Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o627–o628. doi: 10.1107/S1600536811004697

4-[(1,3-Dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl)meth­yl]-N′-[(E)-4-nitro­benzyl­idene]benzene­sulfono­hydrazide dimethyl sulfoxide monosolvate

Adailton J Bortoluzzi a,*, Everton B Policarpi a, Cristiano Mora a, Kely N Oliveira a, Ricardo J Nunes a
PMCID: PMC3051948  PMID: 21522382

Abstract

The mol­ecular structure of the title compound, C26H18N4O6S·C2H6OS, shows an E conformation of the hydrazone double bond. The presence of a methyl­ene group between the benzo[de]isoquinoline and benzene­sulfonyl moieties allows the 4-nitro­phenyl ring and the benzo[de]isoquinoline system to be parallel with respect to each other, so that the mol­ecule adopts a U-shaped spatial conformation. The dihedral angle between mean planes of these aromatic groups is 4.4 (1)°. This special arrangement enables neighboring mol­ecules to be inter­calated, forming slipped π–π inter­actions [centroid–centroid distance = 3.535 (2) Å] between the 4-nitro­phenyl and benzo[de]isoquinoline groups and point-to-face C—H⋯π inter­actions between the benzo[de]isoquinoline and benzene­sulfonyl aromatic systems. In addition, the crystal packing also features an inter­molecular N—H⋯O inter­action involving the amine group and the dimethyl sulfoxide solvent mol­ecule.

Related literature

For the therapeutic properties of sulfonyl­hydrazones, see: Rollas et al. (2002); Frlan et al. (2008); Lima et al. (1999); Sondhi et al. (2006) and for their biological activity, see: Kendall et al. (2007); Sadek et al. (2008). For the anti­cancer activity of naphthalimides, see: Braña & Ramos (2001); Braña et al. (2001); Suárez & Sánchez (1992); Ingrassia et al. (2009); Wu et al. (2009); Norton et al. (2008). For the therapeutic properties of cyclic imides, see: Cechinel Filho et al. (2003); Walter et al. (2002). For background to this study, see: Silva et al. (2006); Oliveira & Nunes (2006).graphic file with name e-67-0o627-scheme1.jpg

Experimental

Crystal data

  • C26H18N4O6S·C2H6OS

  • M r = 592.63

  • Triclinic, Inline graphic

  • a = 9.152 (1) Å

  • b = 11.971 (1) Å

  • c = 13.910 (1) Å

  • α = 107.268 (7)°

  • β = 101.789 (7)°

  • γ = 96.319 (8)°

  • V = 1400.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.50 × 0.16 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 5055 measured reflections

  • 4737 independent reflections

  • 3075 reflections with I > 2σ(I)

  • R int = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.163

  • S = 1.04

  • 4737 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004697/ff2001sup1.cif

e-67-0o627-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004697/ff2001Isup2.hkl

e-67-0o627-Isup2.hkl (227.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the p-nitro­phenyl (C22–C27) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1S 0.80 1.99 2.764 (4) 163
C8—H8⋯Cgi 0.93 2.90 3.799 (6) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank CAPES and CNPq for financial support.

supplementary crystallographic information

Comment

Sulfonyl-hydrazones are known for their therapeutic properties, such as, antimicrobial (Rollas et al. 2002, Frlan et al. 2008), analgesic (Lima et al. 1999, Sondhi et al. 2006), etc. Sulfonyl-hydrazones was selective inhibitor of p110α, a phosphoinositide-3-kinase that is over-expressed in 30% of tumors (Kendall et al. 2007). In innovative study, the sulfonyl-hydrazones were reported by enhance myocardial repair by stem cells by activating cardiac differentiation in human mobilized peripheral blood mononuclear cells (M-PBMCs) (Sadek et al. 2008).

Cyclic imides have also many therapeutic properties including antibacterial, antitumor, diuretic and antiviral (Cechinel Filho et al. 2003). In a previous publication, we reported the synthesis of imidobenzenesulfonyl compounds that showed promising analgesic profiles in the acetic acid- induced mice writhing test. The mechanism of action occurred possibly due to additional non-covalent interactions with the COX active site (Walter et al. 2002). The naphthalimides, in special, are known of their high DNA-binding ability and consequently many of them have anticancer property (Braña & Ramos, 2001); Braña et al. 2001). Mitonafide and Amonafide are classical examples of naphthalimides derivatives with antitumoral activity (Suárez et al. 1992). Recently, many similar compounds have been showed activity against different cancer cell lines (Ingrassia et al. 2009, Wu et al. 2009, Norton et al. 2008).

The title compound (I) (Scheme 1) was synthesized as a part of our work to investigate the antitumoral activity of the sulfonyl-hydrazones cyclic imides derivatives (Oliveira et al. 2006, Silva et al. 2006).

The molecular structure of the title compound (Fig. 1) shows E conformation on the hydrazone double bond, which is evidenced by the torsion angle S1–N2–N3–C21 of 165.8 (2)°. The presence of a methylene group among benzo[de]isoquinoline and benzenesulfonyl moieties allows p-nitrophenyl ring and benzo[de]isoquinoline system to be parallel with respect to each other, so that the molecule adopts an U-shaped spatial conformation. The dihedral angle between mean planes of these planar groups is 4.4 (1)°. This special arrangement enables the neighboring molecule be intercalated by a center of symmetry, forming pairs of molecules in a centrosymmetric structure (Fig. 2). Slipped π–π interaction between p-nitrophenyl and benzo[de]isoquinoline, with centroid–C12 distance of 3.589 Å, and point-to-face C–H···π interaction between benzenesulfonyl and benzo[de]isoquinoline aromatic systems, with centroid-H8 distance of 2.903 Å, are observed. In addition, crystal packing also shows an intermolecular N2–H···O1S interaction involving amine group and DMSO solvate.

Experimental

4-nitrobenzaldehyde (79 mg, 0.52 mmol) was added in a mixture of 4-[(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)methyl] benzenesulfonohydrazide (200 mg, 0.52 mmol) in ethanol (10 ml), with a drop of hydrochloric acid as catalyst, as described for similar compounds (Silva et al. 2006, Oliveira et al. 2006). The reaction was carried out by stirring at room temperature for one hour. The solid was filtered off with suction. The crystal used for data collection was obtained by dissolving 30 mg of (I) in 10 ml of dimethylsulfoxide and by slow evaporation of the solvent.

Refinement

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with distances of 0.93 and 0.97 Å and Ueq fixed at 1.2 times Uiso of the preceding atom for C–HAr and C–H2, respectively and at 1.5 times Uiso of the preceding atom for C–H3. The H atom of the amino group was found from Fourier map and treated with riding model and its Ueq was refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the labelling scheme. Displacement ellipsoids are shown at the 40% probability level.

Fig. 2.

Fig. 2.

Intermolecular interactions observed in (I).

Crystal data

C26H18N4O6S·C2H6OS Z = 2
Mr = 592.63 F(000) = 616
Triclinic, P1 Dx = 1.405 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.152 (1) Å Cell parameters from 25 reflections
b = 11.971 (1) Å θ = 8.5–13.4°
c = 13.910 (1) Å µ = 0.24 mm1
α = 107.268 (7)° T = 293 K
β = 101.789 (7)° Prismatic, colourless
γ = 96.319 (8)° 0.50 × 0.16 × 0.13 mm
V = 1400.6 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.017
Radiation source: fine-focus sealed tube θmax = 25.1°, θmin = 2.3°
graphite h = 0→10
ω–2θ scans k = −14→14
5055 measured reflections l = −16→16
4737 independent reflections 3 standard reflections every 200 reflections
3075 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.613P] where P = (Fo2 + 2Fc2)/3
4737 reflections (Δ/σ)max < 0.001
371 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.43 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34031 (11) 0.73620 (8) 0.53120 (6) 0.0597 (3)
N1 0.8354 (3) 1.1992 (2) 0.8805 (2) 0.0571 (7)
N2 0.4477 (3) 0.6426 (2) 0.55446 (19) 0.0540 (7)
H2N 0.5170 0.6398 0.5273 0.058 (12)*
N3 0.4776 (3) 0.6399 (2) 0.65605 (19) 0.0501 (6)
O1 0.6771 (4) 1.2526 (3) 0.9840 (2) 0.1026 (11)
O2 0.9903 (3) 1.1379 (3) 0.7756 (2) 0.0987 (10)
O3 0.3260 (3) 0.7192 (2) 0.42331 (18) 0.0797 (8)
O4 0.2088 (3) 0.7188 (2) 0.5685 (2) 0.0766 (8)
C2 0.7994 (4) 1.2237 (3) 0.9760 (3) 0.0626 (9)
C3 0.9105 (4) 1.2127 (3) 1.0630 (2) 0.0547 (8)
C4 0.8859 (5) 1.2441 (4) 1.1612 (3) 0.0767 (11)
H4 0.7994 1.2747 1.1724 0.092*
C5 0.9881 (6) 1.2309 (4) 1.2432 (3) 0.0864 (13)
H5 0.9706 1.2547 1.3092 0.104*
C6 1.1117 (6) 1.1846 (4) 1.2296 (3) 0.0803 (13)
H6 1.1779 1.1753 1.2858 0.096*
C7 1.1429 (4) 1.1495 (3) 1.1304 (3) 0.0645 (10)
C8 1.2697 (5) 1.1010 (4) 1.1103 (5) 0.0918 (15)
H8 1.3383 1.0895 1.1643 0.110*
C9 1.2953 (5) 1.0705 (4) 1.0149 (6) 0.1053 (19)
H9 1.3799 1.0370 1.0038 0.126*
C10 1.1970 (5) 1.0884 (4) 0.9325 (4) 0.0845 (13)
H10 1.2170 1.0683 0.8672 0.101*
C11 1.0701 (4) 1.1359 (3) 0.9479 (3) 0.0547 (8)
C12 1.0410 (4) 1.1663 (3) 1.0464 (3) 0.0492 (8)
C13 0.9662 (4) 1.1572 (3) 0.8612 (3) 0.0636 (10)
C14 0.7269 (5) 1.2149 (3) 0.7930 (3) 0.0737 (11)
H14A 0.7827 1.2462 0.7515 0.088*
H14B 0.6660 1.2723 0.8202 0.088*
C15 0.6233 (4) 1.0984 (3) 0.7248 (3) 0.0602 (9)
C16 0.6623 (5) 1.0275 (3) 0.6388 (3) 0.0680 (10)
H16 0.7496 1.0539 0.6214 0.082*
C17 0.5738 (4) 0.9184 (3) 0.5784 (3) 0.0636 (9)
H17 0.6009 0.8715 0.5208 0.076*
C18 0.4443 (4) 0.8797 (3) 0.6049 (2) 0.0535 (8)
C19 0.4011 (4) 0.9501 (4) 0.6880 (3) 0.0714 (10)
H19 0.3127 0.9246 0.7045 0.086*
C20 0.4909 (5) 1.0596 (4) 0.7469 (3) 0.0765 (11)
H20 0.4611 1.1079 0.8027 0.092*
C21 0.5844 (4) 0.5873 (3) 0.6806 (2) 0.0500 (8)
H21 0.6372 0.5541 0.6320 0.060*
C22 0.6255 (4) 0.5781 (3) 0.7849 (2) 0.0475 (7)
C23 0.7517 (4) 0.5304 (3) 0.8140 (3) 0.0580 (9)
H23 0.8057 0.4994 0.7655 0.070*
C24 0.7984 (4) 0.5285 (3) 0.9143 (3) 0.0613 (9)
H24 0.8839 0.4973 0.9341 0.074*
C25 0.7162 (4) 0.5734 (3) 0.9838 (2) 0.0550 (8)
C26 0.5894 (4) 0.6196 (3) 0.9578 (3) 0.0638 (9)
H26 0.5356 0.6495 1.0067 0.077*
C27 0.5431 (4) 0.6209 (3) 0.8576 (3) 0.0615 (9)
H27 0.4561 0.6507 0.8382 0.074*
N4 0.7691 (4) 0.5767 (3) 1.0923 (3) 0.0733 (9)
O5 0.6974 (4) 0.6209 (4) 1.1535 (2) 0.1111 (12)
O6 0.8819 (4) 0.5387 (4) 1.1166 (2) 0.1188 (13)
S2 0.74498 (12) 0.64956 (10) 0.39415 (8) 0.0747 (3)
O1S 0.7208 (3) 0.6673 (3) 0.5003 (2) 0.0830 (8)
C1S 0.8748 (5) 0.5522 (4) 0.3777 (3) 0.0833 (12)
H1S1 0.8257 0.4734 0.3689 0.125*
H1S2 0.9591 0.5784 0.4379 0.125*
H1S3 0.9105 0.5515 0.3173 0.125*
C2S 0.8693 (6) 0.7814 (4) 0.4070 (4) 0.1081 (17)
H2S1 0.8157 0.8468 0.4170 0.162*
H2S2 0.9049 0.7705 0.3451 0.162*
H2S3 0.9542 0.7979 0.4657 0.162*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0667 (6) 0.0595 (5) 0.0449 (5) −0.0013 (4) −0.0036 (4) 0.0219 (4)
N1 0.0665 (19) 0.0523 (16) 0.0478 (16) 0.0087 (14) 0.0064 (14) 0.0155 (13)
N2 0.0696 (19) 0.0552 (16) 0.0371 (14) 0.0016 (14) 0.0122 (14) 0.0193 (12)
N3 0.0566 (16) 0.0536 (15) 0.0412 (14) 0.0033 (13) 0.0094 (12) 0.0217 (12)
O1 0.084 (2) 0.137 (3) 0.079 (2) 0.060 (2) 0.0151 (16) 0.0140 (19)
O2 0.103 (2) 0.127 (3) 0.0623 (18) −0.0099 (19) 0.0389 (17) 0.0240 (17)
O3 0.113 (2) 0.0723 (17) 0.0391 (13) −0.0025 (15) −0.0086 (13) 0.0230 (12)
O4 0.0539 (15) 0.0878 (19) 0.0830 (19) 0.0021 (13) 0.0062 (13) 0.0319 (15)
C2 0.064 (2) 0.062 (2) 0.055 (2) 0.0181 (18) 0.0125 (18) 0.0088 (17)
C3 0.059 (2) 0.055 (2) 0.0449 (19) 0.0089 (16) 0.0094 (16) 0.0111 (15)
C4 0.077 (3) 0.085 (3) 0.059 (2) 0.014 (2) 0.019 (2) 0.010 (2)
C5 0.103 (4) 0.097 (3) 0.046 (2) −0.003 (3) 0.011 (2) 0.019 (2)
C6 0.094 (3) 0.068 (3) 0.062 (3) −0.011 (2) −0.012 (2) 0.028 (2)
C7 0.058 (2) 0.0424 (18) 0.079 (3) −0.0036 (16) −0.0068 (19) 0.0200 (17)
C8 0.062 (3) 0.057 (2) 0.136 (5) 0.007 (2) −0.012 (3) 0.028 (3)
C9 0.053 (3) 0.075 (3) 0.170 (6) 0.020 (2) 0.022 (3) 0.015 (3)
C10 0.062 (3) 0.068 (3) 0.111 (4) 0.003 (2) 0.038 (3) 0.004 (2)
C11 0.0454 (19) 0.0446 (17) 0.066 (2) −0.0026 (15) 0.0159 (17) 0.0083 (16)
C12 0.0477 (19) 0.0370 (16) 0.057 (2) −0.0010 (14) 0.0091 (15) 0.0119 (14)
C13 0.073 (3) 0.054 (2) 0.058 (2) −0.0128 (18) 0.0226 (19) 0.0129 (17)
C14 0.099 (3) 0.054 (2) 0.058 (2) 0.008 (2) −0.003 (2) 0.0214 (17)
C15 0.083 (3) 0.0477 (19) 0.0437 (19) 0.0127 (18) −0.0020 (18) 0.0186 (15)
C16 0.082 (3) 0.060 (2) 0.059 (2) −0.0055 (19) 0.014 (2) 0.0247 (18)
C17 0.080 (3) 0.056 (2) 0.051 (2) 0.0032 (19) 0.0152 (19) 0.0167 (16)
C18 0.062 (2) 0.0540 (19) 0.0415 (18) 0.0084 (16) 0.0002 (15) 0.0211 (15)
C19 0.067 (2) 0.080 (3) 0.061 (2) 0.007 (2) 0.0146 (19) 0.017 (2)
C20 0.080 (3) 0.072 (3) 0.060 (2) 0.009 (2) 0.012 (2) 0.004 (2)
C21 0.061 (2) 0.0471 (17) 0.0396 (17) 0.0028 (16) 0.0122 (15) 0.0141 (14)
C22 0.0561 (19) 0.0409 (16) 0.0446 (17) 0.0047 (14) 0.0108 (15) 0.0152 (13)
C23 0.073 (2) 0.053 (2) 0.051 (2) 0.0212 (17) 0.0210 (17) 0.0152 (16)
C24 0.069 (2) 0.062 (2) 0.055 (2) 0.0231 (18) 0.0075 (18) 0.0227 (17)
C25 0.064 (2) 0.055 (2) 0.0431 (18) 0.0007 (17) 0.0074 (16) 0.0192 (15)
C26 0.068 (2) 0.081 (3) 0.053 (2) 0.017 (2) 0.0235 (18) 0.0292 (19)
C27 0.057 (2) 0.083 (3) 0.057 (2) 0.0212 (19) 0.0184 (17) 0.0352 (19)
N4 0.080 (2) 0.087 (2) 0.052 (2) 0.0088 (19) 0.0094 (18) 0.0279 (17)
O5 0.115 (3) 0.171 (3) 0.0557 (18) 0.032 (2) 0.0289 (19) 0.043 (2)
O6 0.121 (3) 0.182 (4) 0.072 (2) 0.070 (3) 0.0121 (19) 0.062 (2)
S2 0.0732 (7) 0.1007 (8) 0.0565 (6) 0.0068 (6) 0.0234 (5) 0.0332 (5)
O1S 0.103 (2) 0.095 (2) 0.0608 (16) 0.0099 (16) 0.0414 (15) 0.0291 (14)
C1S 0.080 (3) 0.094 (3) 0.077 (3) 0.010 (2) 0.028 (2) 0.025 (2)
C2S 0.130 (4) 0.101 (4) 0.115 (4) 0.005 (3) 0.060 (3) 0.053 (3)

Geometric parameters (Å, °)

S1—O4 1.423 (3) C15—C20 1.375 (5)
S1—O3 1.429 (2) C15—C16 1.384 (5)
S1—N2 1.630 (3) C16—C17 1.381 (5)
S1—C18 1.762 (3) C16—H16 0.9300
N1—C2 1.388 (4) C17—C18 1.383 (5)
N1—C13 1.394 (5) C17—H17 0.9300
N1—C14 1.478 (4) C18—C19 1.373 (5)
N2—N3 1.394 (3) C19—C20 1.383 (5)
N2—H2N 0.8006 C19—H19 0.9300
N3—C21 1.263 (4) C20—H20 0.9300
O1—C2 1.224 (4) C21—C22 1.462 (4)
O2—C13 1.214 (4) C21—H21 0.9300
C2—C3 1.461 (5) C22—C23 1.383 (4)
C3—C4 1.377 (5) C22—C27 1.394 (4)
C3—C12 1.404 (5) C23—C24 1.381 (5)
C4—C5 1.380 (6) C23—H23 0.9300
C4—H4 0.9300 C24—C25 1.367 (5)
C5—C6 1.336 (6) C24—H24 0.9300
C5—H5 0.9300 C25—C26 1.369 (5)
C6—C7 1.415 (6) C25—N4 1.474 (4)
C6—H6 0.9300 C26—C27 1.377 (5)
C7—C8 1.395 (6) C26—H26 0.9300
C7—C12 1.418 (5) C27—H27 0.9300
C8—C9 1.344 (7) N4—O6 1.200 (4)
C8—H8 0.9300 N4—O5 1.213 (4)
C9—C10 1.391 (7) S2—O1S 1.494 (3)
C9—H9 0.9300 S2—C1S 1.755 (4)
C10—C11 1.375 (5) S2—C2S 1.781 (5)
C10—H10 0.9300 C1S—H1S1 0.9600
C11—C12 1.399 (5) C1S—H1S2 0.9600
C11—C13 1.481 (5) C1S—H1S3 0.9600
C14—C15 1.517 (5) C2S—H2S1 0.9600
C14—H14A 0.9700 C2S—H2S2 0.9600
C14—H14B 0.9700 C2S—H2S3 0.9600
O4—S1—O3 120.25 (16) C20—C15—C14 121.5 (4)
O4—S1—N2 108.61 (16) C16—C15—C14 120.0 (4)
O3—S1—N2 103.64 (16) C17—C16—C15 121.1 (4)
O4—S1—C18 107.94 (17) C17—C16—H16 119.5
O3—S1—C18 109.03 (15) C15—C16—H16 119.5
N2—S1—C18 106.58 (15) C16—C17—C18 119.1 (4)
C2—N1—C13 123.8 (3) C16—C17—H17 120.4
C2—N1—C14 118.4 (3) C18—C17—H17 120.4
C13—N1—C14 117.7 (3) C19—C18—C17 120.7 (3)
N3—N2—S1 115.3 (2) C19—C18—S1 121.3 (3)
N3—N2—H2N 117.1 C17—C18—S1 118.0 (3)
S1—N2—H2N 114.1 C18—C19—C20 119.2 (4)
C21—N3—N2 115.5 (3) C18—C19—H19 120.4
O1—C2—N1 119.3 (3) C20—C19—H19 120.4
O1—C2—C3 122.8 (3) C15—C20—C19 121.4 (4)
N1—C2—C3 117.9 (3) C15—C20—H20 119.3
C4—C3—C12 119.4 (3) C19—C20—H20 119.3
C4—C3—C2 120.4 (3) N3—C21—C22 120.5 (3)
C12—C3—C2 120.1 (3) N3—C21—H21 119.7
C3—C4—C5 120.8 (4) C22—C21—H21 119.7
C3—C4—H4 119.6 C23—C22—C27 118.9 (3)
C5—C4—H4 119.6 C23—C22—C21 119.9 (3)
C6—C5—C4 121.3 (4) C27—C22—C21 121.1 (3)
C6—C5—H5 119.4 C24—C23—C22 120.7 (3)
C4—C5—H5 119.4 C24—C23—H23 119.6
C5—C6—C7 120.7 (4) C22—C23—H23 119.6
C5—C6—H6 119.6 C25—C24—C23 118.5 (3)
C7—C6—H6 119.6 C25—C24—H24 120.7
C8—C7—C6 124.0 (4) C23—C24—H24 120.7
C8—C7—C12 117.6 (4) C24—C25—C26 122.6 (3)
C6—C7—C12 118.3 (4) C24—C25—N4 118.9 (3)
C9—C8—C7 121.7 (5) C26—C25—N4 118.5 (3)
C9—C8—H8 119.1 C25—C26—C27 118.6 (3)
C7—C8—H8 119.1 C25—C26—H26 120.7
C8—C9—C10 120.9 (4) C27—C26—H26 120.7
C8—C9—H9 119.6 C26—C27—C22 120.6 (3)
C10—C9—H9 119.6 C26—C27—H27 119.7
C11—C10—C9 119.9 (5) C22—C27—H27 119.7
C11—C10—H10 120.1 O6—N4—O5 123.1 (4)
C9—C10—H10 120.1 O6—N4—C25 119.1 (4)
C10—C11—C12 119.8 (4) O5—N4—C25 117.7 (4)
C10—C11—C13 120.2 (4) O1S—S2—C1S 106.61 (19)
C12—C11—C13 119.9 (3) O1S—S2—C2S 104.8 (2)
C11—C12—C3 120.5 (3) C1S—S2—C2S 97.5 (2)
C11—C12—C7 120.1 (3) S2—C1S—H1S1 109.5
C3—C12—C7 119.4 (3) S2—C1S—H1S2 109.5
O2—C13—N1 120.1 (4) H1S1—C1S—H1S2 109.5
O2—C13—C11 122.6 (4) S2—C1S—H1S3 109.5
N1—C13—C11 117.3 (3) H1S1—C1S—H1S3 109.5
N1—C14—C15 111.5 (3) H1S2—C1S—H1S3 109.5
N1—C14—H14A 109.3 S2—C2S—H2S1 109.5
C15—C14—H14A 109.3 S2—C2S—H2S2 109.5
N1—C14—H14B 109.3 H2S1—C2S—H2S2 109.5
C15—C14—H14B 109.3 S2—C2S—H2S3 109.5
H14A—C14—H14B 108.0 H2S1—C2S—H2S3 109.5
C20—C15—C16 118.5 (3) H2S2—C2S—H2S3 109.5
O4—S1—N2—N3 −49.9 (3) C12—C11—C13—O2 176.2 (3)
O3—S1—N2—N3 −178.9 (2) C10—C11—C13—N1 176.5 (3)
C18—S1—N2—N3 66.1 (3) C12—C11—C13—N1 −4.8 (4)
S1—N2—N3—C21 −165.8 (2) C2—N1—C14—C15 −96.1 (4)
C13—N1—C2—O1 −175.1 (3) C13—N1—C14—C15 82.0 (4)
C14—N1—C2—O1 2.9 (5) N1—C14—C15—C20 86.5 (5)
C13—N1—C2—C3 4.6 (5) N1—C14—C15—C16 −92.5 (4)
C14—N1—C2—C3 −177.4 (3) C20—C15—C16—C17 −2.3 (5)
O1—C2—C3—C4 −5.1 (6) C14—C15—C16—C17 176.8 (3)
N1—C2—C3—C4 175.2 (3) C15—C16—C17—C18 −0.1 (5)
O1—C2—C3—C12 172.8 (4) C16—C17—C18—C19 2.1 (5)
N1—C2—C3—C12 −6.8 (5) C16—C17—C18—S1 −176.1 (3)
C12—C3—C4—C5 0.2 (6) O4—S1—C18—C19 5.1 (3)
C2—C3—C4—C5 178.1 (4) O3—S1—C18—C19 137.3 (3)
C3—C4—C5—C6 −1.7 (7) N2—S1—C18—C19 −111.5 (3)
C4—C5—C6—C7 1.1 (7) O4—S1—C18—C17 −176.8 (3)
C5—C6—C7—C8 179.7 (4) O3—S1—C18—C17 −44.6 (3)
C5—C6—C7—C12 0.8 (5) N2—S1—C18—C17 66.7 (3)
C6—C7—C8—C9 −179.1 (4) C17—C18—C19—C20 −1.6 (5)
C12—C7—C8—C9 −0.2 (6) S1—C18—C19—C20 176.6 (3)
C7—C8—C9—C10 1.2 (7) C16—C15—C20—C19 2.8 (6)
C8—C9—C10—C11 −1.2 (7) C14—C15—C20—C19 −176.2 (3)
C9—C10—C11—C12 0.2 (5) C18—C19—C20—C15 −0.9 (6)
C9—C10—C11—C13 179.0 (4) N2—N3—C21—C22 −179.6 (2)
C10—C11—C12—C3 −178.8 (3) N3—C21—C22—C23 −173.8 (3)
C13—C11—C12—C3 2.5 (4) N3—C21—C22—C27 3.6 (5)
C10—C11—C12—C7 0.7 (5) C27—C22—C23—C24 −2.0 (5)
C13—C11—C12—C7 −178.0 (3) C21—C22—C23—C24 175.5 (3)
C4—C3—C12—C11 −178.7 (3) C22—C23—C24—C25 0.7 (5)
C2—C3—C12—C11 3.3 (5) C23—C24—C25—C26 0.3 (5)
C4—C3—C12—C7 1.8 (5) C23—C24—C25—N4 −177.2 (3)
C2—C3—C12—C7 −176.2 (3) C24—C25—C26—C27 −0.1 (5)
C8—C7—C12—C11 −0.7 (5) N4—C25—C26—C27 177.5 (3)
C6—C7—C12—C11 178.2 (3) C25—C26—C27—C22 −1.2 (5)
C8—C7—C12—C3 178.8 (3) C23—C22—C27—C26 2.2 (5)
C6—C7—C12—C3 −2.3 (5) C21—C22—C27—C26 −175.3 (3)
C2—N1—C13—O2 −179.9 (3) C24—C25—N4—O6 −0.8 (5)
C14—N1—C13—O2 2.1 (5) C26—C25—N4—O6 −178.5 (4)
C2—N1—C13—C11 1.1 (5) C24—C25—N4—O5 177.4 (4)
C14—N1—C13—C11 −176.9 (3) C26—C25—N4—O5 −0.3 (5)
C10—C11—C13—O2 −2.5 (5)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the p-nitrophenyl (C22–C27) ring.
D—H···A D—H H···A D···A D—H···A
N2—H2N···O1S 0.80 1.99 2.764 (4) 163
C8—H8···Cgi 0.93 2.90 3.799 (6) 162

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2001).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Braña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. 7, 1745–1780. [DOI] [PubMed]
  3. Braña, M. F. & Ramos, A. (2001). Curr. Med. Chem. 1, 237–255. [DOI] [PubMed]
  4. Cechinel Filho, V., Campos, F., Corrêa, R., Yunes, R. A. & Nunes, R. J. (2003). Quim. Nova, 26, 230–241.
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Frlan, R., Kovac, A., Blanot, D., Gobec, S., Pecar, S. & Obreza, A. (2008). Molecules, 13, 11–30. [DOI] [PMC free article] [PubMed]
  7. Ingrassia, L., Lefranc, F., Kiss, R. & Mijatovic, T. (2009). Curr. Med. Chem. 16, 1192–1213. [DOI] [PubMed]
  8. Kendall, J. D., Rewcastle, G. W., Frederick, R., Mawson, R., Denny, W. A., Marshall, E. S., Baguley, B. C., Chaussade, C., Jackson, S. P. & Shepherd, P. R. (2007). Bioorg. Med. Chem. 15, 7677–7687. [DOI] [PubMed]
  9. Lima, L. M., Ormelli, C. B., Miranda, A. L. P., Brito, F. F., Fraga, C. A. M. & Barreiro, E. J. (1999). Pharm. Pharmacol. Commun. 5, 673–678.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. Norton, J. T., Witschi, M. A., Luong, L., Kawamura, A., Ghosh, S., Stack, M. S., Sim, E., Avram, M. J., Appella, D. H. & Huang, S. (2008). Anticancer Drugs, 19, 23–36. [DOI] [PubMed]
  12. Oliveira, K. N. & Nunes, R. J. (2006). Synth. Commun. 36, 3401–3409.
  13. Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  14. Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., Garry, D. J., Longgood, J., Frantz, D. E., Olson, E. N., Hsieh, J. & Schneider, J. W. (2008). PNAS, 105, 6063–6068. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Silva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). Arkivoc, xiii, 124–129.
  17. Sondhi, S. M., Dinodia, M. & Kumar, A. (2006). Bioorg. Med. Chem. 14, 4657–4663. [DOI] [PubMed]
  18. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Suárez, A. I. T. & Sánchez, M. A. C. (1992). Farmaco, 47, 497–508.
  21. Walter, M. E., Mora, C., Mundstock, K., Souza, M. M., Pinheiro, A. O., Yunes, R. A. & Nunes, R. J. (2002). Arch. Pharm. Pharm. Med. Chem. 337, 201–206. [DOI] [PubMed]
  22. Wu, A., Xu, Y. & Qian, X. (2009). Bioorg. Med. Chem. 17, 592–599. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004697/ff2001sup1.cif

e-67-0o627-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004697/ff2001Isup2.hkl

e-67-0o627-Isup2.hkl (227.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES