213 (5) 0.0297 (6) −0.0008 (4) 0.0109 (5) 0.0026 (5)
C13 0.0219 (6) 0.0261 (6) 0.0336 (7) −0.0046 (5) 0.0090 (5) 0.0000 (5)
C14 0.0248 (6) 0.0295 (6) 0.0319 (7) −0.0057 (5) 0.0077 (5) −0.0041 (5)
C15 0.0245 (6) 0.0263 (6) 0.0273 (7) −0.0051 (5) 0.0100 (5) −0.0033 (5)
C16 0.0211 (5) 0.0175 (5) 0.0281 (6) −0.0020 (4) 0.0104 (4) −0.0016 (4)
C17 0.0210 (5) 0.0168 (5) 0.0253 (6) 0.0000 (4) 0.0094 (4) 0.0024 (4)
C18 0.0192 (6) 0.0437 (9) 0.0405 (9) −0.0047 (6) 0.0145 (6) −0.0017 (7)

Geometric parameters (Å, °)

O1—C11 1.2384 (16) C8—C17 1.4196 (18)
O2—C2 1.3474 (16) C8—C9 1.4568 (19)
O2—H1O2 0.91 (2) C9—C10 1.3427 (19)
O3—C3 1.3676 (16) C9—H9 1.028 (16)
O3—C18 1.4301 (16) C10—C11 1.472 (2)
N1—C8 1.3256 (16) C10—H10 1.035 (17)
N1—C7 1.3663 (17) C11—C12 1.4747 (18)
N2—C7 1.3345 (17) C12—C13 1.3868 (19)
N2—C16 1.3664 (16) C12—C17 1.4127 (17)
C1—C2 1.4030 (18) C13—C14 1.4098 (19)
C1—C6 1.4102 (19) C13—H13 1.085 (16)
C1—C7 1.4769 (17) C14—C15 1.3739 (18)
C2—C3 1.4155 (17) C14—H14 0.955 (15)
C3—C4 1.3827 (19) C15—C16 1.4179 (18)
C4—C5 1.393 (2) C15—H15 0.970 (17)
C4—H4 1.000 (19) C16—C17 1.4019 (18)
C5—C6 1.3777 (18) C18—H18A 0.976 (18)
C5—H5 0.966 (16) C18—H18B 0.963 (17)
C6—H6 0.963 (18) C18—H18C 0.954 (18)
C2—O2—H1O2 105.4 (14) C9—C10—C11 122.77 (12)
C3—O3—C18 116.32 (11) C9—C10—H10 122.6 (9)
C8—N1—C7 116.80 (11) C11—C10—H10 114.6 (9)
C7—N2—C16 118.40 (11) O1—C11—C10 121.75 (12)
C2—C1—C6 119.38 (11) O1—C11—C12 121.49 (13)
C2—C1—C7 120.97 (11) C10—C11—C12 116.75 (11)
C6—C1—C7 119.65 (11) C13—C12—C17 119.11 (12)
O2—C2—C1 123.88 (11) C13—C12—C11 121.84 (12)
O2—C2—C3 116.70 (11) C17—C12—C11 119.03 (12)
C1—C2—C3 119.41 (12) C12—C13—C14 120.14 (12)
O3—C3—C4 125.62 (12) C12—C13—H13 116.6 (8)
O3—C3—C2 114.43 (12) C14—C13—H13 123.2 (8)
C4—C3—C2 119.95 (12) C15—C14—C13 121.45 (13)
C3—C4—C5 120.50 (12) C15—C14—H14 118.9 (9)
C3—C4—H4 121.5 (11) C13—C14—H14 119.6 (9)
C5—C4—H4 118.0 (11) C14—C15—C16 119.02 (12)
C6—C5—C4 120.32 (13) C14—C15—H15 122.2 (10)
C6—C5—H5 118.3 (9) C16—C15—H15 118.7 (10)
C4—C5—H5 121.2 (9) N2—C16—C17 119.84 (11)
C5—C6—C1 120.42 (12) N2—C16—C15 120.32 (11)
C5—C6—H6 119.3 (10) C17—C16—C15 119.84 (11)
C1—C6—H6 120.2 (10) C16—C17—C12 120.44 (12)
N2—C7—N1 125.29 (11) C16—C17—C8 117.41 (11)
N2—C7—C1 117.29 (11) C12—C17—C8 122.12 (11)
N1—C7—C1 117.42 (11) O3—C18—H18A 107.1 (10)
N1—C8—C17 122.25 (12) O3—C18—H18B 112.2 (9)
N1—C8—C9 119.17 (12) H18A—C18—H18B 110.1 (14)
C17—C8—C9 118.57 (11) O3—C18—H18C 102.7 (10)
C10—C9—C8 120.76 (13) H18A—C18—H18C 115.0 (15)
C10—C9—H9 121.4 (9) H18B—C18—H18C 109.5 (14)
C8—C9—H9 117.7 (9)
C6—C1—C2—O2 178.87 (11) C8—C9—C10—C11 −0.6 (2)
C7—C1—C2—O2 −0.90 (19) C9—C10—C11—O1 179.92 (13)
C6—C1—C2—C3 −1.62 (18) C9—C10—C11—C12 1.0 (2)
C7—C1—C2—C3 178.60 (10) O1—C11—C12—C13 −1.6 (2)
C18—O3—C3—C4 1.88 (19) C10—C11—C12—C13 177.40 (12)
C18—O3—C3—C2 −177.96 (12) O1—C11—C12—C17 −179.71 (12)
O2—C2—C3—O3 −0.19 (17) C10—C11—C12—C17 −0.76 (17)
C1—C2—C3—O3 −179.73 (10) C17—C12—C13—C14 −0.32 (19)
O2—C2—C3—C4 179.96 (11) C11—C12—C13—C14 −178.48 (12)
C1—C2—C3—C4 0.42 (18) C12—C13—C14—C15 0.4 (2)
O3—C3—C4—C5 −178.86 (12) C13—C14—C15—C16 −0.3 (2)
C2—C3—C4—C5 0.98 (19) C7—N2—C16—C17 0.73 (17)
C3—C4—C5—C6 −1.1 (2) C7—N2—C16—C15 −178.36 (11)
C4—C5—C6—C1 −0.1 (2) C14—C15—C16—N2 179.33 (12)
C2—C1—C6—C5 1.47 (18) C14—C15—C16—C17 0.24 (19)
C7—C1—C6—C5 −178.75 (11) N2—C16—C17—C12 −179.29 (10)
C16—N2—C7—N1 −0.21 (18) C15—C16—C17—C12 −0.20 (18)
C16—N2—C7—C1 179.80 (10) N2—C16—C17—C8 −0.99 (17)
C8—N1—C7—N2 −0.03 (18) C15—C16—C17—C8 178.10 (11)
C8—N1—C7—C1 179.96 (10) C13—C12—C17—C16 0.24 (18)
C2—C1—C7—N2 2.97 (17) C11—C12—C17—C16 178.45 (10)
C6—C1—C7—N2 −176.80 (11) C13—C12—C17—C8 −177.98 (11)
C2—C1—C7—N1 −177.02 (10) C11—C12—C17—C8 0.23 (18)
C6—C1—C7—N1 3.21 (16) N1—C8—C17—C16 0.77 (17)
C7—N1—C8—C17 −0.26 (17) C9—C8—C17—C16 −178.10 (11)
C7—N1—C8—C9 178.60 (11) N1—C8—C17—C12 179.04 (11)
N1—C8—C9—C10 −178.90 (12) C9—C8—C17—C12 0.17 (17)
C17—C8—C9—C10 0.01 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···N2 0.91 (2) 1.73 (2) 2.5583 (15) 151 (2)
C15—H15···O2i 0.970 (18) 2.437 (18) 3.3686 (17) 160.8 (12)

Symmetry codes: (i) −x+2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5107).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Claramunt, R. M., Dotor, J. & Elguero, J. (1995). Ann. Quim. 91, 151–183.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Herbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). J. Med. Chem 30, 2081–2086. [DOI] [PubMed]
  7. Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalán, J. & del Valle, J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389–1398.
  8. Pozharskii, A. F. & Dalnikovskaya, V. V. (1981). Russ. Chem. Rev 50, 816–835.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Valle, J. C. del, Catalán, J., Faces-Foces, C., Llamas-Saiz, A. L., Elguero, J., Sanz, D., Dotor, J. & Claramunt, R. M. (1997). J. Lumin 75, 17–26.
  12. Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. K. M. (2010). Tetrahedron Lett. 51, 2174–2177.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006465/sj5107sup1.cif

e-67-0o715-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006465/sj5107Isup2.hkl

e-67-0o715-Isup2.hkl (319.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES