Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):o577. doi: 10.1107/S160053681100300X

5-Benzyl-7-methyl­hexa­hydro-3a,7-methano-1H-furo[3,4-c]azocine-3,10(4H)-dione

Zhan-Kun Yang a, Feng-Peng Wang a,*
PMCID: PMC3051963  PMID: 21522339

Abstract

The title compound, C18H21NO3, was obtained via a double Mannich condensation reaction of 6-methyl­tetra­hydro­isobenzofuran-1,7(3H,7aH)-dione with formaldehyde and benzyl­amine. The mol­ecule contains three fused rings of which the cyclo­hexa­none and piperidine rings adopt chair conformations and the furan­one ring assumes an envelope conformation. An inter­molecular C—H⋯π inter­action is present in the crystal structure.

Related literature

For the double Mannich condensation reaction, see: Guthmann et al. (2009); Coates et al. (1994); Barker et al. (2002). For the methyl­ation of the β-keto ester in the synthesis of the title compound, see: Weiler (1970).graphic file with name e-67-0o577-scheme1.jpg

Experimental

Crystal data

  • C18H21NO3

  • M r = 299.36

  • Orthorhombic, Inline graphic

  • a = 10.795 (2) Å

  • b = 14.386 (3) Å

  • c = 9.797 (2) Å

  • V = 1521.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Saturn 724 diffractometer

  • 10268 measured reflections

  • 1584 independent reflections

  • 1546 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.167

  • S = 1.16

  • 1584 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100300X/xu5143sup1.cif

e-67-0o577-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100300X/xu5143Isup2.hkl

e-67-0o577-Isup2.hkl (78.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.97 2.87 3.833 (6) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant No. 30873147).

supplementary crystallographic information

Comment

The AE rings of diterpenoid alkaloids have received much attention as key intermediate in the total syntheses of diterpenoid alkaloids. Double Mannich condensation (Guthmann et al., 2009; Coates et al., 1994; Barker et al., 2002) is an efficient method to append the E ring to the A ring. Therefore, we have designed and synthesized the racemic 1-substituted AE-bicyclic analogue by double Mannich condensation. Herein, we report the structure of the title compound.

As illustrated in Fig. 1, the molecule of the title compound is constructed from the fusion of a cyclohexanone ring, a piperidine ring and a furanone ring. The two six-membered rings are in standard chair conformations. The furanone ring is cis-fused with the cyclohexanone ring and adopts envelope conformation. The bond angles around C4 and C5 are indicative of sp2 hybridization for the two atoms. And the strain in the furanone ring is illustrated by the much distorted triangular geometry of C4 atom and the bond angles around C4 range between 109.7 (4) and 128.6 (5)°.

Experimental

The intermediate, 6-methyltetrahydroisobenzofuran-1,7(3H,7aH)-dione (1b), was synthesized according to the procedure described by Weiler (1970). A solution of tetrahydroisobenzofuran-1,7(3H,7aH)-dione (1.00 g, 6.49 mmol) in THF (10 mL) was added to 1M lithium diisopropylamide solution in THF (14.2 ml, 14.2 mmol) at 273 K. After 30 min, CH3I (0.48 ml, 7.71 mmol) was added dropwise in the mixture. Then the mixture was stirred at the same temperature for 2 h. H2O (20 mL) was added and the solution was extracted with CH2Cl2 (60 mL). The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash column chromatography (ethyl acetate/hexane, v:v, 1:2) to give 1b. (0.382 g, yield 35%) as a colourless oil.

To a solution of 1b (200 mg, 1.19 mmol) in EtOH (300 mL) was added 37% CH2O solution (0.29 mL, 3.57 mmol) and phenylmethanamine (195 µL, 1.79 mmol). The reaction mixture was refluxing for 48 h and then concentrated under reduced pressure. The crude product was purified by flash column chromatography (ethyl acetate/hexane, v:v, 1:4) to give the title compound (107 mg, yield 30%) as a white solid. Crystallization from a ethyl acetate-petroleum ether system yielded colourless crystals suitable for single-crystal structure determination.

Refinement

H atoms were fixed geometrically and treated as riding, with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl) or 0.93 Å (aromatic) and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for the others. A total of 1163 Friedel pairs were merged before final refinement as there is no significant anomalous dispersion for the determination of the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme with displacement ellipsoids at 30% probability level.

Crystal data

C18H21NO3 F(000) = 640
Mr = 299.36 Dx = 1.307 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3565 reflections
a = 10.795 (2) Å θ = 2.5–27.5°
b = 14.386 (3) Å µ = 0.09 mm1
c = 9.797 (2) Å T = 293 K
V = 1521.5 (5) Å3 Prism, colourless
Z = 4 0.20 × 0.20 × 0.20 mm

Data collection

Rigaku Saturn 724 diffractometer 1546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
graphite θmax = 26.0°, θmin = 2.5°
ω scans h = −12→13
10268 measured reflections k = −17→17
1584 independent reflections l = −10→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.8271P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max < 0.001
1584 reflections Δρmax = 0.15 e Å3
200 parameters Δρmin = −0.16 e Å3
1 restraint Absolute structure: unk
Primary atom site location: structure-invariant direct methods

Special details

Experimental. For 6-methyltetrahydroisobenzofuran-1,7(3H, 7aH)-dione (1b), 1H NMR (400 MHz, CDCl3): δ 4.28 (dd, J = 9.2, 4.8 Hz, 1H), 4.15 (d, J = 9.2 Hz, 1H), 3.46(d, J = 7.2 Hz,1H), 2.97–2.91 (m, 1H), 2.40–2.34 (m, 1H), 2.07–2.03 (m, 2H), 1.79–1.69 (m, 1H), 1.49–1.40 (m, 1H), 1.09(d, J = 6.0 Hz, 3H); 13C NMR (100 MHz CDCl3): δ 204.3, 172.2, 72.1, 54.4, 44.0, 40.7, 32.5, 26.9, 14.2.For 5-benzyl-7-methylhexahydro-1H-3a,7-methanofuro [3,4-c]azocine- 3,10(4H)-dione (1), 1H NMR (400 MHz, CDCl3): δ 7.37–7.27(m, 5H), 4.29 (t, J = 9.2 Hz, 1H), 3.83 (dd, J =9.2, 10.4 Hz, 1H), 3.61, 3.51 (ABq, J = 13.0 Hz, 2H), 3.14–3.12(m, 1H), 3.07, 2.85 (ABq, J = 11.2 Hz, 2H), 3.05, 2.38 (ABx, J = 2.4, 12.0 Hz, 2H), 2.81–2.75 (m, 1H), 2.26–2.20 (m, 1H), 1.92–1.87 (m, 1H), 1.44–1.38 (m, 1H), 0.99 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 210.7, 173.4, 137.7, 128.7, 128.5, 127.5, 69.2, 65.8, 61.5, 59.8, 58.6, 47.5, 46.1, 39.2, 22.0, 20.7
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4992 (4) 1.0732 (2) 0.3736 (5) 0.0579 (10)
O2 0.6479 (3) 0.9870 (3) 0.2802 (5) 0.0630 (11)
O3 0.5495 (4) 0.8809 (3) 0.5463 (4) 0.0635 (11)
N1 0.3480 (3) 0.7803 (3) 0.2454 (4) 0.0389 (9)
C1 0.3691 (5) 1.0624 (4) 0.4104 (7) 0.0556 (14)
H1B 0.3216 1.1164 0.3825 0.067*
H1A 0.3601 1.0542 0.5082 0.067*
C2 0.3259 (4) 0.9760 (3) 0.3343 (5) 0.0424 (11)
H2 0.3083 0.9938 0.2398 0.051*
C3 0.4465 (4) 0.9178 (3) 0.3349 (5) 0.0346 (10)
C4 0.5441 (5) 0.9930 (4) 0.3236 (5) 0.0443 (11)
C5 0.4612 (4) 0.8689 (3) 0.4713 (5) 0.0371 (11)
C6 0.3570 (4) 0.8020 (3) 0.4992 (5) 0.0405 (11)
C7 0.2386 (4) 0.8628 (4) 0.5110 (6) 0.0483 (12)
H7A 0.1679 0.8219 0.5225 0.058*
H7B 0.2452 0.9004 0.5929 0.058*
C8 0.2129 (4) 0.9273 (4) 0.3903 (6) 0.0465 (12)
H8A 0.1754 0.8912 0.3176 0.056*
H8B 0.1532 0.9739 0.4186 0.056*
C9 0.3758 (6) 0.7484 (4) 0.6313 (6) 0.0606 (15)
H9B 0.4532 0.7157 0.6276 0.091*
H9A 0.3094 0.7046 0.6428 0.091*
H9C 0.3765 0.7909 0.7068 0.091*
C10 0.3545 (5) 0.7331 (3) 0.3766 (6) 0.0442 (11)
H10B 0.4286 0.6950 0.3792 0.053*
H10A 0.2835 0.6923 0.3858 0.053*
C11 0.4512 (4) 0.8433 (3) 0.2246 (5) 0.0401 (11)
H11B 0.4455 0.8718 0.1350 0.048*
H11A 0.5289 0.8096 0.2300 0.048*
C12 0.3250 (5) 0.7190 (4) 0.1294 (6) 0.0476 (12)
H12B 0.3046 0.7575 0.0513 0.057*
H12A 0.2523 0.6819 0.1500 0.057*
C13 0.4275 (4) 0.6538 (3) 0.0878 (5) 0.0386 (11)
C14 0.5080 (6) 0.6763 (4) −0.0179 (6) 0.0583 (15)
H14 0.4984 0.7322 −0.0644 0.070*
C15 0.6027 (6) 0.6160 (5) −0.0545 (7) 0.0690 (19)
H15 0.6555 0.6315 −0.1260 0.083*
C16 0.6189 (6) 0.5334 (5) 0.0141 (7) 0.0663 (18)
H16 0.6829 0.4934 −0.0098 0.080*
C17 0.5400 (6) 0.5112 (4) 0.1175 (7) 0.0635 (17)
H17 0.5504 0.4554 0.1641 0.076*
C18 0.4448 (5) 0.5703 (3) 0.1542 (6) 0.0470 (12)
H18 0.3916 0.5535 0.2246 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.071 (2) 0.0449 (19) 0.058 (2) −0.0122 (18) 0.002 (2) −0.005 (2)
O2 0.045 (2) 0.072 (3) 0.072 (3) −0.0190 (19) 0.010 (2) −0.007 (2)
O3 0.052 (2) 0.083 (3) 0.056 (3) −0.010 (2) −0.0164 (19) 0.003 (2)
N1 0.038 (2) 0.040 (2) 0.039 (2) 0.0011 (17) −0.0009 (17) −0.0094 (17)
C1 0.059 (3) 0.043 (3) 0.065 (4) 0.010 (2) 0.010 (3) −0.006 (3)
C2 0.041 (2) 0.045 (3) 0.042 (3) 0.011 (2) −0.004 (2) −0.001 (2)
C3 0.032 (2) 0.035 (2) 0.037 (2) −0.0028 (18) 0.0027 (18) −0.0030 (18)
C4 0.053 (3) 0.044 (3) 0.037 (3) −0.007 (2) −0.007 (2) −0.005 (2)
C5 0.031 (2) 0.043 (2) 0.038 (3) 0.0065 (19) −0.0019 (19) −0.009 (2)
C6 0.044 (2) 0.038 (2) 0.040 (3) −0.002 (2) 0.002 (2) 0.001 (2)
C7 0.038 (2) 0.055 (3) 0.052 (3) 0.000 (2) 0.010 (2) −0.009 (3)
C8 0.034 (2) 0.056 (3) 0.050 (3) 0.015 (2) 0.002 (2) −0.005 (3)
C9 0.077 (4) 0.059 (3) 0.045 (3) 0.002 (3) 0.003 (3) 0.007 (3)
C10 0.044 (2) 0.037 (2) 0.052 (3) −0.004 (2) 0.002 (2) −0.012 (2)
C11 0.042 (2) 0.038 (2) 0.040 (3) 0.000 (2) 0.000 (2) −0.005 (2)
C12 0.040 (2) 0.053 (3) 0.050 (3) −0.001 (2) −0.007 (2) −0.013 (2)
C13 0.037 (2) 0.040 (2) 0.039 (3) −0.009 (2) −0.006 (2) −0.013 (2)
C14 0.075 (4) 0.055 (3) 0.045 (3) −0.012 (3) 0.010 (3) −0.011 (3)
C15 0.058 (3) 0.084 (5) 0.065 (4) −0.018 (3) 0.021 (3) −0.033 (4)
C16 0.052 (3) 0.078 (4) 0.068 (4) 0.012 (3) −0.004 (3) −0.041 (4)
C17 0.069 (4) 0.051 (3) 0.070 (4) 0.014 (3) −0.022 (4) −0.022 (3)
C18 0.055 (3) 0.042 (3) 0.044 (3) −0.004 (2) −0.001 (2) −0.010 (2)

Geometric parameters (Å, °)

O1—C1 1.458 (7) C8—H8A 0.9700
O1—C4 1.344 (6) C8—H8B 0.9700
O2—C4 1.202 (6) C9—H9B 0.9600
O3—C5 1.216 (6) C9—H9A 0.9600
N1—C10 1.455 (7) C9—H9C 0.9600
N1—C11 1.451 (6) C10—H10B 0.9700
N1—C12 1.460 (6) C10—H10A 0.9700
C1—H1B 0.9700 C11—H11B 0.9700
C1—H1A 0.9700 C11—H11A 0.9700
C1—C2 1.523 (7) C12—H12B 0.9700
C2—H2 0.9800 C12—H12A 0.9700
C2—C3 1.548 (6) C12—C13 1.507 (7)
C2—C8 1.509 (7) C13—C14 1.389 (8)
C3—C4 1.513 (7) C13—C18 1.380 (7)
C3—C5 1.519 (7) C14—H14 0.9300
C3—C11 1.523 (6) C14—C15 1.388 (9)
C5—C6 1.505 (7) C15—H15 0.9300
C6—C7 1.552 (7) C15—C16 1.376 (10)
C6—C9 1.520 (8) C16—H16 0.9300
C6—C10 1.558 (7) C16—C17 1.362 (10)
C7—H7A 0.9700 C17—H17 0.9300
C7—H7B 0.9700 C17—C18 1.382 (8)
C7—C8 1.529 (8) C18—H18 0.9300
O1—C1—H1B 110.7 C6—C10—H10A 109.1
O1—C1—H1A 110.7 C7—C6—C10 113.7 (4)
O1—C1—C2 105.2 (4) C7—C8—H8A 108.6
O1—C4—C3 109.7 (4) C7—C8—H8B 108.6
O2—C4—O1 121.8 (5) H7A—C7—H7B 107.4
O2—C4—C3 128.6 (5) C8—C2—C1 116.7 (4)
O3—C5—C3 123.2 (4) C8—C2—H2 107.9
O3—C5—C6 124.5 (5) C8—C2—C3 115.3 (4)
N1—C10—C6 112.7 (4) C8—C7—C6 115.7 (4)
N1—C10—H10B 109.1 C8—C7—H7A 108.4
N1—C10—H10A 109.1 C8—C7—H7B 108.4
N1—C11—C3 108.4 (4) H8A—C8—H8B 107.6
N1—C11—H11B 110.0 C9—C6—C7 109.4 (4)
N1—C11—H11A 110.0 C9—C6—C10 109.6 (4)
N1—C12—H12B 107.9 H9B—C9—H9A 109.5
N1—C12—H12A 107.9 H9B—C9—H9C 109.5
N1—C12—C13 117.5 (4) H9A—C9—H9C 109.5
C1—C2—H2 107.9 C10—N1—C12 114.5 (4)
C1—C2—C3 100.4 (4) H10B—C10—H10A 107.8
H1B—C1—H1A 108.8 C11—N1—C10 112.2 (4)
C2—C1—H1B 110.7 C11—N1—C12 113.5 (4)
C2—C1—H1A 110.7 C11—C3—C2 113.9 (4)
C2—C8—C7 114.6 (4) H11B—C11—H11A 108.4
C2—C8—H8A 108.6 H12B—C12—H12A 107.2
C2—C8—H8B 108.6 C13—C12—H12B 107.9
C3—C2—H2 107.9 C13—C12—H12A 107.9
C3—C11—H11B 110.0 C13—C14—H14 119.8
C3—C11—H11A 110.0 C13—C18—C17 120.9 (6)
C4—O1—C1 110.2 (4) C13—C18—H18 119.5
C4—C3—C2 101.5 (4) C14—C13—C12 121.1 (5)
C4—C3—C5 108.9 (4) C14—C15—H15 119.8
C4—C3—C11 115.3 (4) C15—C14—C13 120.5 (6)
C5—C3—C2 109.9 (4) C15—C14—H14 119.8
C5—C3—C11 107.1 (4) C15—C16—H16 120.4
C5—C6—C7 105.6 (4) C16—C15—C14 120.5 (6)
C5—C6—C9 112.3 (4) C16—C15—H15 119.8
C5—C6—C10 106.2 (4) C16—C17—H17 119.5
C6—C5—C3 112.2 (4) C16—C17—C18 120.9 (7)
C6—C7—H7A 108.4 C17—C16—C15 119.1 (6)
C6—C7—H7B 108.4 C17—C16—H16 120.4
C6—C9—H9B 109.5 C17—C18—H18 119.5
C6—C9—H9A 109.5 C18—C13—C12 120.9 (5)
C6—C9—H9C 109.5 C18—C13—C14 118.0 (5)
C6—C10—H10B 109.1 C18—C17—H17 119.5
O1—C1—C2—C3 32.6 (5) C5—C6—C7—C8 54.1 (6)
O1—C1—C2—C8 158.1 (4) C5—C6—C10—N1 −53.3 (5)
O3—C5—C6—C7 117.6 (5) C6—C7—C8—C2 −41.8 (6)
O3—C5—C6—C9 −1.6 (7) C7—C6—C10—N1 62.4 (5)
O3—C5—C6—C10 −121.3 (5) C8—C2—C3—C4 −160.5 (4)
N1—C12—C13—C14 −97.1 (6) C8—C2—C3—C5 −45.4 (5)
N1—C12—C13—C18 82.4 (6) C8—C2—C3—C11 74.9 (6)
C1—O1—C4—O2 176.2 (5) C9—C6—C7—C8 175.2 (5)
C1—O1—C4—C3 −4.9 (6) C9—C6—C10—N1 −174.8 (4)
C1—C2—C3—C4 −34.2 (5) C10—N1—C11—C3 −61.7 (5)
C1—C2—C3—C5 80.9 (5) C10—N1—C12—C13 −69.9 (6)
C1—C2—C3—C11 −158.8 (4) C10—C6—C7—C8 −62.0 (6)
C1—C2—C8—C7 −81.1 (6) C11—N1—C10—C6 58.3 (5)
C2—C3—C4—O1 25.5 (5) C11—N1—C12—C13 60.8 (6)
C2—C3—C4—O2 −155.7 (6) C11—C3—C4—O1 149.2 (4)
C2—C3—C5—O3 −120.4 (5) C11—C3—C4—O2 −32.0 (8)
C2—C3—C5—C6 61.7 (5) C11—C3—C5—O3 115.3 (5)
C2—C3—C11—N1 −59.9 (5) C11—C3—C5—C6 −62.6 (4)
C3—C2—C8—C7 36.4 (6) C12—N1—C10—C6 −170.3 (4)
C3—C5—C6—C7 −64.6 (5) C12—N1—C11—C3 166.5 (4)
C3—C5—C6—C9 176.2 (4) C12—C13—C14—C15 179.5 (5)
C3—C5—C6—C10 56.5 (5) C12—C13—C18—C17 −179.0 (5)
C4—O1—C1—C2 −18.5 (6) C13—C14—C15—C16 −0.6 (9)
C4—C3—C5—O3 −10.1 (6) C14—C13—C18—C17 0.6 (7)
C4—C3—C5—C6 172.1 (4) C14—C15—C16—C17 0.7 (9)
C4—C3—C11—N1 −176.7 (4) C15—C16—C17—C18 −0.2 (9)
C5—C3—C4—O1 −90.4 (5) C16—C17—C18—C13 −0.5 (8)
C5—C3—C4—O2 88.4 (6) C18—C13—C14—C15 0.0 (7)
C5—C3—C11—N1 61.9 (5)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the phenyl ring.
D—H···A D—H H···A D···A D—H···A
C8—H8B···Cgi 0.97 2.87 3.833 (6) 169

Symmetry codes: (i) −x+1/2, y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5143).

References

  1. Barker, D., Brimble, M. A., Mcleod, M., Savage, G. P. & Wong, D. J. (2002). J. Chem. Soc. 7, 924–931.
  2. Coates, P. A., Blagbrough, I. S., Rowan, M. G., Potter, B. V. L., Pearson, D. P. J. & Lewis, T. (1994). Tetrahedron Lett. 35, 8709–8712.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Guthmann, H., Conol, D., Wright, E., Koerber, K., Barker, D. & Brimble, M. A. (2009). Eur. J. Org. Chem. 12, 1944–1960.
  5. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Weiler, L. (1970). J. Am. Chem. Soc. A92, 6702–6704.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100300X/xu5143sup1.cif

e-67-0o577-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100300X/xu5143Isup2.hkl

e-67-0o577-Isup2.hkl (78.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES