Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o620. doi: 10.1107/S1600536811004570

6-Iodo-2-methyl-1,3-benzothia­zole

Marijana Đaković a,*, Helena Čičak a
PMCID: PMC3051962  PMID: 21522376

Abstract

The title compound, C8H6INS, is essentially planar, the largest deviation from the mean plane being for the I atom [0.075 (3) Å]. The crystal structure is mainly stabilized by inter­molecular C—I⋯N halogen bonds, forming zigzag supra­molecular chains in [10Inline graphic]. Relatively short off-set π–π contacts [centroid–centroid distance = 3.758 (2) Å] between the thia­zole rings of inversion-related mol­ecules link neighbouring chains and provide the secondary inter­actions for building the crystal structure.

Related literature

For the application of benzothia­zoles as biologically active compounds, see: Leong et al. (2004); Yildiz-Oren et al. (2004); Lockhart et al. (2005); Sheng et al. (2007). For the synthesis of the title compound, see: Racané et al. (2006, 2011). For related 1,3-benzothia­zole structures, see: Matković-Čalogović et al. (2003); Pavlović et al. (2009); Đaković et al. (2009); Čičak et al. (2010). For graph-set theory, see: Etter (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-0o620-scheme1.jpg

Experimental

Crystal data

  • C8H6INS

  • M r = 275.11

  • Monoclinic, Inline graphic

  • a = 8.3255 (3) Å

  • b = 7.6967 (3) Å

  • c = 13.8083 (5) Å

  • β = 90.686 (4)°

  • V = 884.76 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.79 mm−1

  • T = 296 K

  • 0.47 × 0.38 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.253, T max = 0.658

  • 13190 measured reflections

  • 1928 independent reflections

  • 1729 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.06

  • 1928 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004570/fj2389sup1.cif

e-67-0o620-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004570/fj2389Isup2.hkl

e-67-0o620-Isup2.hkl (93KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Halogen-bond geometry (Å, °).

  C4—I1 I1⋯N1i C4⋯N1i C4—I1⋯N1i
C4—I1⋯N1i 2.103 (3) 3.158 (2) 5.257 (4) 175.99 (9)

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant Nos. 119–1193079–1332 and 119–1191342–1339).

supplementary crystallographic information

Comment

This work was a part of our preparative, structural, mechanistic and computational investigation of a series of substituted benzothiazoles (bta), which attract considerable interest due to their biological activities.

The molecule is almost ideally planar (r.m.s. deviation = 0.009 Å), with the largest deviation from the plane being that of atom I1 [0.075 (3) Å] (Fig.1). The geometry of the benzothiazole rings is consistent with other 1,3-benzothiazoles listed in the CSD base (Allen et al., 2002). The two S—C bonds of the thiazole ring [S1—C1 and S1—C2] differ with respect to each other, but both are within two bortherline cases, single S—C [1.82 Å] and double S=C [1.56 Å], while the endocyclic C—N bond is dominantly double in character. The differences in C—C bonds within benzene ring are common for such fused rings.

In the crystal structure halogen bonds are the principal specific interactions responsible for the crystal packing. There is only one short and directional C—I···N contact [C—I = 2.103 (3) Å] (see Table 1) that link the molecules into antiparallel zigzag C(7) chains (Etter, 1990; Bernstein et al., 1995) in [1 0 - 1] direction (Figs. 2 and 3).

Relatively short off-set π–π contacts [Cg···Cg = 3.758 (2) Å] between the thiazole rings, belonging to the molecules that are related by an inversion centre, link the neighboring supramolecular chains and provide the secondary interactions for building the crystal structure.

The structure of the title compound is one more example showing that halogen bonding is also as effective and reliable tool for assembling molecules into supramolecular architectures.

Experimental

Colourless single crystals of the title compound were obtained by slow evaporation of a dichloromethane solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.93 or 0.96 Å for aromatic or methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) (for aromatic H) or Uiso(H) = 1.5Ueq(C) (for methyl group).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the b axis showing halogen bonds as dashed lines.

Fig. 3.

Fig. 3.

Spacefill representaton of a zigzag halogen bonding chain running in [1 0 - 1].

Crystal data

C8H6INS F(000) = 520
Mr = 275.11 Dx = 2.065 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 10010 reflections
a = 8.3255 (3) Å θ = 4.4–32.6°
b = 7.6967 (3) Å µ = 3.79 mm1
c = 13.8083 (5) Å T = 296 K
β = 90.686 (4)° Plate, colourless
V = 884.76 (6) Å3 0.47 × 0.38 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector 1928 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1729 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 16.3426 pixels mm-1 θmax = 27.0°, θmin = 4.6°
CCD scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −9→9
Tmin = 0.253, Tmax = 0.658 l = −17→17
13190 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4162P] where P = (Fo2 + 2Fc2)/3
1928 reflections (Δ/σ)max = 0.001
101 parameters Δρmax = 0.84 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Experimental. Solvent used: CH2Cl2 Crystal mount: glued on a glass fibre Mosaicity (°): 1.1 (1) Frames collected: 892 Seconds exposure per frame: 5 Degree rotation per frame: 1.0 Crystal-Detector distance (mm): 50.0.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.96733 (2) 0.14994 (3) 0.30624 (1) 0.0485 (1)
S1 0.66879 (11) 0.75187 (9) 0.49021 (6) 0.0518 (3)
N1 0.6453 (3) 0.5615 (3) 0.64355 (18) 0.0447 (8)
C1 0.6117 (4) 0.7135 (4) 0.6097 (2) 0.0457 (9)
C2 0.7440 (3) 0.5425 (3) 0.4842 (2) 0.0392 (8)
C3 0.8155 (3) 0.4585 (4) 0.40718 (19) 0.0430 (8)
C4 0.8633 (3) 0.2887 (4) 0.42068 (19) 0.0399 (8)
C5 0.8427 (4) 0.2058 (4) 0.5097 (2) 0.0452 (9)
C6 0.7728 (4) 0.2900 (4) 0.5857 (2) 0.0467 (9)
C7 0.7211 (3) 0.4614 (3) 0.5734 (2) 0.0386 (7)
C8 0.5343 (5) 0.8546 (4) 0.6669 (3) 0.0600 (11)
H3 0.83070 0.51470 0.34840 0.0520*
H5 0.87710 0.09160 0.51740 0.0540*
H6 0.75980 0.23380 0.64480 0.0560*
H8A 0.46780 0.80420 0.71580 0.0900*
H8B 0.46950 0.92540 0.62460 0.0900*
H8C 0.61580 0.92510 0.69710 0.0900*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0488 (1) 0.0567 (2) 0.0402 (1) 0.0012 (1) 0.0048 (1) −0.0055 (1)
S1 0.0658 (5) 0.0376 (4) 0.0518 (4) 0.0063 (3) −0.0035 (3) 0.0058 (3)
N1 0.0487 (13) 0.0419 (13) 0.0437 (13) −0.0022 (10) 0.0082 (10) −0.0014 (10)
C1 0.0416 (14) 0.0411 (14) 0.0543 (17) −0.0019 (12) −0.0027 (12) −0.0054 (12)
C2 0.0424 (14) 0.0345 (12) 0.0407 (13) −0.0029 (11) −0.0035 (11) 0.0049 (11)
C3 0.0482 (15) 0.0457 (14) 0.0351 (13) −0.0040 (12) −0.0001 (11) 0.0075 (12)
C4 0.0393 (14) 0.0457 (14) 0.0347 (13) −0.0025 (11) 0.0025 (11) −0.0027 (11)
C5 0.0536 (16) 0.0347 (13) 0.0474 (16) 0.0044 (12) 0.0043 (13) 0.0030 (11)
C6 0.0593 (18) 0.0394 (13) 0.0415 (15) −0.0005 (13) 0.0114 (13) 0.0073 (12)
C7 0.0396 (13) 0.0364 (12) 0.0399 (13) −0.0035 (11) 0.0037 (10) 0.0013 (10)
C8 0.062 (2) 0.0511 (19) 0.067 (2) 0.0089 (15) −0.0004 (17) −0.0108 (15)

Geometric parameters (Å, °)

I1—C4 2.103 (3) C4—C5 1.397 (4)
S1—C1 1.748 (3) C5—C6 1.369 (4)
S1—C2 1.731 (2) C6—C7 1.397 (4)
N1—C1 1.289 (4) C3—H3 0.9300
N1—C7 1.395 (4) C5—H5 0.9300
C1—C8 1.494 (5) C6—H6 0.9300
C2—C3 1.385 (4) C8—H8A 0.9600
C2—C7 1.396 (4) C8—H8B 0.9600
C3—C4 1.378 (4) C8—H8C 0.9600
I1···C1i 3.826 (3) H3···H8Avii 2.5800
I1···N1ii 3.158 (2) H5···S1viii 3.1600
I1···H5iii 3.3100 H5···I1iii 3.3100
S1···H5iv 3.1600 H5···H5iii 2.5400
S1···H8Bv 3.1600 H8A···H3ix 2.5800
N1···I1vi 3.158 (2) H8B···S1v 3.1600
C1···I1i 3.826 (3)
C1—S1—C2 89.46 (14) N1—C7—C6 125.3 (2)
C1—N1—C7 110.3 (2) C2—C7—C6 119.0 (2)
S1—C1—N1 115.8 (2) C2—C3—H3 121.00
S1—C1—C8 120.0 (2) C4—C3—H3 121.00
N1—C1—C8 124.1 (3) C4—C5—H5 119.00
S1—C2—C3 129.1 (2) C6—C5—H5 120.00
S1—C2—C7 108.70 (19) C5—C6—H6 120.00
C3—C2—C7 122.2 (2) C7—C6—H6 120.00
C2—C3—C4 117.7 (2) C1—C8—H8A 110.00
I1—C4—C3 120.06 (19) C1—C8—H8B 110.00
I1—C4—C5 119.0 (2) C1—C8—H8C 109.00
C3—C4—C5 120.9 (3) H8A—C8—H8B 109.00
C4—C5—C6 121.1 (3) H8A—C8—H8C 109.00
C5—C6—C7 119.1 (3) H8B—C8—H8C 109.00
N1—C7—C2 115.7 (2)
C2—S1—C1—N1 0.5 (3) S1—C2—C7—C6 180.0 (2)
C2—S1—C1—C8 178.5 (3) C3—C2—C7—N1 −179.1 (2)
C1—S1—C2—C3 179.0 (3) C3—C2—C7—C6 0.4 (4)
C1—S1—C2—C7 −0.6 (2) C2—C3—C4—I1 178.41 (19)
C7—N1—C1—S1 −0.3 (3) C2—C3—C4—C5 −1.1 (4)
C7—N1—C1—C8 −178.2 (3) I1—C4—C5—C6 −178.8 (2)
C1—N1—C7—C2 −0.2 (3) C3—C4—C5—C6 0.8 (5)
C1—N1—C7—C6 −179.6 (3) C4—C5—C6—C7 0.2 (5)
S1—C2—C3—C4 −179.0 (2) C5—C6—C7—N1 178.6 (3)
C7—C2—C3—C4 0.6 (4) C5—C6—C7—C2 −0.8 (4)
S1—C2—C7—N1 0.5 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+2, −y, −z+1; (iv) x, y+1, z; (v) −x+1, −y+2, −z+1; (vi) x−1/2, −y+1/2, z+1/2; (vii) x+1/2, −y+3/2, z−1/2; (viii) x, y−1, z; (ix) x−1/2, −y+3/2, z+1/2.

Table 1 Halogen-bond geometry (Å, °)

C4—I1 I1···N1i C4···N1i C4—I1···N1i
C4—I1···N1i 2.103 (3) 3.158 (2) 5.257 (4) 175.99 (9)

Symmetry code: (i) 1/2 + x, 1/2–y, –1/2 + z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2389).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Čičak, H., Đaković, M., Mihalić, Z., Pavlović, G., Racané, L. & Tralić-Kulenović, V. (2010). J. Mol. Struct. 975, 115–127.
  4. Đaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović, V. (2009). J. Mol. Struct. 938, 125–132.
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Leong, C. O., Suggitt, M., Swaine, D. J., Bibby, M. C., Stevens, M. F. G. & Bradshaw, T. D. (2004). Mol. Cancer Ther. 3, 1565–1575. [PubMed]
  8. Lockhart, A., Ye, L., Judd, D. B., Merrittu, A. T., Lowe, P. N., Morgenstern, J. L., Hong, G., Gee, A. D. & Brown, J. (2005). J. Biol. Chem. 280, 7677–7684. [DOI] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Matković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190–o191. [DOI] [PubMed]
  11. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  12. Pavlović, G., Racané, L. & Čičak, H. (2009). Dyes Pigments, 83, 354–362.
  13. Racané, L., Čičak, H., Mihalić, Z., Karminski-Zamola, G. & Tralić-Kulenović, V. (2011). Tetrahedron Lett. In the press.
  14. Racané, L., Tralić-Kulenović, V., Pavlović, G. & Karminski-Zamola, G. (2006). Heterocycles, 68, 1909–1916.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheng, C., Zhu, J., Zhang, W., Zhang, M., Ji, H., Song, Y., Xu, H., Yao, J., Miao, Z., Zhou, Y., Zhu, J. & Lü, J. (2007). Eur. J. Med. Chem. 42, 477–486. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Yildiz-Oren, I., Yalcin, I., Aki-Sener, E. & Ucarturk, N. (2004). Eur. J. Med. Chem. 39, 291–298. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004570/fj2389sup1.cif

e-67-0o620-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004570/fj2389Isup2.hkl

e-67-0o620-Isup2.hkl (93KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES