Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):m306. doi: 10.1107/S1600536811002571

Bis(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)copper(II) perchlorate

Yu Zhu a, Yun-Long Wu a, Chun-Xia Huang a, Ji-Min Xie a,*
PMCID: PMC3051949  PMID: 21522243

Abstract

In the title compound, [Cu(NO3)(C10H8N2)2]ClO4, the five-coordinated CuII atom has a distorted square-pyramidal CuN4O environment; the O atom is in the axial position whereas the N atoms from two bipyridine (bipy) ligands are in the equatorial plane. In the crystal, mol­ecules are assembled by C—H⋯O hydrogen bonding and π–π inter­actions between bipy groups [centroid–centroid distances = 3.7686 (16) and 3.7002 (16) Å] into a three-dimensional network. The nitrite anion is equally disordered over two sets of sites.

Related literature

For the applications of complexes with bipyridine and its derivatives in catalysis and visible-light-driven water oxidation, see: Morrow & Trogler (1989) and Duan et al. (2010), respectively. graphic file with name e-67-0m306-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)(C10H8N2)2]ClO4

  • M r = 537.38

  • Triclinic, Inline graphic

  • a = 7.5882 (15) Å

  • b = 10.473 (2) Å

  • c = 14.041 (3) Å

  • α = 76.15 (3)°

  • β = 81.46 (4)°

  • γ = 78.86 (3)°

  • V = 1056.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.747, T max = 0.803

  • 10121 measured reflections

  • 4037 independent reflections

  • 3579 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 1.05

  • 4037 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002571/kp2303sup1.cif

e-67-0m306-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002571/kp2303Isup2.hkl

e-67-0m306-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.986 (2)
Cu1—N4 1.9890 (19)
Cu1—N2 2.0426 (19)
Cu1—N3 2.0534 (18)
Cu1—O3 2.38 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.58 3.276 (3) 132
C7—H7⋯O4ii 0.93 2.53 3.322 (4) 144
C13—H13⋯O7iii 0.93 2.43 3.249 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Social Development Foundation of Jiangsu Province of China (BS2006038) and the Industry High Technology Foundation of Jiangsu (BG2007025).

supplementary crystallographic information

Comment

Complexes with bipyridine and its derivatives have been extensively studied because of their potential applications in catalysis (Morrow & Trogler, 1989) and visible light driven water oxidation (Duan et al., 2010). Herein we report the synthesis and structure of the title copper complex with 2, 2'-bipyridine.

The structure of the title complex (Fig. 1)consists of a discrete cation [Cu(bipy)2(NO3)]+ and an uncoordinated ClO4- anion which is in disorder. The Cu(II) atom is five coordinated by four nitrogen atoms from two bipy ligands and one oxygen atom from one nitrate anion, exhibiting a distorted square pyramidal coordination with the oxygen atom in the axial position (Fig. 1 and Table 1). The uncoordinated perchlorate anion displays the expected tetrahedral geometry. There are weak intermolecular C—H···O hydrogen bonds in the crystal structure(C3—H3···O5i, C7—H7···O4ii and C13—H13···O7iii; Table 2). Crystal packing is stabilised by the C—H···O hydrogen bonds and π-π interactions between two parallel bipy rings [centroid (N1, C1—C5)···centroid (N1, C1—C5)iv = 3.77 Å; centroid (N2, C6—C10) ···centroid (N2, C6—C10)v= 3.70 Å; centroid (N3, C16—C20)···centroid (N4, C11—C15)vi = 3.75 Å; symmetry codes: (iv)-x, 1 - y, -z; (v) 1 - x, -y, -z; (vi) -x, -y, 1 - z)](Fig. 2).

Experimental

2, 2'-bipyridine (31.3 mg, 0.2 mmol), Cu(NO3)2.3H2O(42 mg, 0.2 mmol), NaClO4 (28 mg, 0.2 mmol), acetone (10 mL) and methanol (6 mL) were stirred for 8 h at 313 K. The solution was then filtered, evaporated in the air and prismatic blue crystals were formed after 2 days (yieled 78%).

Refinement

All the H atoms were placed in calculated positions and refined using a riding model, with Uiso (H) =1.2Ueq(C, N) and C–H =0.93 and N–H=0.86 Å. The disorder of [NO3]- with two locations of O1, O2, and O3 led in the refinement to 1:1 ratio in occupancy for each oxygen atom. However, a slight disorder of [ClO4]- cannot be described geometrically.

Figures

Fig. 1.

Fig. 1.

View of the title complex showing the labeling of the non-H atoms and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii. Disorders of the coordinated [NO3]- and uncoordinated [ClO4]-anions are not shown.

Fig. 2.

Fig. 2.

Three dimensional architecture constructed by intermolecular C—H···O hydrogen bonding (dashed lines) and π-π interactions.

Crystal data

[Cu(NO3)(C10H8N2)2]ClO4 Z = 2
Mr = 537.38 F(000) = 546
Triclinic, P1 Dx = 1.689 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5882 (15) Å Cell parameters from 4693 reflections
b = 10.473 (2) Å θ = 3.1–29.0°
c = 14.041 (3) Å µ = 1.22 mm1
α = 76.15 (3)° T = 295 K
β = 81.46 (4)° Prism, blue
γ = 78.86 (3)° 0.24 × 0.20 × 0.18 mm
V = 1056.9 (4) Å3

Data collection

Rigaku Saturn 724 diffractometer 4037 independent reflections
Radiation source: fine-focus sealed tube 3579 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −8→9
Tmin = 0.747, Tmax = 0.803 k = −12→12
10121 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.3686P] where P = (Fo2 + 2Fc2)/3
4037 reflections (Δ/σ)max < 0.001
351 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.13510 (4) 0.14256 (3) 0.229930 (18) 0.04365 (11)
N1 −0.0008 (3) 0.26435 (18) 0.12391 (13) 0.0413 (4)
C1 −0.1751 (3) 0.3189 (2) 0.13465 (18) 0.0460 (5)
H1 −0.2386 0.3047 0.1972 0.062 (8)*
O1 −0.144 (6) 0.025 (3) 0.2791 (18) 0.072 (5) 0.42 (7)
O1' −0.092 (3) 0.0253 (18) 0.2643 (12) 0.054 (3) 0.58 (7)
Cl1 0.40225 (9) 0.48718 (7) 0.29287 (4) 0.05741 (18)
N2 0.3386 (2) 0.15087 (18) 0.11680 (13) 0.0405 (4)
C2 −0.2638 (4) 0.3950 (2) 0.05677 (19) 0.0526 (6)
H2 −0.3832 0.4358 0.0670 0.074 (9)*
O2 −0.165 (6) −0.127 (4) 0.212 (3) 0.093 (7) 0.42 (7)
O2' −0.171 (4) −0.151 (2) 0.2322 (14) 0.071 (3) 0.58 (7)
N3 0.0518 (2) 0.23533 (17) 0.34604 (13) 0.0377 (4)
C3 −0.1733 (4) 0.4104 (3) −0.03679 (19) 0.0561 (7)
H3 −0.2314 0.4605 −0.0909 0.063 (8)*
O3 0.070 (2) −0.033 (3) 0.1678 (19) 0.063 (5) 0.42 (7)
O3' 0.047 (3) −0.0583 (17) 0.1459 (15) 0.082 (3) 0.58 (7)
N4 0.2614 (2) 0.00723 (18) 0.33384 (13) 0.0412 (4)
C4 0.0043 (4) 0.3504 (2) −0.04923 (17) 0.0514 (6)
H4 0.0664 0.3571 −0.1121 0.070 (9)*
O4 0.5696 (3) 0.5366 (3) 0.26537 (19) 0.0918 (7)
N5 −0.0741 (3) −0.0584 (2) 0.21550 (15) 0.0465 (5)
C5 0.0898 (3) 0.2800 (2) 0.03288 (15) 0.0406 (5)
O5 0.2613 (4) 0.5915 (3) 0.25784 (17) 0.1054 (9)
C6 0.2824 (3) 0.2197 (2) 0.02926 (15) 0.0398 (5)
O6 0.4111 (4) 0.3772 (3) 0.2508 (2) 0.1198 (11)
C7 0.4017 (4) 0.2356 (2) −0.05599 (17) 0.0496 (6)
H7 0.3614 0.2841 −0.1156 0.055 (7)*
O7 0.3702 (4) 0.4516 (2) 0.39655 (15) 0.0995 (9)
C8 0.5801 (4) 0.1788 (3) −0.05135 (19) 0.0534 (6)
H8 0.6618 0.1882 −0.1079 0.054 (7)*
C9 0.6372 (3) 0.1078 (3) 0.03760 (19) 0.0516 (6)
H9 0.7572 0.0679 0.0420 0.075 (9)*
C10 0.5128 (3) 0.0971 (2) 0.11998 (18) 0.0476 (5)
H10 0.5518 0.0505 0.1804 0.053 (7)*
C11 0.3604 (3) −0.1094 (2) 0.32214 (18) 0.0510 (6)
H11 0.3782 −0.1292 0.2599 0.062 (8)*
C12 0.4372 (3) −0.2012 (2) 0.3986 (2) 0.0541 (6)
H12 0.5064 −0.2812 0.3883 0.065 (8)*
C13 0.4095 (3) −0.1719 (2) 0.4905 (2) 0.0532 (6)
H13 0.4616 −0.2316 0.5432 0.059 (8)*
C14 0.3040 (3) −0.0538 (2) 0.50390 (17) 0.0451 (5)
H14 0.2812 −0.0342 0.5662 0.052 (7)*
C15 0.2321 (3) 0.0353 (2) 0.42427 (15) 0.0363 (5)
C16 0.1165 (3) 0.1643 (2) 0.43096 (15) 0.0356 (4)
C17 0.0741 (3) 0.2098 (2) 0.51762 (16) 0.0452 (5)
H17 0.1225 0.1607 0.5750 0.055 (7)*
C18 −0.0408 (4) 0.3290 (3) 0.51792 (19) 0.0541 (6)
H18 −0.0735 0.3599 0.5759 0.061 (8)*
C19 −0.1059 (3) 0.4013 (3) 0.4320 (2) 0.0541 (6)
H19 −0.1838 0.4819 0.4308 0.062 (8)*
C20 −0.0546 (3) 0.3528 (2) 0.34734 (18) 0.0478 (6)
H20 −0.0957 0.4039 0.2886 0.051 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.04732 (18) 0.04701 (18) 0.02684 (15) 0.00769 (13) 0.00054 (11) −0.00424 (11)
N1 0.0475 (10) 0.0413 (10) 0.0313 (9) −0.0004 (8) −0.0030 (8) −0.0065 (8)
C1 0.0471 (13) 0.0464 (13) 0.0430 (13) −0.0012 (11) −0.0041 (10) −0.0124 (10)
O1 0.103 (12) 0.060 (5) 0.036 (5) 0.009 (7) 0.021 (7) −0.012 (4)
O1' 0.068 (5) 0.060 (3) 0.031 (4) −0.014 (4) 0.014 (3) −0.012 (3)
Cl1 0.0584 (4) 0.0596 (4) 0.0441 (3) 0.0051 (3) 0.0029 (3) −0.0088 (3)
N2 0.0449 (10) 0.0414 (10) 0.0325 (9) −0.0048 (8) 0.0011 (8) −0.0076 (8)
C2 0.0539 (15) 0.0484 (14) 0.0573 (15) 0.0009 (12) −0.0205 (12) −0.0135 (12)
O2 0.088 (11) 0.054 (8) 0.136 (17) −0.029 (5) −0.030 (12) 0.004 (9)
O2' 0.079 (5) 0.065 (8) 0.074 (5) −0.037 (6) −0.002 (4) −0.008 (5)
N3 0.0402 (9) 0.0369 (9) 0.0334 (9) −0.0021 (8) −0.0014 (7) −0.0076 (7)
C3 0.0705 (17) 0.0509 (15) 0.0477 (14) −0.0035 (13) −0.0271 (13) −0.0050 (11)
O3 0.047 (4) 0.065 (7) 0.064 (7) −0.001 (4) 0.004 (4) −0.006 (4)
O3' 0.065 (4) 0.099 (5) 0.084 (5) −0.022 (4) 0.030 (4) −0.042 (5)
N4 0.0443 (10) 0.0405 (10) 0.0328 (9) 0.0020 (8) −0.0006 (8) −0.0059 (8)
C4 0.0746 (17) 0.0465 (13) 0.0325 (12) −0.0088 (12) −0.0098 (12) −0.0059 (10)
O4 0.0823 (16) 0.0942 (17) 0.0956 (17) −0.0216 (13) 0.0108 (13) −0.0207 (14)
N5 0.0438 (12) 0.0518 (13) 0.0397 (11) −0.0028 (11) −0.0084 (9) −0.0034 (10)
C5 0.0555 (13) 0.0339 (11) 0.0321 (11) −0.0064 (10) −0.0045 (10) −0.0076 (9)
O5 0.1019 (18) 0.125 (2) 0.0643 (14) 0.0473 (16) −0.0261 (13) −0.0138 (14)
C6 0.0537 (13) 0.0335 (11) 0.0323 (11) −0.0077 (10) 0.0013 (10) −0.0106 (9)
O6 0.1064 (19) 0.111 (2) 0.157 (3) −0.0352 (17) 0.0496 (19) −0.084 (2)
C7 0.0662 (16) 0.0484 (13) 0.0329 (12) −0.0125 (12) 0.0050 (11) −0.0104 (10)
O7 0.1140 (19) 0.0939 (16) 0.0472 (11) 0.0367 (14) 0.0124 (12) 0.0126 (11)
C8 0.0591 (15) 0.0578 (15) 0.0456 (14) −0.0197 (13) 0.0178 (12) −0.0221 (12)
C9 0.0467 (14) 0.0554 (15) 0.0536 (15) −0.0114 (12) 0.0077 (11) −0.0192 (12)
C10 0.0461 (13) 0.0499 (13) 0.0447 (13) −0.0046 (11) −0.0009 (11) −0.0112 (11)
C11 0.0565 (14) 0.0455 (13) 0.0459 (14) 0.0046 (11) −0.0013 (11) −0.0128 (11)
C12 0.0505 (14) 0.0396 (13) 0.0657 (17) 0.0041 (11) −0.0075 (12) −0.0071 (11)
C13 0.0502 (14) 0.0467 (14) 0.0559 (15) −0.0061 (11) −0.0171 (12) 0.0076 (11)
C14 0.0453 (13) 0.0498 (13) 0.0380 (12) −0.0101 (11) −0.0084 (10) −0.0013 (10)
C15 0.0344 (10) 0.0401 (11) 0.0330 (11) −0.0086 (9) −0.0013 (9) −0.0047 (9)
C16 0.0357 (11) 0.0393 (11) 0.0310 (10) −0.0102 (9) 0.0017 (8) −0.0060 (8)
C17 0.0505 (13) 0.0527 (13) 0.0337 (12) −0.0123 (11) 0.0009 (10) −0.0121 (10)
C18 0.0565 (15) 0.0630 (16) 0.0495 (14) −0.0128 (13) 0.0057 (12) −0.0298 (13)
C19 0.0524 (14) 0.0462 (14) 0.0661 (17) 0.0012 (12) −0.0043 (12) −0.0254 (12)
C20 0.0515 (13) 0.0412 (12) 0.0484 (13) 0.0005 (11) −0.0066 (11) −0.0106 (10)

Geometric parameters (Å, °)

Cu1—N1 1.986 (2) N4—C11 1.338 (3)
Cu1—N4 1.9890 (19) N4—C15 1.348 (3)
Cu1—N2 2.0426 (19) C4—C5 1.387 (3)
Cu1—N3 2.0534 (18) C4—H4 0.9301
Cu1—O1' 2.233 (15) C5—C6 1.474 (3)
Cu1—O3 2.38 (4) C6—C7 1.386 (3)
Cu1—O1 2.57 (5) C7—C8 1.374 (4)
Cu1—O3' 2.87 (3) C7—H7 0.9301
N1—C1 1.338 (3) C8—C9 1.375 (4)
N1—C5 1.347 (3) C8—H8 0.9300
C1—C2 1.370 (3) C9—C10 1.377 (3)
C1—H1 0.9299 C9—H9 0.9300
O1—N5 1.38 (2) C10—H10 0.9299
O1'—N5 1.213 (19) C11—C12 1.375 (3)
Cl1—O6 1.402 (3) C11—H11 0.9300
Cl1—O7 1.410 (2) C12—C13 1.374 (4)
Cl1—O5 1.424 (2) C12—H12 0.9300
Cl1—O4 1.429 (2) C13—C14 1.375 (4)
N2—C10 1.336 (3) C13—H13 0.9300
N2—C6 1.351 (3) C14—C15 1.380 (3)
C2—C3 1.377 (4) C14—H14 0.9300
C2—H2 0.9301 C15—C16 1.477 (3)
O2—N5 1.10 (4) C16—C17 1.383 (3)
O2'—N5 1.28 (2) C17—C18 1.378 (4)
N3—C20 1.337 (3) C17—H17 0.9300
N3—C16 1.350 (3) C18—C19 1.367 (4)
C3—C4 1.378 (4) C18—H18 0.9300
C3—H3 0.9299 C19—C20 1.378 (3)
O3—N5 1.231 (16) C19—H19 0.9300
O3'—N5 1.238 (13) C20—H20 0.9300
N1—Cu1—N4 174.76 (8) C5—C4—H4 120.3
N1—Cu1—N2 81.03 (8) O2—N5—O1' 130.3 (17)
N4—Cu1—N2 99.78 (8) O2—N5—O3 133.1 (18)
N1—Cu1—N3 101.94 (8) O1'—N5—O3 96.5 (13)
N4—Cu1—N3 81.12 (7) O2—N5—O3' 109.6 (16)
N2—Cu1—N3 135.94 (7) O1'—N5—O3' 119.0 (9)
N1—Cu1—O1' 87.4 (4) O1'—N5—O2' 124.5 (11)
N4—Cu1—O1' 88.2 (4) O3—N5—O2' 138 (2)
N2—Cu1—O1' 130.0 (5) O3'—N5—O2' 116.5 (15)
N3—Cu1—O1' 94.0 (5) O2—N5—O1 113 (2)
N1—Cu1—O3 85.8 (4) O3—N5—O1 113.3 (9)
N4—Cu1—O3 89.1 (4) O3'—N5—O1 135.0 (10)
N2—Cu1—O3 84.1 (4) O2'—N5—O1 108 (2)
N3—Cu1—O3 139.8 (4) N1—C5—C4 120.9 (2)
O1'—Cu1—O3 46.5 (6) N1—C5—C6 114.93 (19)
N1—Cu1—O1 86.4 (5) C4—C5—C6 124.1 (2)
N4—Cu1—O1 89.5 (5) N2—C6—C7 121.3 (2)
N2—Cu1—O1 135.3 (5) N2—C6—C5 115.16 (18)
N3—Cu1—O1 88.6 (5) C7—C6—C5 123.5 (2)
O1'—Cu1—O1 5.8 (7) C8—C7—C6 119.2 (2)
O3—Cu1—O1 52.1 (6) C8—C7—H7 120.4
N1—Cu1—O3' 82.6 (3) C6—C7—H7 120.4
N4—Cu1—O3' 92.3 (3) C7—C8—C9 119.5 (2)
N2—Cu1—O3' 83.3 (2) C7—C8—H8 120.3
N3—Cu1—O3' 140.7 (3) C9—C8—H8 120.2
O1'—Cu1—O3' 46.9 (6) C8—C9—C10 118.6 (2)
O3—Cu1—O3' 3.3 (5) C8—C9—H9 120.7
O1—Cu1—O3' 52.5 (6) C10—C9—H9 120.7
C1—N1—C5 119.1 (2) N2—C10—C9 122.8 (2)
C1—N1—Cu1 125.44 (16) N2—C10—H10 118.6
C5—N1—Cu1 115.08 (15) C9—C10—H10 118.6
N1—C1—C2 122.4 (2) N4—C11—C12 122.5 (2)
N1—C1—H1 118.9 N4—C11—H11 118.8
C2—C1—H1 118.8 C12—C11—H11 118.8
N5—O1—Cu1 90 (2) C13—C12—C11 118.5 (2)
N5—O1'—Cu1 113.1 (13) C13—C12—H12 120.8
O6—Cl1—O7 111.08 (19) C11—C12—H12 120.7
O6—Cl1—O5 111.0 (2) C12—C13—C14 119.5 (2)
O7—Cl1—O5 108.19 (14) C12—C13—H13 120.2
O6—Cl1—O4 108.65 (16) C14—C13—H13 120.3
O7—Cl1—O4 109.62 (17) C13—C14—C15 119.5 (2)
O5—Cl1—O4 108.20 (18) C13—C14—H14 120.2
C10—N2—C6 118.6 (2) C15—C14—H14 120.2
C10—N2—Cu1 128.24 (16) N4—C15—C14 120.9 (2)
C6—N2—Cu1 113.12 (15) N4—C15—C16 115.32 (18)
C1—C2—C3 119.0 (2) C14—C15—C16 123.7 (2)
C1—C2—H2 120.5 N3—C16—C17 121.7 (2)
C3—C2—H2 120.5 N3—C16—C15 115.19 (18)
C20—N3—C16 118.09 (19) C17—C16—C15 123.1 (2)
C20—N3—Cu1 128.80 (16) C18—C17—C16 119.2 (2)
C16—N3—Cu1 113.10 (14) C18—C17—H17 120.3
C2—C3—C4 119.1 (2) C16—C17—H17 120.5
C2—C3—H3 120.5 C19—C18—C17 119.3 (2)
C4—C3—H3 120.4 C19—C18—H18 120.4
N5—O3—Cu1 104 (2) C17—C18—H18 120.4
N5—O3'—Cu1 80.4 (14) C18—C19—C20 118.9 (2)
C11—N4—C15 119.03 (19) C18—C19—H19 120.5
C11—N4—Cu1 125.60 (16) C20—C19—H19 120.6
C15—N4—Cu1 115.23 (14) N3—C20—C19 122.8 (2)
C3—C4—C5 119.4 (2) N3—C20—H20 118.6
C3—C4—H4 120.3 C19—C20—H20 118.6
N2—Cu1—N1—C1 −179.4 (2) O1—Cu1—N4—C11 88.5 (5)
N3—Cu1—N1—C1 −44.1 (2) O3'—Cu1—N4—C11 36.1 (3)
O1'—Cu1—N1—C1 49.5 (6) N2—Cu1—N4—C15 136.89 (16)
O3—Cu1—N1—C1 96.0 (4) N3—Cu1—N4—C15 1.56 (15)
O1—Cu1—N1—C1 43.7 (5) O1'—Cu1—N4—C15 −92.8 (6)
O3'—Cu1—N1—C1 96.3 (3) O3—Cu1—N4—C15 −139.3 (4)
N2—Cu1—N1—C5 7.62 (15) O1—Cu1—N4—C15 −87.1 (5)
N3—Cu1—N1—C5 142.88 (15) O3'—Cu1—N4—C15 −139.5 (3)
O1'—Cu1—N1—C5 −123.6 (6) C2—C3—C4—C5 −2.3 (4)
O3—Cu1—N1—C5 −77.0 (4) Cu1—O1'—N5—O2 −176 (3)
O1—Cu1—N1—C5 −129.3 (5) Cu1—O1'—N5—O3 −0.6 (10)
O3'—Cu1—N1—C5 −76.7 (3) Cu1—O1'—N5—O3' −9.5 (14)
C5—N1—C1—C2 −2.7 (3) Cu1—O1'—N5—O2' 168.7 (15)
Cu1—N1—C1—C2 −175.45 (18) Cu1—O1'—N5—O1 −172 (6)
N1—Cu1—O1—N5 89.4 (10) Cu1—O3—N5—O2 176 (3)
N4—Cu1—O1—N5 −87.4 (10) Cu1—O3—N5—O1' 0.6 (9)
N2—Cu1—O1—N5 16.0 (15) Cu1—O3—N5—O3' 161 (3)
N3—Cu1—O1—N5 −168.6 (10) Cu1—O3—N5—O2' −166.3 (16)
O1'—Cu1—O1—N5 −10 (8) Cu1—O3—N5—O1 3.4 (13)
O3—Cu1—O1—N5 1.8 (7) Cu1—O3'—N5—O2 176 (2)
O3'—Cu1—O1—N5 5.9 (7) Cu1—O3'—N5—O1' 6.9 (10)
N1—Cu1—O1'—N5 87.2 (10) Cu1—O3'—N5—O3 −15 (3)
N4—Cu1—O1'—N5 −90.1 (10) Cu1—O3'—N5—O2' −171.4 (13)
N2—Cu1—O1'—N5 11.2 (14) Cu1—O3'—N5—O1 14.1 (15)
N3—Cu1—O1'—N5 −171.0 (10) Cu1—O1—N5—O2 −177 (2)
O3—Cu1—O1'—N5 0.4 (7) Cu1—O1—N5—O1' 7(5)
O1—Cu1—O1'—N5 167 (10) Cu1—O1—N5—O3 −3.1 (12)
O3'—Cu1—O1'—N5 4.9 (7) Cu1—O1—N5—O3' −15.6 (17)
N1—Cu1—N2—C10 175.1 (2) Cu1—O1—N5—O2' 169.7 (13)
N4—Cu1—N2—C10 −10.2 (2) C1—N1—C5—C4 −0.6 (3)
N3—Cu1—N2—C10 77.1 (2) Cu1—N1—C5—C4 172.88 (17)
O1'—Cu1—N2—C10 −106.0 (6) C1—N1—C5—C6 178.16 (19)
O3—Cu1—N2—C10 −98.2 (4) Cu1—N1—C5—C6 −8.3 (2)
O1—Cu1—N2—C10 −109.4 (8) C3—C4—C5—N1 3.1 (3)
O3'—Cu1—N2—C10 −101.4 (4) C3—C4—C5—C6 −175.6 (2)
N1—Cu1—N2—C6 −5.48 (15) C10—N2—C6—C7 −0.3 (3)
N4—Cu1—N2—C6 169.28 (14) Cu1—N2—C6—C7 −179.83 (17)
N3—Cu1—N2—C6 −103.42 (16) C10—N2—C6—C5 −177.82 (19)
O1'—Cu1—N2—C6 73.4 (6) Cu1—N2—C6—C5 2.7 (2)
O3—Cu1—N2—C6 81.2 (4) N1—C5—C6—N2 3.6 (3)
O1—Cu1—N2—C6 70.1 (8) C4—C5—C6—N2 −177.6 (2)
O3'—Cu1—N2—C6 78.1 (4) N1—C5—C6—C7 −173.8 (2)
N1—C1—C2—C3 3.4 (4) C4—C5—C6—C7 4.9 (3)
N1—Cu1—N3—C20 −4.9 (2) N2—C6—C7—C8 0.7 (3)
N4—Cu1—N3—C20 179.4 (2) C5—C6—C7—C8 178.0 (2)
N2—Cu1—N3—C20 84.5 (2) C6—C7—C8—C9 −0.2 (4)
O1'—Cu1—N3—C20 −93.1 (5) C7—C8—C9—C10 −0.6 (4)
O3—Cu1—N3—C20 −102.7 (6) C6—N2—C10—C9 −0.6 (3)
O1—Cu1—N3—C20 −90.9 (6) Cu1—N2—C10—C9 178.80 (17)
O3'—Cu1—N3—C20 −97.8 (6) C8—C9—C10—N2 1.1 (4)
N1—Cu1—N3—C16 175.01 (14) C15—N4—C11—C12 −1.4 (4)
N4—Cu1—N3—C16 −0.67 (14) Cu1—N4—C11—C12 −176.91 (19)
N2—Cu1—N3—C16 −95.60 (16) N4—C11—C12—C13 0.6 (4)
O1'—Cu1—N3—C16 86.8 (5) C11—C12—C13—C14 1.1 (4)
O3—Cu1—N3—C16 77.2 (5) C12—C13—C14—C15 −2.0 (4)
O1—Cu1—N3—C16 89.0 (6) C11—N4—C15—C14 0.5 (3)
O3'—Cu1—N3—C16 82.1 (6) Cu1—N4—C15—C14 176.48 (16)
C1—C2—C3—C4 −0.8 (4) C11—N4—C15—C16 −178.1 (2)
N1—Cu1—O3—N5 −90.8 (8) Cu1—N4—C15—C16 −2.1 (2)
N4—Cu1—O3—N5 87.9 (8) C13—C14—C15—N4 1.1 (3)
N2—Cu1—O3—N5 −172.2 (8) C13—C14—C15—C16 179.6 (2)
N3—Cu1—O3—N5 12.8 (12) C20—N3—C16—C17 0.5 (3)
O1'—Cu1—O3—N5 −0.4 (7) Cu1—N3—C16—C17 −179.47 (16)
O1—Cu1—O3—N5 −2.1 (8) C20—N3—C16—C15 179.68 (19)
O3'—Cu1—O3—N5 −96 (11) Cu1—N3—C16—C15 −0.3 (2)
N1—Cu1—O3'—N5 −97.8 (7) N4—C15—C16—N3 1.6 (3)
N4—Cu1—O3'—N5 80.8 (7) C14—C15—C16—N3 −177.00 (19)
N2—Cu1—O3'—N5 −179.6 (8) N4—C15—C16—C17 −179.2 (2)
N3—Cu1—O3'—N5 2.0 (11) C14—C15—C16—C17 2.2 (3)
O1'—Cu1—O3'—N5 −4.5 (7) N3—C16—C17—C18 1.7 (3)
O3—Cu1—O3'—N5 77 (11) C15—C16—C17—C18 −177.4 (2)
O1—Cu1—O3'—N5 −6.7 (8) C16—C17—C18—C19 −1.9 (4)
N2—Cu1—N4—C11 −47.5 (2) C17—C18—C19—C20 −0.1 (4)
N3—Cu1—N4—C11 177.2 (2) C16—N3—C20—C19 −2.6 (3)
O1'—Cu1—N4—C11 82.8 (6) Cu1—N3—C20—C19 177.36 (18)
O3—Cu1—N4—C11 36.4 (4) C18—C19—C20—N3 2.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O5i 0.93 2.58 3.276 (3) 132
C7—H7···O4ii 0.93 2.53 3.322 (4) 144
C13—H13···O7iii 0.93 2.43 3.249 (3) 147

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2303).

References

  1. Duan, L. L., Xu, Y. H., Zhang, P., Wang, M. & Sun, L. C. (2010). Inorg. Chem. 49, 209–215. [DOI] [PubMed]
  2. Morrow, J. R. & Trogler, W. C. (1989). Inorg. Chem. 28, 1330–2333.
  3. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002571/kp2303sup1.cif

e-67-0m306-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002571/kp2303Isup2.hkl

e-67-0m306-Isup2.hkl (197.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES