Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 9;67(Pt 3):o593–o594. doi: 10.1107/S1600536811004156

(E)-2-[4-(Diethyl­amino)­styr­yl]-1-methyl­pyridinium benzene­sulfonate mono­hydrate

Hoong-Kun Fun a,*,, Narissara Kaewmanee b, Kullapa Chanawanno b, Suchada Chantrapromma b,§
PMCID: PMC3051968  PMID: 21522353

Abstract

The asymmetric unit of the title compound, C18H23N2 +·C6H5O3S·H2O, comprises a 2-[4-(diethyl­amino)­styr­yl]-1-methyl­pyridinium cation, a benzene­sulfonate anion and a solvent water mol­ecule. One ethyl substituent of the diethyl­amino group of the cation is disordered over two positions in a 0.73789 (9):0.26211 (9) ratio. The cation exists in the E configuration with respect to the C=C bond and the π-conjugated system is essentially planar with a dihedral angle of 0.82 (10)° between the pyridinium and benzene rings. The cation and anion are almost orthogonal with a dihedral angle of 86.71 (10)° between the π-conjugated system of the cation and benzene ring of the anion. In the crystal, mol­ecules are arranged into chains along [001] and adjacent chains are linked by weak C—H⋯O inter­actions. The crystal is further stablilized by O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

Related literature

For standard bond lengths, see Allen et al. (1987). For background to and applications of quaternary ammonium compounds, see: Chanawanno et al. (2010); Fun et al. (2010); Massi et al. (2003); Soprey & Maxcy (1968); Yabuhara et al. (2004). For related structures, see: Chanawanno et al. (2010); Kaewmanee et al. (2010).graphic file with name e-67-0o593-scheme1.jpg

Experimental

Crystal data

  • C18H23N2 +·C6H5O3S·H2O

  • M r = 442.57

  • Monoclinic, Inline graphic

  • a = 9.9393 (5) Å

  • b = 17.9047 (9) Å

  • c = 13.2532 (7) Å

  • β = 100.715 (1)°

  • V = 2317.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 297 K

  • 0.47 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector. diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.924, T max = 0.955

  • 23078 measured reflections

  • 6105 independent reflections

  • 3770 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.173

  • S = 1.04

  • 6105 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004156/sj5101sup1.cif

e-67-0o593-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004156/sj5101Isup2.hkl

e-67-0o593-Isup2.hkl (298.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.97 1.91 2.821 (3) 156
O1W—H2W1⋯O1ii 1.07 1.88 2.933 (3) 170
C1—H1A⋯O3iii 0.93 2.26 3.151 (3) 160
C3—H3A⋯O2ii 0.93 2.41 3.335 (4) 178
C4—H4A⋯O1W 0.93 2.50 3.338 (3) 149
C18—H18B⋯O3 0.96 2.45 3.371 (3) 162
C10—H10ACg1i 0.93 2.95 3.741 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support by the Prince of Songkla University is gratefully acknowledged. KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University, for the research assistance fellowship. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Quaternary ammonium compounds (QACs) are relatively low toxicity and wide-ranging antimicrobial agents that are commonly used for water treatment, food industry additives and hygienic care for both medical and domestic purposes (Yabuhara et al., 2004). However, due to the long-term usage of common QACs such as benzalkonium chloride and cetylpridinium chloride, QAC resistant microorganisms have appeared. It was reported that some Staphylococcus spp. contain genes conveying resistance to this type of disinfectant (Massi et al., 2003; Soprey et al., 1968; Yabuhara et al., 2004). Therefore, we have developed the novel pyridinium QACs which can overcome this Staphylococcus-resistant phenomenon by exhibiting strong anti-methicillin-resistant Staphylococcus aureus activity and reported this discovery in our previous work (Chanawanno et al., 2010; Fun et al., 2010). The title compound was the one among many pyridinium QACs which was synthesized in our laboratory hoping for a new antibacterial drug candidate. The antibacterial activity of this compound is under investigation and its crystal structure is reported here.

Fig. 1 shows the asymmetric unit of the title compound (I) which consists of the C18H23N2+ cation, C6H5O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6═C7 double bond [1.337 (2) Å]. The π-conjugated system of cation (N1/C1–C13) is planar with an r.m.s deviation of 0.0215 (2) Å and the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings is 0.82 (10)° with the torsion angle C5–C6–C7–C8 = -179.19 (17)°. One ethyl unit of the diethylamino moiety is disordered over two positions; the major component A and the minor component B (Fig. 1), with a refined site-occupancy ratio of 0.73789 (9)/0.26211 (9). The diethylamino group deviates from the attached C8–C13 ring and its conformation can be indicated by the torsion angles C11–N2–C14–C15 = 83.8 (4)°, C11–N2–C16–C17 = -95.3 (4)° for the major component A and 106.1 (7)° for the minor component B. The cation and anion are inclined to each other as indicated by the dihedral angle between the π-conjugated system of cation (N1/C1–C13) and the C19–C24 benzene ring of anion being 86.71 (10)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with those for related structures (Chanawanno et al., 2010; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are arranged into individual chains along the [001] direction (Fig. 2). The cations are linked to the anions and water molecules in neighboring chains by C—H···O weak interactions (Table 1 and Fig. 2) whereas the anions are linked to water molecule by O—H···O hydrogen bonds (Table 1). A C—H···π interaction involving the benzenesulfonate anion was observed (Table 1).

Experimental

(E)-2-(4-(diethylamino)styryl)-1-methylpyridinium iodide (compound A, 0.14 g, 0.37 mmol) was prepared by a literature method (Kaewmanee et al., 2010) and then was mixed with silver (I) benzenesulfonate (Chanawanno et al., 2010) (0.10 g, 0.37 mmol) in methanol (100 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding the title compound as an orange solid. Orange block-shaped single crystals of the title compound suitable for x-ray structure determination was recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks, Mp. 466–468 K.

Refinement

All H atoms were placed in calculated positions to ride on their parent atoms, with d(O—H) = 0.97 and 1.07 Å, d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.09 Å from H14B and the deepest hole is located at 0.72 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms of the minor disorder component are linked by open bonds.

Fig. 2.

Fig. 2.

The crystal packing of the major component viewed along the b axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines. Only the major component is shown.

Crystal data

C18H23N2+·C6H5O3S·H2O F(000) = 944
Mr = 442.57 Dx = 1.268 Mg m3
Monoclinic, P21/c Melting point = 566–468 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.9393 (5) Å Cell parameters from 6105 reflections
b = 17.9047 (9) Å θ = 1.9–29.0°
c = 13.2532 (7) Å µ = 0.17 mm1
β = 100.715 (1)° T = 297 K
V = 2317.4 (2) Å3 Block, orange
Z = 4 0.47 × 0.28 × 0.27 mm

Data collection

Bruker SMART APEXII CCD area-detector. diffractometer 6105 independent reflections
Radiation source: sealed tube 3770 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.924, Tmax = 0.955 k = −24→24
23078 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.6034P] where P = (Fo2 + 2Fc2)/3
6105 reflections (Δ/σ)max = 0.001
293 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.37923 (17) 0.19719 (9) 0.60635 (12) 0.0544 (4)
N2 0.5404 (2) −0.11253 (14) 0.11672 (19) 0.0943 (7)
C1 0.3917 (3) 0.24752 (13) 0.68435 (19) 0.0749 (7)
H1A 0.3134 0.2636 0.7070 0.090*
C2 0.5133 (3) 0.27431 (15) 0.7291 (2) 0.0861 (8)
H2A 0.5193 0.3085 0.7826 0.103*
C3 0.6310 (3) 0.25112 (14) 0.69564 (19) 0.0779 (7)
H3A 0.7163 0.2697 0.7260 0.093*
C4 0.6188 (2) 0.20033 (12) 0.61701 (16) 0.0601 (5)
H4A 0.6970 0.1843 0.5943 0.072*
C5 0.49121 (19) 0.17222 (10) 0.57031 (14) 0.0466 (4)
C6 0.47237 (18) 0.12106 (10) 0.48520 (14) 0.0478 (4)
H6A 0.3837 0.1055 0.4583 0.057*
C7 0.57404 (18) 0.09435 (10) 0.44222 (14) 0.0470 (4)
H7A 0.6621 0.1100 0.4708 0.056*
C8 0.56174 (17) 0.04385 (9) 0.35634 (14) 0.0447 (4)
C9 0.67804 (19) 0.02127 (12) 0.31950 (16) 0.0602 (5)
H9A 0.7627 0.0407 0.3498 0.072*
C10 0.6720 (2) −0.02858 (13) 0.24028 (17) 0.0677 (6)
H10A 0.7524 −0.0421 0.2185 0.081*
C11 0.5480 (2) −0.05947 (12) 0.19157 (16) 0.0602 (5)
C12 0.4306 (2) −0.03423 (12) 0.22563 (17) 0.0630 (5)
H12A 0.3453 −0.0516 0.1932 0.076*
C13 0.43791 (19) 0.01503 (11) 0.30494 (16) 0.0568 (5)
H13A 0.3574 0.0298 0.3253 0.068*
C14 0.4085 (3) −0.14535 (16) 0.0674 (2) 0.0988 (10)
H14A 0.4247 −0.1945 0.0412 0.119*
H14B 0.3509 −0.1514 0.1184 0.119*
C15 0.3368 (4) −0.09968 (19) −0.0164 (3) 0.1244 (12)
H15A 0.2533 −0.1241 −0.0475 0.187*
H15B 0.3938 −0.0929 −0.0667 0.187*
H15C 0.3159 −0.0519 0.0098 0.187*
C16A 0.6609 (5) −0.1534 (2) 0.0964 (3) 0.0785 (14) 0.738 (9)
H16A 0.6350 −0.2045 0.0777 0.094* 0.738 (9)
H16B 0.7302 −0.1546 0.1585 0.094* 0.738 (9)
C17A 0.7198 (5) −0.1177 (2) 0.0113 (4) 0.0975 (17) 0.738 (9)
H17A 0.7939 −0.1477 −0.0033 0.146* 0.738 (9)
H17B 0.7530 −0.0687 0.0321 0.146* 0.738 (9)
H17C 0.6499 −0.1140 −0.0492 0.146* 0.738 (9)
C16B 0.6536 (13) −0.1042 (7) 0.0426 (10) 0.080 (4)* 0.262 (9)
H16C 0.6142 −0.1116 −0.0293 0.096* 0.262 (9)
H16D 0.7013 −0.0567 0.0518 0.096* 0.262 (9)
C17B 0.7432 (15) −0.1684 (7) 0.0869 (10) 0.090 (4)* 0.262 (9)
H17D 0.8044 −0.1811 0.0414 0.135* 0.262 (9)
H17E 0.6870 −0.2108 0.0949 0.135* 0.262 (9)
H17F 0.7953 −0.1544 0.1526 0.135* 0.262 (9)
S1 0.04707 (5) 0.15726 (4) 0.24744 (4) 0.0654 (2)
O1 0.0265 (2) 0.18007 (11) 0.14137 (14) 0.0980 (6)
O2 −0.0623 (2) 0.18000 (11) 0.29822 (16) 0.0985 (6)
O3 0.18028 (17) 0.17776 (11) 0.30344 (15) 0.0916 (6)
C19 0.0540 (2) 0.02197 (16) 0.3415 (2) 0.0776 (7)
H19A 0.0560 0.0495 0.4013 0.093*
C20 0.0584 (3) −0.0546 (2) 0.3458 (3) 0.1078 (11)
H20A 0.0638 −0.0787 0.4085 0.129*
C21 0.0549 (3) −0.0958 (2) 0.2577 (5) 0.1239 (16)
H21A 0.0578 −0.1477 0.2608 0.149*
C22 0.0472 (3) −0.0597 (2) 0.1643 (3) 0.1092 (11)
H22A 0.0446 −0.0874 0.1047 0.131*
C23 0.0431 (2) 0.01794 (17) 0.1597 (2) 0.0815 (7)
H23A 0.0381 0.0423 0.0972 0.098*
C24 0.04664 (18) 0.05846 (14) 0.24854 (17) 0.0618 (5)
C18 0.2404 (2) 0.17099 (14) 0.56214 (19) 0.0718 (6)
H18A 0.2365 0.1176 0.5682 0.108*
H18B 0.2185 0.1848 0.4910 0.108*
H18C 0.1757 0.1934 0.5984 0.108*
O1W 0.8847 (2) 0.20924 (15) 0.49628 (17) 0.1225 (8)
H1W1 0.9246 0.2080 0.4349 0.147*
H2W1 0.9407 0.2522 0.5417 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0629 (10) 0.0548 (9) 0.0489 (9) 0.0076 (7) 0.0193 (8) 0.0020 (7)
N2 0.0730 (13) 0.1111 (17) 0.0977 (17) 0.0068 (12) 0.0129 (12) −0.0540 (14)
C1 0.1001 (19) 0.0667 (14) 0.0643 (14) 0.0145 (13) 0.0324 (14) −0.0063 (12)
C2 0.126 (2) 0.0707 (15) 0.0626 (15) −0.0013 (16) 0.0201 (16) −0.0207 (13)
C3 0.0946 (18) 0.0713 (15) 0.0622 (14) −0.0176 (13) 0.0001 (13) −0.0076 (12)
C4 0.0608 (12) 0.0635 (12) 0.0542 (12) −0.0035 (9) 0.0060 (9) −0.0027 (10)
C5 0.0511 (10) 0.0446 (9) 0.0452 (10) 0.0039 (7) 0.0121 (8) 0.0037 (8)
C6 0.0438 (9) 0.0507 (10) 0.0494 (10) −0.0008 (7) 0.0096 (8) −0.0008 (8)
C7 0.0417 (9) 0.0503 (10) 0.0479 (10) 0.0036 (7) 0.0053 (7) 0.0022 (8)
C8 0.0415 (9) 0.0446 (9) 0.0478 (10) 0.0047 (7) 0.0082 (7) 0.0028 (8)
C9 0.0391 (9) 0.0771 (13) 0.0641 (13) 0.0035 (9) 0.0083 (9) −0.0135 (11)
C10 0.0471 (11) 0.0884 (15) 0.0693 (14) 0.0122 (10) 0.0149 (10) −0.0182 (12)
C11 0.0587 (12) 0.0614 (12) 0.0602 (12) 0.0083 (9) 0.0099 (10) −0.0118 (10)
C12 0.0474 (11) 0.0695 (13) 0.0704 (14) −0.0030 (9) 0.0066 (9) −0.0172 (11)
C13 0.0429 (10) 0.0630 (12) 0.0660 (13) 0.0021 (8) 0.0139 (9) −0.0100 (10)
C14 0.116 (2) 0.0828 (18) 0.088 (2) 0.0180 (16) −0.0052 (17) −0.0326 (16)
C15 0.157 (3) 0.102 (2) 0.104 (3) 0.030 (2) −0.003 (2) −0.008 (2)
C16A 0.083 (3) 0.065 (2) 0.091 (3) 0.0100 (17) 0.027 (2) −0.0236 (19)
C17A 0.106 (3) 0.096 (3) 0.100 (3) −0.007 (2) 0.042 (3) −0.022 (2)
S1 0.0521 (3) 0.0842 (4) 0.0600 (4) −0.0066 (3) 0.0107 (2) 0.0051 (3)
O1 0.1207 (16) 0.1058 (14) 0.0630 (11) 0.0042 (12) 0.0051 (10) 0.0237 (10)
O2 0.0845 (13) 0.1046 (14) 0.1157 (16) 0.0043 (10) 0.0427 (12) −0.0098 (12)
O3 0.0688 (11) 0.1090 (14) 0.0908 (13) −0.0309 (10) −0.0008 (9) 0.0101 (11)
C19 0.0459 (11) 0.1011 (19) 0.0840 (17) −0.0052 (11) 0.0073 (11) 0.0224 (15)
C20 0.0568 (16) 0.111 (3) 0.151 (3) −0.0014 (16) 0.0091 (18) 0.052 (2)
C21 0.0538 (16) 0.085 (2) 0.229 (5) 0.0030 (14) 0.016 (2) 0.023 (3)
C22 0.0698 (18) 0.098 (2) 0.161 (3) 0.0011 (16) 0.022 (2) −0.028 (2)
C23 0.0588 (14) 0.100 (2) 0.0860 (18) −0.0017 (13) 0.0138 (12) −0.0064 (15)
C24 0.0338 (9) 0.0847 (15) 0.0659 (13) −0.0028 (9) 0.0066 (8) 0.0094 (12)
C18 0.0523 (12) 0.0903 (17) 0.0775 (16) 0.0081 (11) 0.0242 (11) 0.0007 (13)
O1W 0.1150 (17) 0.157 (2) 0.1059 (16) −0.0526 (15) 0.0468 (13) −0.0250 (15)

Geometric parameters (Å, °)

N1—C1 1.360 (3) C15—H15B 0.9600
N1—C5 1.365 (2) C15—H15C 0.9600
N1—C18 1.472 (3) C16A—C17A 1.506 (7)
N2—C11 1.365 (3) C16A—H16A 0.9700
N2—C16A 1.471 (4) C16A—H16B 0.9700
N2—C14 1.474 (4) C17A—H17A 0.9600
N2—C16B 1.632 (14) C17A—H17B 0.9600
C1—C2 1.333 (4) C17A—H17C 0.9600
C1—H1A 0.9300 C16B—C17B 1.51 (2)
C2—C3 1.389 (4) C16B—H16C 0.9700
C2—H2A 0.9300 C16B—H16D 0.9700
C3—C4 1.371 (3) C17B—H17D 0.9600
C3—H3A 0.9300 C17B—H17E 0.9600
C4—C5 1.397 (3) C17B—H17F 0.9600
C4—H4A 0.9300 S1—O2 1.4395 (18)
C5—C6 1.438 (3) S1—O3 1.4398 (17)
C6—C7 1.337 (2) S1—O1 1.4414 (18)
C6—H6A 0.9300 S1—C24 1.769 (2)
C7—C8 1.441 (2) C19—C20 1.372 (4)
C7—H7A 0.9300 C19—C24 1.384 (3)
C8—C13 1.390 (3) C19—H19A 0.9300
C8—C9 1.396 (2) C20—C21 1.376 (5)
C9—C10 1.371 (3) C20—H20A 0.9300
C9—H9A 0.9300 C21—C22 1.385 (5)
C10—C11 1.396 (3) C21—H21A 0.9300
C10—H10A 0.9300 C22—C23 1.391 (4)
C11—C12 1.401 (3) C22—H22A 0.9300
C12—C13 1.364 (3) C23—C24 1.377 (3)
C12—H12A 0.9300 C23—H23A 0.9300
C13—H13A 0.9300 C18—H18A 0.9600
C14—C15 1.454 (4) C18—H18B 0.9600
C14—H14A 0.9700 C18—H18C 0.9600
C14—H14B 0.9700 O1W—H1W1 0.9693
C15—H15A 0.9600 O1W—H2W1 1.0669
C1—N1—C5 121.22 (19) C14—C15—H15B 109.5
C1—N1—C18 117.38 (19) H15A—C15—H15B 109.5
C5—N1—C18 121.40 (17) C14—C15—H15C 109.5
C11—N2—C16A 122.8 (2) H15A—C15—H15C 109.5
C11—N2—C14 121.6 (2) H15B—C15—H15C 109.5
C16A—N2—C14 114.1 (2) N2—C16A—C17A 111.7 (4)
C11—N2—C16B 115.0 (5) N2—C16A—H16A 109.3
C14—N2—C16B 115.2 (5) C17A—C16A—H16A 109.3
C2—C1—N1 121.5 (2) N2—C16A—H16B 109.3
C2—C1—H1A 119.2 C17A—C16A—H16B 109.3
N1—C1—H1A 119.2 H16A—C16A—H16B 108.0
C1—C2—C3 119.9 (2) C17B—C16B—N2 96.9 (10)
C1—C2—H2A 120.0 C17B—C16B—H16C 112.4
C3—C2—H2A 120.0 N2—C16B—H16C 112.4
C4—C3—C2 118.7 (2) C17B—C16B—H16D 112.4
C4—C3—H3A 120.7 N2—C16B—H16D 112.4
C2—C3—H3A 120.7 H16C—C16B—H16D 109.9
C3—C4—C5 121.3 (2) C16B—C17B—H17D 109.5
C3—C4—H4A 119.3 C16B—C17B—H17E 109.5
C5—C4—H4A 119.3 H17D—C17B—H17E 109.5
N1—C5—C4 117.31 (17) C16B—C17B—H17F 109.5
N1—C5—C6 119.16 (17) H17D—C17B—H17F 109.5
C4—C5—C6 123.50 (17) H17E—C17B—H17F 109.5
C7—C6—C5 124.29 (17) O2—S1—O3 112.89 (13)
C7—C6—H6A 117.9 O2—S1—O1 113.17 (13)
C5—C6—H6A 117.9 O3—S1—O1 112.36 (12)
C6—C7—C8 126.94 (17) O2—S1—C24 106.01 (11)
C6—C7—H7A 116.5 O3—S1—C24 104.71 (11)
C8—C7—H7A 116.5 O1—S1—C24 106.92 (12)
C13—C8—C9 115.87 (17) C20—C19—C24 120.3 (3)
C13—C8—C7 123.87 (16) C20—C19—H19A 119.9
C9—C8—C7 120.26 (16) C24—C19—H19A 119.9
C10—C9—C8 122.39 (18) C19—C20—C21 120.3 (3)
C10—C9—H9A 118.8 C19—C20—H20A 119.8
C8—C9—H9A 118.8 C21—C20—H20A 119.8
C9—C10—C11 121.40 (18) C20—C21—C22 119.7 (4)
C9—C10—H10A 119.3 C20—C21—H21A 120.1
C11—C10—H10A 119.3 C22—C21—H21A 120.1
N2—C11—C10 122.44 (19) C21—C22—C23 120.1 (4)
N2—C11—C12 121.4 (2) C21—C22—H22A 119.9
C10—C11—C12 116.11 (19) C23—C22—H22A 119.9
C13—C12—C11 121.91 (19) C24—C23—C22 119.5 (3)
C13—C12—H12A 119.0 C24—C23—H23A 120.2
C11—C12—H12A 119.0 C22—C23—H23A 120.2
C12—C13—C8 122.21 (17) C23—C24—C19 120.0 (3)
C12—C13—H13A 118.9 C23—C24—S1 121.29 (19)
C8—C13—H13A 118.9 C19—C24—S1 118.6 (2)
C15—C14—N2 112.6 (3) N1—C18—H18A 109.5
C15—C14—H14A 109.1 N1—C18—H18B 109.5
N2—C14—H14A 109.1 H18A—C18—H18B 109.5
C15—C14—H14B 109.1 N1—C18—H18C 109.5
N2—C14—H14B 109.1 H18A—C18—H18C 109.5
H14A—C14—H14B 107.8 H18B—C18—H18C 109.5
C14—C15—H15A 109.5 H1W1—O1W—H2W1 103.8
C5—N1—C1—C2 −0.3 (3) C10—C11—C12—C13 −2.9 (4)
C18—N1—C1—C2 180.0 (2) C11—C12—C13—C8 0.6 (4)
N1—C1—C2—C3 0.4 (4) C9—C8—C13—C12 2.1 (3)
C1—C2—C3—C4 −0.4 (4) C7—C8—C13—C12 −178.2 (2)
C2—C3—C4—C5 0.3 (3) C11—N2—C14—C15 83.8 (4)
C1—N1—C5—C4 0.2 (3) C16A—N2—C14—C15 −109.7 (3)
C18—N1—C5—C4 179.92 (18) C16B—N2—C14—C15 −63.0 (6)
C1—N1—C5—C6 −177.75 (18) C11—N2—C16A—C17A −95.3 (4)
C18—N1—C5—C6 2.0 (3) C14—N2—C16A—C17A 98.4 (4)
C3—C4—C5—N1 −0.2 (3) C16B—N2—C16A—C17A −3.2 (7)
C3—C4—C5—C6 177.6 (2) C11—N2—C16B—C17B 106.1 (7)
N1—C5—C6—C7 178.44 (17) C16A—N2—C16B—C17B −6.1 (5)
C4—C5—C6—C7 0.7 (3) C14—N2—C16B—C17B −104.8 (7)
C5—C6—C7—C8 −179.19 (17) C24—C19—C20—C21 −0.3 (4)
C6—C7—C8—C13 −0.1 (3) C19—C20—C21—C22 0.1 (4)
C6—C7—C8—C9 179.54 (19) C20—C21—C22—C23 0.1 (4)
C13—C8—C9—C10 −2.6 (3) C21—C22—C23—C24 −0.1 (4)
C7—C8—C9—C10 177.8 (2) C22—C23—C24—C19 0.0 (3)
C8—C9—C10—C11 0.2 (4) C22—C23—C24—S1 178.04 (19)
C16A—N2—C11—C10 13.7 (4) C20—C19—C24—C23 0.3 (3)
C14—N2—C11—C10 179.0 (3) C20—C19—C24—S1 −177.88 (18)
C16B—N2—C11—C10 −34.1 (6) O2—S1—C24—C23 127.83 (19)
C16A—N2—C11—C12 −164.7 (3) O3—S1—C24—C23 −112.59 (18)
C14—N2—C11—C12 0.6 (4) O1—S1—C24—C23 6.8 (2)
C16B—N2—C11—C12 147.5 (5) O2—S1—C24—C19 −54.06 (19)
C9—C10—C11—N2 −176.0 (2) O3—S1—C24—C19 65.52 (19)
C9—C10—C11—C12 2.5 (4) O1—S1—C24—C19 −175.08 (17)
N2—C11—C12—C13 175.6 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C19–C24 ring.
D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O2i 0.97 1.91 2.821 (3) 156
O1W—H2W1···O1ii 1.07 1.88 2.933 (3) 170
C1—H1A···O3iii 0.93 2.26 3.151 (3) 160
C3—H3A···O2ii 0.93 2.41 3.335 (4) 178
C4—H4A···O1W 0.93 2.50 3.338 (3) 149
C18—H18B···O3 0.96 2.45 3.371 (3) 162
C10—H10A···Cg1i 0.93 2.95 3.741 (2) 144

Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+1/2, z+1/2; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5101).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. [DOI] [PubMed]
  4. Fun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938–o939. [DOI] [PMC free article] [PubMed]
  5. Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640. [DOI] [PMC free article] [PubMed]
  6. Massi, L., Guitard, F., Geribaldi, S., Levy, R. & Duccini, Y. (2003). Int. J. Antimicrob. Agents, 21, 20–26. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Soprey, P. R. & Maxcy, R. B. (1968). J. Food Sci. 33, 536–540.
  9. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yabuhara, T., Maeda, T., Nagamune, H. & Kourai, H. (2004). Biocontrol Sci. 9, 95–103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004156/sj5101sup1.cif

e-67-0o593-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004156/sj5101Isup2.hkl

e-67-0o593-Isup2.hkl (298.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES