Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o599–o600. doi: 10.1107/S1600536811004533

5-Diethyl­amino-2-[(E)-(4-eth­oxy­phen­yl)imino­meth­yl]phenol

Erkan Soydemir a, Orhan Büyükgüngör a,*, Çiğdem Albayrak b, Mustafa Odabaşoğlu c
PMCID: PMC3051950  PMID: 21522358

Abstract

The title compound, C19H24N2O2, adopts the phenol–imine tautomeric form. An intra­molecular O—H⋯N hydrogen bond results in the formation of a six-membered ring. The aromatic rings are oriented at a dihedral angle of 17.33 (16)°. Inter­molecular C—H⋯π inter­actions occur in the crystal.

Related literature

For general background to Schiff bases, see: Hadjoudis et al. (1987); Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988); Pandeya et al. (1999); El-Masry et al. (2000); Cohen et al. (1964); Moustakali-Mavridis et al. (1978) Kaitner & Pavlovic (1996); Yıldız et al. (1998). For related structures, see: Odabaşoğlu et al. (2003); Hökelek et al. (2000); Bingöl Alpaslan et al. (2010).graphic file with name e-67-0o599-scheme1.jpg

Experimental

Crystal data

  • C19H24N2O2

  • M r = 312.40

  • Monoclinic, Inline graphic

  • a = 29.4936 (13) Å

  • b = 7.8546 (2) Å

  • c = 16.7146 (7) Å

  • β = 115.093 (3)°

  • V = 3506.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.76 × 0.59 × 0.28 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.944, T max = 0.979

  • 22701 measured reflections

  • 3625 independent reflections

  • 2383 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.260

  • S = 1.10

  • 3625 reflections

  • 208 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004533/fj2390sup1.cif

e-67-0o599-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004533/fj2390Isup2.hkl

e-67-0o599-Isup2.hkl (174.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.610 (3) 148
C2—H2⋯Cg1i 0.93 2.85 3.681 (4) 149
C17—H17ACg1ii 0.96 2.97 3.763 (6) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives are also known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandeya et al., 1999); antifungal (Singh & Dash 1988; Varma et al., 1986) and antitumor (Hodnett & Dunn 1970; Misra et al., 1981; Agarwal et al., 1983). There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). Schiff bases display two possible tautomeric form, namely the phenol-imine (O—H···N) and keto-amine (N—H···O) forms. In the solid state, the keto-amine tautomer has been found in naphthaldimines (Hökelek et al., 2000; Odabaşoğlu et al., 2003), while the phenol-imine form exists in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız et al., 1998).

In the title compound, (I), the phenol-imine tautomer is favoured over the keto-amine form, and there is an intramolecular O—H···N hydrogen bond (Fig. 1 and Table 1). It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. This planarity of the molecule allows the H atom to be transferred through the hydrogen bond in the ground state with a low energy requirement (Hadjoudis et al., 1987). Therefore, one can expect thermochromic properties in (I) caused by planarity of the molecule: the dihedral angle between rings A (C1—C6) and B (C8—C13) is 17.33 (16)° (Fig. 1). In (I), the C8—C7, C4—N1, C7=N1 and O1—C13 bond lengths of 1.441 (4), 1.417 (3), 1.263 (3) and 1.338 (3) Å, respectively are in good agreement with those observed in (E)-2[(3-Fluoropheng)iminomethy]-4-(trifluoromethoxy)phenol [1.447 (4), 1.420 (3), 1.268 (3) and 1.343 (3) Å, Bingöl Alpaslan et al., 2010]. The C5—C4—N1=C7 and N1=C7—C8—C13 torsion angles are -19.0 (5)° and 1.2 (5)°, respectively. In crystal packing, the interactions [C2—H2···Cg1(x, 1 - y, z - 1/2)] and [C17—H17A···Cg1(1/2 - x, 1/2 + y, 3/2 - z)] are effective (Table 1 and Fig. 2.)

Experimental

The title compound was prepared by refluxing a mixture of a solution containing 5-(diethylamino)-2-hydroxybenzaldehyde (0.5 g, 2.59 mmol) in 20 ml e thanol and a solution containing 4-ethoxyaniline (0.4 g, 2.59 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (E)-5-(diethylamino)-2-[(4-ethoxyphenylimino)methyl]phenol suitable for x-ray analysis were obtained by slow evaporation from ethyl alcohol (yield % 82;).

Refinement

All H atoms were refined using a riding model with O—H=0.82 Å and C—H = 0.93 to 0.97 Å, and with Uiso(H) = 1.2–1.5 Ueq (C,O).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

A packing diagram for (I). C—H···π interactions are drawn as dashed lines. [Symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) 1/2 - x, 1/2 + y, 3/2 - z]

Crystal data

C19H24N2O2 F(000) = 1344
Mr = 312.40 Dx = 1.183 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 18643 reflections
a = 29.4936 (13) Å θ = 1.5–28.0°
b = 7.8546 (2) Å µ = 0.08 mm1
c = 16.7146 (7) Å T = 296 K
β = 115.093 (3)° Prism, yellow
V = 3506.7 (2) Å3 0.76 × 0.59 × 0.28 mm
Z = 8

Data collection

Stoe IPDS 2 diffractometer 3625 independent reflections
Radiation source: fine-focus sealed tube 2383 reflections with I > 2σ(I)
graphite Rint = 0.073
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.5°
rotation method scans h = −36→36
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −9→9
Tmin = 0.944, Tmax = 0.979 l = −20→20
22701 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1257P)2 + 1.7422P] where P = (Fo2 + 2Fc2)/3
3625 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.56 e Å3
4 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.55509 (10) 0.2708 (3) 0.09804 (16) 0.0622 (7)
C2 0.59206 (13) 0.3870 (4) 0.14442 (19) 0.0790 (9)
H2 0.6032 0.4636 0.1143 0.095*
C3 0.61234 (13) 0.3892 (4) 0.23535 (19) 0.0788 (9)
H3 0.6374 0.4677 0.2658 0.095*
C4 0.59672 (10) 0.2789 (4) 0.28250 (17) 0.0633 (7)
C5 0.55981 (11) 0.1594 (4) 0.23483 (18) 0.0700 (7)
H5 0.5489 0.0815 0.2648 0.084*
C6 0.53963 (10) 0.1569 (4) 0.14410 (17) 0.0688 (7)
H6 0.5152 0.0770 0.1133 0.083*
C7 0.60388 (11) 0.2229 (4) 0.42580 (18) 0.0677 (7)
H7 0.5730 0.1684 0.3999 0.081*
C8 0.62939 (10) 0.2270 (3) 0.52080 (17) 0.0634 (7)
C9 0.60954 (11) 0.1486 (4) 0.57326 (18) 0.0734 (8)
H9 0.5786 0.0950 0.5459 0.088*
C10 0.63345 (11) 0.1467 (4) 0.66328 (18) 0.0706 (8)
H10 0.6190 0.0904 0.6957 0.085*
C11 0.68015 (11) 0.2300 (4) 0.70765 (17) 0.0663 (7)
C12 0.69978 (11) 0.3123 (4) 0.65580 (18) 0.0737 (8)
H12 0.7299 0.3706 0.6832 0.088*
C13 0.67567 (11) 0.3099 (4) 0.56443 (17) 0.0668 (7)
C14 0.68851 (12) 0.1161 (5) 0.85131 (19) 0.0863 (10)
H14A 0.7178 0.0829 0.9037 0.104*
H14B 0.6739 0.0137 0.8179 0.104*
C15 0.65140 (15) 0.1970 (5) 0.8787 (3) 0.1017 (12)
H15A 0.6427 0.1182 0.9139 0.153*
H15B 0.6219 0.2272 0.8271 0.153*
H15C 0.6658 0.2975 0.9127 0.153*
C16 0.74589 (14) 0.3596 (6) 0.8467 (2) 0.1112 (14)
H16A 0.7407 0.4619 0.8114 0.133*
H16B 0.7453 0.3906 0.9024 0.133*
C17 0.79396 (19) 0.2842 (7) 0.8626 (3) 0.1395 (18)
H17A 0.8202 0.3645 0.8931 0.209*
H17B 0.7944 0.2546 0.8073 0.209*
H17C 0.7990 0.1836 0.8981 0.209*
C18 0.54784 (14) 0.3722 (5) −0.04086 (19) 0.0911 (10)
H18A 0.5835 0.3629 −0.0240 0.109*
H18B 0.5406 0.4877 −0.0293 0.109*
C19 0.51921 (17) 0.3309 (6) −0.1370 (2) 0.1181 (15)
H19A 0.5286 0.4088 −0.1716 0.177*
H19B 0.4840 0.3409 −0.1531 0.177*
H19C 0.5267 0.2167 −0.1478 0.177*
N1 0.62123 (9) 0.2895 (3) 0.37583 (14) 0.0701 (6)
N2 0.70399 (10) 0.2291 (4) 0.79754 (15) 0.0912 (9)
O1 0.69745 (9) 0.3886 (3) 0.51884 (14) 0.1011 (9)
H1 0.6798 0.3787 0.4658 0.152*
O2 0.53303 (8) 0.2546 (3) 0.00831 (12) 0.0780 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0630 (15) 0.0717 (16) 0.0496 (13) 0.0059 (13) 0.0218 (11) −0.0012 (11)
C2 0.100 (2) 0.0798 (19) 0.0593 (16) −0.0170 (17) 0.0355 (16) 0.0001 (13)
C3 0.093 (2) 0.0834 (19) 0.0564 (15) −0.0248 (17) 0.0281 (14) −0.0084 (14)
C4 0.0642 (15) 0.0705 (16) 0.0532 (14) 0.0001 (13) 0.0230 (12) −0.0035 (11)
C5 0.0692 (16) 0.0829 (18) 0.0597 (15) −0.0066 (14) 0.0291 (13) 0.0031 (13)
C6 0.0581 (15) 0.0851 (19) 0.0577 (15) −0.0057 (13) 0.0191 (12) −0.0052 (13)
C7 0.0663 (16) 0.0733 (17) 0.0603 (15) −0.0030 (13) 0.0237 (13) −0.0049 (13)
C8 0.0670 (16) 0.0653 (15) 0.0553 (14) 0.0001 (12) 0.0232 (12) −0.0032 (11)
C9 0.0678 (17) 0.088 (2) 0.0616 (16) −0.0118 (15) 0.0251 (13) −0.0030 (14)
C10 0.0711 (17) 0.0843 (19) 0.0556 (14) −0.0087 (14) 0.0260 (13) 0.0004 (13)
C11 0.0744 (17) 0.0709 (16) 0.0517 (14) −0.0023 (13) 0.0249 (13) −0.0013 (12)
C12 0.0741 (18) 0.0820 (19) 0.0599 (16) −0.0155 (15) 0.0234 (14) −0.0037 (14)
C13 0.0798 (18) 0.0651 (15) 0.0578 (15) −0.0106 (13) 0.0315 (14) −0.0003 (12)
C14 0.085 (2) 0.109 (2) 0.0555 (15) −0.0049 (18) 0.0209 (15) 0.0098 (16)
C15 0.124 (3) 0.105 (3) 0.089 (2) −0.011 (2) 0.058 (2) 0.000 (2)
C16 0.088 (2) 0.166 (4) 0.0653 (19) −0.036 (2) 0.0193 (17) 0.011 (2)
C17 0.133 (4) 0.130 (4) 0.129 (4) 0.008 (3) 0.030 (3) 0.023 (3)
C18 0.109 (3) 0.106 (2) 0.0574 (16) −0.002 (2) 0.0342 (17) 0.0046 (16)
C19 0.136 (3) 0.154 (4) 0.0554 (18) −0.009 (3) 0.031 (2) 0.001 (2)
N1 0.0841 (16) 0.0725 (14) 0.0520 (12) −0.0050 (12) 0.0273 (12) −0.0018 (10)
N2 0.0797 (16) 0.137 (2) 0.0484 (13) −0.0196 (15) 0.0187 (11) 0.0094 (13)
O1 0.1140 (18) 0.1272 (19) 0.0608 (12) −0.0550 (16) 0.0358 (12) −0.0062 (12)
O2 0.0849 (14) 0.0925 (14) 0.0498 (10) −0.0046 (11) 0.0220 (9) 0.0006 (9)

Geometric parameters (Å, °)

C1—O2 1.364 (3) C12—H12 0.9300
C1—C6 1.378 (4) C13—O1 1.338 (3)
C1—C2 1.381 (4) C14—N2 1.467 (4)
C2—C3 1.377 (4) C14—C15 1.495 (5)
C2—H2 0.9300 C14—H14A 0.9700
C3—C4 1.375 (4) C14—H14B 0.9700
C3—H3 0.9300 C15—H15A 0.9600
C4—C5 1.402 (4) C15—H15B 0.9600
C4—N1 1.417 (3) C15—H15C 0.9600
C5—C6 1.374 (4) C16—C17 1.453 (5)
C5—H5 0.9300 C16—N2 1.547 (5)
C6—H6 0.9300 C16—H16A 0.9700
C7—N1 1.263 (4) C16—H16B 0.9700
C7—C8 1.441 (4) C17—H17A 0.9600
C7—H7 0.9300 C17—H17B 0.9600
C8—C9 1.388 (4) C17—H17C 0.9600
C8—C13 1.405 (4) C18—O2 1.423 (4)
C9—C10 1.364 (4) C18—C19 1.499 (4)
C9—H9 0.9300 C18—H18A 0.9700
C10—C11 1.417 (4) C18—H18B 0.9700
C10—H10 0.9300 C19—H19A 0.9600
C11—N2 1.362 (3) C19—H19B 0.9600
C11—C12 1.389 (4) C19—H19C 0.9600
C12—C13 1.385 (4) O1—H1 0.8200
O2—C1—C6 115.9 (2) C15—C14—H14A 109.0
O2—C1—C2 125.0 (3) N2—C14—H14B 109.0
C6—C1—C2 119.0 (2) C15—C14—H14B 109.0
C3—C2—C1 119.9 (3) H14A—C14—H14B 107.8
C3—C2—H2 120.1 C14—C15—H15A 109.5
C1—C2—H2 120.1 C14—C15—H15B 109.5
C4—C3—C2 122.0 (3) H15A—C15—H15B 109.5
C4—C3—H3 119.0 C14—C15—H15C 109.5
C2—C3—H3 119.0 H15A—C15—H15C 109.5
C3—C4—C5 117.7 (2) H15B—C15—H15C 109.5
C3—C4—N1 117.1 (2) C17—C16—N2 109.0 (4)
C5—C4—N1 125.2 (3) C17—C16—H16A 109.9
C6—C5—C4 120.4 (3) N2—C16—H16A 109.9
C6—C5—H5 119.8 C17—C16—H16B 109.9
C4—C5—H5 119.8 N2—C16—H16B 109.9
C5—C6—C1 121.1 (3) H16A—C16—H16B 108.3
C5—C6—H6 119.5 C16—C17—H17A 109.5
C1—C6—H6 119.5 C16—C17—H17B 109.5
N1—C7—C8 123.4 (3) H17A—C17—H17B 109.5
N1—C7—H7 118.3 C16—C17—H17C 109.5
C8—C7—H7 118.3 H17A—C17—H17C 109.5
C9—C8—C13 117.1 (2) H17B—C17—H17C 109.5
C9—C8—C7 121.6 (3) O2—C18—C19 107.9 (3)
C13—C8—C7 121.4 (3) O2—C18—H18A 110.1
C10—C9—C8 122.8 (3) C19—C18—H18A 110.1
C10—C9—H9 118.6 O2—C18—H18B 110.1
C8—C9—H9 118.6 C19—C18—H18B 110.1
C9—C10—C11 120.3 (3) H18A—C18—H18B 108.4
C9—C10—H10 119.8 C18—C19—H19A 109.5
C11—C10—H10 119.8 C18—C19—H19B 109.5
N2—C11—C12 122.3 (3) H19A—C19—H19B 109.5
N2—C11—C10 120.5 (3) C18—C19—H19C 109.5
C12—C11—C10 117.3 (2) H19A—C19—H19C 109.5
C13—C12—C11 121.8 (3) H19B—C19—H19C 109.5
C13—C12—H12 119.1 C7—N1—C4 122.9 (3)
C11—C12—H12 119.1 C11—N2—C14 122.0 (3)
O1—C13—C12 118.4 (3) C11—N2—C16 120.3 (3)
O1—C13—C8 120.9 (2) C14—N2—C16 117.5 (2)
C12—C13—C8 120.7 (3) C13—O1—H1 109.5
N2—C14—C15 112.9 (3) C1—O2—C18 117.0 (2)
N2—C14—H14A 109.0
O2—C1—C2—C3 −178.6 (3) C11—C12—C13—C8 1.7 (5)
C6—C1—C2—C3 −1.0 (5) C9—C8—C13—O1 179.9 (3)
C1—C2—C3—C4 −0.4 (5) C7—C8—C13—O1 0.3 (4)
C2—C3—C4—C5 1.5 (5) C9—C8—C13—C12 −0.2 (4)
C2—C3—C4—N1 178.2 (3) C7—C8—C13—C12 −179.8 (3)
C3—C4—C5—C6 −1.3 (4) C8—C7—N1—C4 177.4 (3)
N1—C4—C5—C6 −177.8 (3) C3—C4—N1—C7 164.5 (3)
C4—C5—C6—C1 0.0 (5) C5—C4—N1—C7 −19.0 (5)
O2—C1—C6—C5 179.0 (3) C12—C11—N2—C14 −167.9 (3)
C2—C1—C6—C5 1.1 (4) C10—C11—N2—C14 12.7 (5)
N1—C7—C8—C9 −178.4 (3) C12—C11—N2—C16 17.2 (5)
N1—C7—C8—C13 1.2 (5) C10—C11—N2—C16 −162.2 (3)
C13—C8—C9—C10 −1.4 (4) C15—C14—N2—C11 −92.0 (4)
C7—C8—C9—C10 178.3 (3) C15—C14—N2—C16 83.0 (4)
C8—C9—C10—C11 1.4 (5) C17—C16—N2—C11 −93.3 (4)
C9—C10—C11—N2 179.6 (3) C17—C16—N2—C14 91.6 (4)
C9—C10—C11—C12 0.2 (4) C6—C1—O2—C18 179.2 (3)
N2—C11—C12—C13 178.9 (3) C2—C1—O2—C18 −3.1 (4)
C10—C11—C12—C13 −1.7 (5) C19—C18—O2—C1 179.9 (3)
C11—C12—C13—O1 −178.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C8–C13 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.88 2.610 (3) 148
C2—H2···Cg1i 0.93 2.85 3.681 (4) 149
C17—H17A···Cg1ii 0.96 2.97 3.763 (6) 140

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2390).

References

  1. Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22, 308–310.
  2. Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510. [DOI] [PMC free article] [PubMed]
  3. Cohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041–2051.
  4. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345–1360.
  8. Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770. [DOI] [PubMed]
  9. Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.
  10. Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573–2575.
  11. Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209–213.
  12. Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
  13. Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236. [DOI] [PubMed]
  14. Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
  17. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  18. Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.
  19. Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004533/fj2390sup1.cif

e-67-0o599-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004533/fj2390Isup2.hkl

e-67-0o599-Isup2.hkl (174.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES