Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o705–o706. doi: 10.1107/S1600536811006118

4,5-Bis(2,4-di-tert-butyl­phen­oxy)phthalonitrile

Johannes H van Tonder a, Theunis J Muller a,*, Barend C B Bezuidenhoudt a
PMCID: PMC3051978  PMID: 21522449

Abstract

In the title compound, C36H44N2O2, the dihedral angles between the phthalonitrile ring and the two di-tert-butyl­benzene rings are 68.134 (8) and 70.637 (11)°. The two nitrile groups are almost coplanar with the phthalonitrile ring except for one of the N atoms which deviates from the plane by 0.125 (4) Å. One of the tert-butyl groups is disordered over two orientations, with refined occupancies of 0.814 (6) and 0.186 (6). Intra­molecular C—H⋯O inter­actions stabilize the molecular structure. The crystal packing is stabilized by inter­molecular C—H⋯N inter­actions.

Related literature

For similar structures, see: Kartal et al. (2006); Petek et al. (2004); Dinçer et al. (2004). For other related structures, see: Şahin, et al. (2007); Wu et al. (2010); Yazıcı et al. (2004). For general background to phthalocyanines and metallophthalocyanines, see: Lenznoff & Lever (1989–1996); McKeown (1998); Wöhrle (2001).graphic file with name e-67-0o705-scheme1.jpg

Experimental

Crystal data

  • C36H44N2O2

  • M r = 536.76

  • Triclinic, Inline graphic

  • a = 10.9468 (3) Å

  • b = 11.0416 (4) Å

  • c = 15.3133 (5) Å

  • α = 99.719 (1)°

  • β = 102.996 (1)°

  • γ = 110.963 (1)°

  • V = 1619.71 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 175 K

  • 0.21 × 0.19 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.986, T max = 0.990

  • 31007 measured reflections

  • 7785 independent reflections

  • 5255 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.148

  • S = 1.03

  • 7785 reflections

  • 399 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006118/lr2003sup1.cif

e-67-0o705-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006118/lr2003Isup2.hkl

e-67-0o705-Isup2.hkl (373.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O1 0.96 2.5 3.117 (2) 122
C20—H20A⋯O1 0.96 2.32 2.982 (3) 125
C36—H36B⋯O2 0.96 2.52 3.122 (3) 121
C37—H37B⋯O2 0.96 2.29 2.966 (2) 127
C22A—H22A⋯N2i 0.96 2.59 3.535 (4) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The University of the Free State and Sasol are gratefully acknowledged for financial support. Special thanks are due to Professor Andreas Roodt.

supplementary crystallographic information

Comment

Substituted phthalonitriles have been used as starting materials for synthesizing peripherally substituted phtalocyanines and subphthalocyanines (McKeown, 1998). Phthalocyanines and metallophthalocyanines have been invesitigated for many years because of their wide range of applications, including use in chemical sensors, liquid crystals, Langmiur-Blodgett films, non-linear optics, batteries, and as carrier generation materials in the near-infrared (Lennoff & Lever, 1989–1996). Some phthalocyanines have been used in the petroleum industry as catalysts for the oxidation of sulfur compounds in the gasoline fraction. Applications such as photoconducters in the xerographic double layers of laser printers and coping machines, and as as active materials in writable data-storage disks, are also known. The production of phthalocyanines for use in dyes and pigments is around 80 000 tonnes per year (Wöhrle, 2001). The crystal structure of the title compound is presented here. It containes three aromatic rings. Ring A (C3—C8, r.m.s = 0.0047), ring B (C11—C16, r.m.s = 0.0051) and ring C (C25—C30, r.m.s = 0.0038) are essentialy planar. C1, C2 and N1 is coplanar to ring A but N2 is -0.1252 (41) Å out of the plane formed by ring A. The C1≡N1 and the C2≡N2 triple bond distances are 1.145 (2) Å and 1.143 (2) Å respectively and are consistent with values found in similar compounds (Kartal et al. 2006, Petek et al. 2004 and Dinçer et al. 2004). The N1—C1—C3 and N2—C2—C4 bond angles are 179.26 (18) ° and 178.4 (3) ° respectively, this is consistent with values found for simular compounds (Şahin, et al. 2007, Wu, et al. 2010 and Yazıcı, et al. 2004). The dihedral angles between rings A and B and between rings A and C are 68.134 (8) ° and 70.637 (11) ° respectively. The angle between rings B and C is 48.12 (6) °. The crystal packing is stabilized by C—H···O intermolecular hydrogen interactions.

Experimental

Ground K2CO3 (4.91 g; 35.5 mmol; 7 eq.) was added to a solution of 4,5-dichlorophthalonitrile (1.00 g; 5.08 mmol) and 2,4-di-tert-butylphenol (2.20 g; 10.7 mmol; 2.1 eq.) in dry DMF (75 ml) before stirring overnight at 80 °C. The reaction mixture was cooled to room temperature before being transferred to 3M HCl (80 ml conc. HCl in 200 ml H2O). The precipitate was filtered off, washed with H2O and allowed to dry in air. The crude product was recrystallized from hot ethyl acetate and ethanol (1:1) to yield the title compound (77.9%). Rf 0.8 (Hexane:Acetone; 8:2); Mp 269.0 °C;

1H NMR (600 MHz, CDCl3) δ 7.52 (2H, d, J = 2.3 Hz, H-3', 3"), 7.31 (2H, dd, J = 8.4, 2.3 Hz, H-5', 5"), 7.21 (2H, s, H-3,6), 6.86 (2H, d, J = 8.4 Hz, H-6', 6" H-2,6), 1.39 (36H, s, –C(CH3)3). 13C NMR (151 MHz, CDCl3) δ 152.51, 150.60, 148.46, 140.82, 125.13 (C-3',3"), 124.74 (C-5',5"), 121.66 (C-3,6), 120.36 (C-6',6"), 115.42 (–CN), 109.64 (C-1,2), 35.03 (–C(CH3)3), 34.82 (–C(CH3)3), 31.57 (–C(CH3)3), 30.40 (–C(CH3)3).

Refinement

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso (H) = 1.2Ueq(C) and at a distance of 0.93 Å. The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å.

Figures

Fig. 1.

Fig. 1.

Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). Some H atoms and the disorder was left out for clarity.

Crystal data

C36H44N2O2 Z = 2
Mr = 536.76 F(000) = 580
Triclinic, P1 Dx = 1.1 Mg m3
a = 10.9468 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.0416 (4) Å Cell parameters from 7569 reflections
c = 15.3133 (5) Å θ = 2.8–28.6°
α = 99.719 (1)° µ = 0.07 mm1
β = 102.996 (1)° T = 175 K
γ = 110.963 (1)° Cuboid, colourless
V = 1619.71 (9) Å3 0.21 × 0.19 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 5255 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 28°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→14
Tmin = 0.986, Tmax = 0.990 k = −14→14
31007 measured reflections l = −20→20
7785 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.5205P] where P = (Fo2 + 2Fc2)/3
7785 reflections (Δ/σ)max = 0.017
399 parameters Δρmax = 0.29 e Å3
3 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 2019 frames were collected with a frame width of 0.5° covering up to θ = 28.57° with 99.4% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.32485 (17) −0.09576 (17) 0.99913 (12) 0.0399 (4)
C2 0.2111 (2) 0.0801 (2) 1.06591 (15) 0.0601 (6)
C3 0.27916 (16) −0.02106 (15) 0.94090 (12) 0.0350 (3)
C4 0.22520 (18) 0.06741 (17) 0.97435 (12) 0.0399 (4)
C5 0.18274 (18) 0.14119 (17) 0.91845 (12) 0.0428 (4)
H5 0.1479 0.201 0.9412 0.051*
C6 0.19232 (16) 0.12561 (15) 0.82952 (11) 0.0344 (3)
C7 0.24483 (15) 0.03433 (15) 0.79532 (11) 0.0325 (3)
C8 0.28764 (16) −0.03739 (15) 0.85123 (12) 0.0356 (4)
H8 0.3225 −0.0972 0.8286 0.043*
C11 0.32695 (16) −0.03783 (15) 0.67397 (11) 0.0341 (3)
C12 0.46705 (18) 0.02362 (17) 0.71765 (12) 0.0422 (4)
H12 0.5042 0.099 0.7687 0.051*
C13 0.55247 (17) −0.02689 (18) 0.68553 (12) 0.0421 (4)
H13 0.6467 0.0138 0.716 0.05*
C14 0.49885 (16) −0.13740 (16) 0.60855 (11) 0.0342 (3)
C15 0.35667 (16) −0.19584 (16) 0.56661 (11) 0.0335 (3)
H15 0.32 −0.2701 0.5148 0.04*
C16 0.26543 (16) −0.15055 (15) 0.59701 (11) 0.0317 (3)
C17 0.10949 (16) −0.22154 (16) 0.54796 (12) 0.0364 (4)
C18 0.07343 (19) −0.33885 (19) 0.46378 (13) 0.0503 (5)
H18A 0.1151 −0.3052 0.419 0.075*
H18B −0.0247 −0.3829 0.4359 0.075*
H18C 0.1071 −0.4021 0.4836 0.075*
C19 0.03676 (18) −0.27803 (18) 0.61657 (13) 0.0458 (4)
H19A −0.0601 −0.327 0.585 0.069*
H19B 0.0516 −0.205 0.6675 0.069*
H19C 0.0734 −0.3373 0.64 0.069*
C20 0.05301 (19) −0.1242 (2) 0.51307 (14) 0.0495 (5)
H20A 0.0705 −0.0513 0.5649 0.074*
H20B −0.0443 −0.1713 0.4826 0.074*
H20C 0.0974 −0.0891 0.4698 0.074*
C21 0.58891 (17) −0.19560 (18) 0.56883 (12) 0.0414 (4)
C25 0.09512 (16) 0.28072 (16) 0.79279 (11) 0.0334 (3)
C26 −0.03540 (17) 0.22322 (16) 0.80045 (12) 0.0406 (4)
H26 −0.0763 0.1312 0.7942 0.049*
C27 −0.10495 (16) 0.30261 (16) 0.81741 (12) 0.0385 (4)
H27 −0.1921 0.2638 0.8236 0.046*
C28 −0.04634 (15) 0.43969 (15) 0.82533 (11) 0.0310 (3)
C29 0.08501 (15) 0.49289 (15) 0.81665 (10) 0.0300 (3)
H29 0.1251 0.5846 0.8218 0.036*
C30 0.16077 (15) 0.41736 (15) 0.80073 (10) 0.0294 (3)
C31 −0.12629 (16) 0.52644 (17) 0.84061 (12) 0.0371 (4)
C32 −0.1880 (2) 0.5004 (2) 0.91925 (15) 0.0562 (5)
H32A −0.2375 0.5556 0.9278 0.084*
H32B −0.1156 0.5223 0.9759 0.084*
H32C −0.2498 0.4071 0.9035 0.084*
C33 −0.0344 (2) 0.6768 (2) 0.8677 (2) 0.0792 (8)
H33A 0.0028 0.698 0.8184 0.119*
H33B 0.0394 0.6995 0.9237 0.119*
H33C −0.0876 0.7274 0.8781 0.119*
C34 −0.2414 (3) 0.4900 (3) 0.75103 (16) 0.0823 (8)
H34A −0.203 0.5063 0.7014 0.124*
H34B −0.2919 0.5442 0.7592 0.124*
H34C −0.3022 0.3964 0.7358 0.124*
C35 0.30789 (15) 0.48317 (16) 0.79499 (11) 0.0352 (4)
C36 0.40825 (18) 0.4698 (2) 0.87618 (14) 0.0540 (5)
H36A 0.5008 0.517 0.876 0.081*
H36B 0.389 0.3762 0.8696 0.081*
H36C 0.398 0.5077 0.9339 0.081*
C37 0.31886 (19) 0.4175 (2) 0.70201 (13) 0.0485 (4)
H37A 0.2603 0.4318 0.6517 0.073*
H37B 0.2908 0.3224 0.6945 0.073*
H37C 0.4124 0.4571 0.7017 0.073*
C38 0.35244 (18) 0.63396 (18) 0.80263 (15) 0.0504 (5)
H38A 0.29 0.6458 0.7532 0.076*
H38B 0.4437 0.6712 0.7979 0.076*
H38C 0.3515 0.6793 0.8616 0.076*
N1 0.36199 (18) −0.15552 (17) 1.04487 (12) 0.0546 (4)
N2 0.1971 (3) 0.0875 (3) 1.13809 (15) 0.0937 (8)
O1 0.24505 (12) 0.02227 (11) 0.70557 (8) 0.0384 (3)
O2 0.15855 (12) 0.19450 (11) 0.76953 (8) 0.0400 (3)
C22A 0.7447 (3) −0.1104 (4) 0.6219 (2) 0.0569 (8) 0.814 (6)
H22A 0.7633 −0.1136 0.6856 0.085* 0.814 (6)
H22B 0.7686 −0.0186 0.6198 0.085* 0.814 (6)
H22C 0.7982 −0.1465 0.593 0.085* 0.814 (6)
C23A 0.5683 (3) −0.1892 (5) 0.46811 (18) 0.0696 (12) 0.814 (6)
H23A 0.6292 −0.2192 0.4438 0.104* 0.814 (6)
H23B 0.5879 −0.0981 0.4658 0.104* 0.814 (6)
H23C 0.4748 −0.2464 0.4314 0.104* 0.814 (6)
C24A 0.5532 (5) −0.3364 (4) 0.5778 (5) 0.0921 (16) 0.814 (6)
H24A 0.6091 −0.3733 0.5526 0.138* 0.814 (6)
H24B 0.4579 −0.3913 0.5441 0.138* 0.814 (6)
H24C 0.5696 −0.3348 0.6423 0.138* 0.814 (6)
C22B 0.5042 (14) −0.2940 (15) 0.4618 (7) 0.050 (3) 0.186 (6)
H22D 0.5663 −0.3179 0.4347 0.075* 0.186 (6)
H22E 0.4646 −0.2471 0.425 0.075* 0.186 (6)
H22F 0.4323 −0.3743 0.4633 0.075* 0.186 (6)
C23B 0.6083 (13) −0.2968 (14) 0.6183 (9) 0.0414 (4) 0.186 (6)
H23D 0.664 −0.3346 0.5936 0.062* 0.186 (6)
H23E 0.5203 −0.3674 0.6093 0.062* 0.186 (6)
H23F 0.653 −0.2532 0.6837 0.062* 0.186 (6)
C24B 0.7055 (16) −0.0922 (14) 0.5672 (16) 0.075 (5) 0.186 (6)
H24D 0.7568 −0.0353 0.6294 0.112* 0.186 (6)
H24E 0.6791 −0.04 0.5286 0.112* 0.186 (6)
H24F 0.7615 −0.1295 0.5424 0.112* 0.186 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0435 (9) 0.0387 (9) 0.0422 (10) 0.0193 (8) 0.0179 (8) 0.0111 (8)
C2 0.0913 (16) 0.0783 (14) 0.0484 (12) 0.0639 (13) 0.0374 (11) 0.0255 (11)
C3 0.0367 (8) 0.0329 (8) 0.0402 (9) 0.0163 (7) 0.0168 (7) 0.0114 (7)
C4 0.0487 (9) 0.0455 (9) 0.0374 (10) 0.0275 (8) 0.0209 (8) 0.0120 (8)
C5 0.0564 (10) 0.0455 (10) 0.0435 (10) 0.0343 (9) 0.0254 (8) 0.0112 (8)
C6 0.0411 (8) 0.0319 (8) 0.0388 (9) 0.0208 (7) 0.0184 (7) 0.0099 (7)
C7 0.0371 (8) 0.0290 (7) 0.0362 (9) 0.0164 (6) 0.0180 (7) 0.0059 (6)
C8 0.0411 (8) 0.0318 (8) 0.0425 (10) 0.0208 (7) 0.0202 (7) 0.0091 (7)
C11 0.0445 (9) 0.0340 (8) 0.0359 (9) 0.0234 (7) 0.0224 (7) 0.0100 (7)
C12 0.0461 (9) 0.0396 (9) 0.0378 (10) 0.0166 (8) 0.0173 (8) −0.0005 (7)
C13 0.0366 (8) 0.0496 (10) 0.0378 (10) 0.0167 (8) 0.0149 (7) 0.0042 (8)
C14 0.0397 (8) 0.0394 (9) 0.0332 (9) 0.0209 (7) 0.0200 (7) 0.0116 (7)
C15 0.0418 (8) 0.0324 (8) 0.0318 (8) 0.0191 (7) 0.0166 (7) 0.0069 (7)
C16 0.0383 (8) 0.0310 (8) 0.0348 (9) 0.0189 (6) 0.0176 (7) 0.0126 (7)
C17 0.0384 (8) 0.0378 (8) 0.0398 (9) 0.0203 (7) 0.0157 (7) 0.0125 (7)
C18 0.0424 (10) 0.0524 (11) 0.0477 (11) 0.0187 (8) 0.0093 (8) 0.0010 (9)
C19 0.0422 (9) 0.0455 (10) 0.0548 (12) 0.0171 (8) 0.0226 (8) 0.0187 (9)
C20 0.0474 (10) 0.0566 (11) 0.0579 (12) 0.0305 (9) 0.0182 (9) 0.0262 (10)
C21 0.0431 (9) 0.0505 (10) 0.0425 (10) 0.0268 (8) 0.0239 (8) 0.0111 (8)
C25 0.0409 (8) 0.0361 (8) 0.0316 (8) 0.0247 (7) 0.0142 (7) 0.0061 (7)
C26 0.0433 (9) 0.0299 (8) 0.0481 (11) 0.0149 (7) 0.0171 (8) 0.0061 (7)
C27 0.0319 (8) 0.0369 (9) 0.0446 (10) 0.0131 (7) 0.0140 (7) 0.0056 (7)
C28 0.0316 (7) 0.0362 (8) 0.0296 (8) 0.0189 (6) 0.0108 (6) 0.0069 (6)
C29 0.0320 (7) 0.0314 (8) 0.0306 (8) 0.0167 (6) 0.0113 (6) 0.0078 (6)
C30 0.0322 (7) 0.0365 (8) 0.0242 (8) 0.0192 (6) 0.0097 (6) 0.0071 (6)
C31 0.0359 (8) 0.0433 (9) 0.0433 (10) 0.0252 (7) 0.0173 (7) 0.0132 (8)
C32 0.0628 (12) 0.0676 (13) 0.0641 (14) 0.0428 (11) 0.0377 (11) 0.0227 (11)
C33 0.0718 (14) 0.0479 (12) 0.150 (3) 0.0396 (11) 0.0676 (16) 0.0295 (14)
C34 0.0867 (17) 0.133 (2) 0.0566 (15) 0.0862 (18) 0.0123 (12) 0.0214 (15)
C35 0.0315 (7) 0.0435 (9) 0.0369 (9) 0.0209 (7) 0.0142 (7) 0.0097 (7)
C36 0.0365 (9) 0.0752 (14) 0.0522 (12) 0.0262 (9) 0.0092 (8) 0.0212 (10)
C37 0.0474 (10) 0.0597 (12) 0.0464 (11) 0.0251 (9) 0.0264 (9) 0.0115 (9)
C38 0.0397 (9) 0.0461 (10) 0.0706 (14) 0.0170 (8) 0.0276 (9) 0.0161 (10)
N1 0.0664 (11) 0.0530 (10) 0.0526 (10) 0.0305 (8) 0.0185 (8) 0.0214 (8)
N2 0.160 (2) 0.137 (2) 0.0594 (13) 0.1165 (19) 0.0640 (14) 0.0490 (13)
O1 0.0530 (7) 0.0419 (6) 0.0368 (7) 0.0314 (6) 0.0243 (5) 0.0116 (5)
O2 0.0580 (7) 0.0415 (6) 0.0394 (7) 0.0352 (6) 0.0242 (6) 0.0129 (5)
C22A 0.0425 (14) 0.089 (2) 0.0473 (17) 0.0339 (14) 0.0231 (13) 0.0108 (15)
C23A 0.0579 (18) 0.117 (3) 0.0391 (15) 0.046 (2) 0.0224 (13) 0.0008 (17)
C24A 0.075 (2) 0.054 (2) 0.178 (5) 0.0412 (18) 0.072 (3) 0.033 (3)
C22B 0.066 (8) 0.061 (8) 0.037 (6) 0.044 (7) 0.023 (5) 0.000 (5)
C23B 0.0431 (9) 0.0505 (10) 0.0425 (10) 0.0268 (8) 0.0239 (8) 0.0111 (8)
C24B 0.059 (9) 0.071 (8) 0.105 (15) 0.029 (7) 0.055 (10) 0.007 (9)

Geometric parameters (Å, °)

C1—N1 1.145 (2) C27—C28 1.388 (2)
C1—C3 1.438 (2) C27—H27 0.93
C2—N2 1.143 (3) C28—C29 1.392 (2)
C2—C4 1.434 (3) C28—C31 1.534 (2)
C3—C8 1.383 (2) C29—C30 1.3999 (19)
C3—C4 1.395 (2) C29—H29 0.93
C4—C5 1.393 (2) C30—C35 1.542 (2)
C5—C6 1.376 (2) C31—C34 1.518 (3)
C5—H5 0.93 C31—C33 1.525 (3)
C6—O2 1.3578 (19) C31—C32 1.528 (2)
C6—C7 1.412 (2) C32—H32A 0.96
C7—O1 1.3588 (19) C32—H32B 0.96
C7—C8 1.376 (2) C32—H32C 0.96
C8—H8 0.93 C33—H33A 0.96
C11—C12 1.379 (2) C33—H33B 0.96
C11—C16 1.393 (2) C33—H33C 0.96
C11—O1 1.4110 (17) C34—H34A 0.96
C12—C13 1.384 (2) C34—H34B 0.96
C12—H12 0.93 C34—H34C 0.96
C13—C14 1.383 (2) C35—C36 1.529 (2)
C13—H13 0.93 C35—C38 1.533 (2)
C14—C15 1.394 (2) C35—C37 1.536 (2)
C14—C21 1.532 (2) C36—H36A 0.96
C15—C16 1.397 (2) C36—H36B 0.96
C15—H15 0.93 C36—H36C 0.96
C16—C17 1.536 (2) C37—H37A 0.96
C17—C18 1.529 (2) C37—H37B 0.96
C17—C20 1.531 (2) C37—H37C 0.96
C17—C19 1.539 (2) C38—H38A 0.96
C18—H18A 0.96 C38—H38B 0.96
C18—H18B 0.96 C38—H38C 0.96
C18—H18C 0.96 C22A—H22A 0.96
C19—H19A 0.96 C22A—H22B 0.96
C19—H19B 0.96 C22A—H22C 0.96
C19—H19C 0.96 C23A—H23A 0.96
C20—H20A 0.96 C23A—H23B 0.96
C20—H20B 0.96 C23A—H23C 0.96
C20—H20C 0.96 C24A—H24A 0.96
C21—C24B 1.384 (13) C24A—H24B 0.96
C21—C24A 1.500 (4) C24A—H24C 0.96
C21—C23B 1.501 (12) C22B—H22D 0.96
C21—C23A 1.525 (3) C22B—H22E 0.96
C21—C22A 1.557 (3) C22B—H22F 0.96
C21—C22B 1.650 (11) C23B—H23D 0.96
C25—C26 1.382 (2) C23B—H23E 0.96
C25—C30 1.390 (2) C23B—H23F 0.96
C25—O2 1.4089 (17) C24B—H24D 0.96
C26—C27 1.380 (2) C24B—H24E 0.96
C26—H26 0.93 C24B—H24F 0.96
N1—C1—C3 179.26 (18) C26—C27—C28 120.78 (15)
N2—C2—C4 178.4 (3) C26—C27—H27 119.6
C8—C3—C4 119.70 (15) C28—C27—H27 119.6
C8—C3—C1 120.12 (14) C27—C28—C29 117.23 (13)
C4—C3—C1 120.18 (15) C27—C28—C31 120.53 (13)
C5—C4—C3 120.20 (15) C29—C28—C31 122.23 (14)
C5—C4—C2 120.12 (15) C28—C29—C30 124.32 (14)
C3—C4—C2 119.67 (15) C28—C29—H29 117.8
C6—C5—C4 119.99 (14) C30—C29—H29 117.8
C6—C5—H5 120 C25—C30—C29 115.24 (13)
C4—C5—H5 120 C25—C30—C35 122.92 (13)
O2—C6—C5 125.57 (13) C29—C30—C35 121.83 (14)
O2—C6—C7 114.72 (14) C34—C31—C33 109.46 (19)
C5—C6—C7 119.68 (14) C34—C31—C32 109.21 (17)
O1—C7—C8 124.80 (13) C33—C31—C32 106.95 (16)
O1—C7—C6 115.18 (13) C34—C31—C28 108.44 (14)
C8—C7—C6 120.00 (14) C33—C31—C28 112.04 (14)
C7—C8—C3 120.42 (14) C32—C31—C28 110.70 (13)
C7—C8—H8 119.8 C31—C32—H32A 109.5
C3—C8—H8 119.8 C31—C32—H32B 109.5
C12—C11—C16 122.65 (13) H32A—C32—H32B 109.5
C12—C11—O1 117.89 (14) C31—C32—H32C 109.5
C16—C11—O1 119.32 (14) H32A—C32—H32C 109.5
C11—C12—C13 120.01 (16) H32B—C32—H32C 109.5
C11—C12—H12 120 C31—C33—H33A 109.5
C13—C12—H12 120 C31—C33—H33B 109.5
C14—C13—C12 120.56 (16) H33A—C33—H33B 109.5
C14—C13—H13 119.7 C31—C33—H33C 109.5
C12—C13—H13 119.7 H33A—C33—H33C 109.5
C13—C14—C15 117.32 (14) H33B—C33—H33C 109.5
C13—C14—C21 122.73 (15) C31—C34—H34A 109.5
C15—C14—C21 119.95 (14) C31—C34—H34B 109.5
C14—C15—C16 124.54 (15) H34A—C34—H34B 109.5
C14—C15—H15 117.7 C31—C34—H34C 109.5
C16—C15—H15 117.7 H34A—C34—H34C 109.5
C11—C16—C15 114.91 (14) H34B—C34—H34C 109.5
C11—C16—C17 123.53 (13) C36—C35—C38 107.50 (15)
C15—C16—C17 121.56 (14) C36—C35—C37 110.04 (14)
C18—C17—C20 107.50 (15) C38—C35—C37 107.12 (14)
C18—C17—C16 111.47 (13) C36—C35—C30 109.04 (14)
C20—C17—C16 111.28 (14) C38—C35—C30 111.76 (12)
C18—C17—C19 108.14 (15) C37—C35—C30 111.30 (14)
C20—C17—C19 109.01 (14) C35—C36—H36A 109.5
C16—C17—C19 109.35 (14) C35—C36—H36B 109.5
C17—C18—H18A 109.5 H36A—C36—H36B 109.5
C17—C18—H18B 109.5 C35—C36—H36C 109.5
H18A—C18—H18B 109.5 H36A—C36—H36C 109.5
C17—C18—H18C 109.5 H36B—C36—H36C 109.5
H18A—C18—H18C 109.5 C35—C37—H37A 109.5
H18B—C18—H18C 109.5 C35—C37—H37B 109.5
C17—C19—H19A 109.5 H37A—C37—H37B 109.5
C17—C19—H19B 109.5 C35—C37—H37C 109.5
H19A—C19—H19B 109.5 H37A—C37—H37C 109.5
C17—C19—H19C 109.5 H37B—C37—H37C 109.5
H19A—C19—H19C 109.5 C35—C38—H38A 109.5
H19B—C19—H19C 109.5 C35—C38—H38B 109.5
C17—C20—H20A 109.5 H38A—C38—H38B 109.5
C17—C20—H20B 109.5 C35—C38—H38C 109.5
H20A—C20—H20B 109.5 H38A—C38—H38C 109.5
C17—C20—H20C 109.5 H38B—C38—H38C 109.5
H20A—C20—H20C 109.5 C7—O1—C11 118.38 (12)
H20B—C20—H20C 109.5 C6—O2—C25 120.00 (12)
C24B—C21—C24A 135.6 (7) C21—C22A—H22A 109.5
C24B—C21—C23B 117.8 (9) C21—C22A—H22B 109.5
C24A—C21—C23B 27.0 (4) C21—C22A—H22C 109.5
C24B—C21—C23A 72.6 (9) C21—C23A—H23A 109.5
C24A—C21—C23A 112.7 (3) C21—C23A—H23B 109.5
C23B—C21—C23A 133.6 (5) C21—C23A—H23C 109.5
C24B—C21—C14 110.0 (5) C21—C24A—H24A 109.5
C24A—C21—C14 109.31 (17) C21—C24A—H24B 109.5
C23B—C21—C14 108.7 (5) C21—C24A—H24C 109.5
C23A—C21—C14 108.60 (16) C21—C22B—H22D 109.5
C24B—C21—C22A 36.7 (9) C21—C22B—H22E 109.5
C24A—C21—C22A 108.2 (2) H22D—C22B—H22E 109.5
C23B—C21—C22A 84.1 (5) C21—C22B—H22F 109.5
C23A—C21—C22A 106.40 (19) H22D—C22B—H22F 109.5
C14—C21—C22A 111.68 (16) H22E—C22B—H22F 109.5
C24B—C21—C22B 108.7 (8) C21—C23B—H23D 109.5
C24A—C21—C22B 75.0 (5) C21—C23B—H23E 109.5
C23B—C21—C22B 100.4 (6) H23D—C23B—H23E 109.5
C23A—C21—C22B 40.0 (5) C21—C23B—H23F 109.5
C14—C21—C22B 110.8 (4) H23D—C23B—H23F 109.5
C22A—C21—C22B 133.0 (4) H23E—C23B—H23F 109.5
C26—C25—C30 122.53 (13) C21—C24B—H24D 109.5
C26—C25—O2 117.88 (14) C21—C24B—H24E 109.5
C30—C25—O2 119.43 (13) H24D—C24B—H24E 109.5
C27—C26—C25 119.90 (15) C21—C24B—H24F 109.5
C27—C26—H26 120 H24D—C24B—H24F 109.5
C25—C26—H26 120 H24E—C24B—H24F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C19—H19B···O1 0.96 2.5 3.117 (2) 122
C20—H20A···O1 0.96 2.32 2.982 (3) 125
C36—H36B···O2 0.96 2.52 3.122 (3) 121
C37—H37B···O2 0.96 2.29 2.966 (2) 127
C22A—H22A···N2i 0.96 2.59 3.535 (4) 170

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2003).

References

  1. Brandenberg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dinçer, M., Özdemir, N., Akdemir, N., Özdil, M., Ağar, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o896–o898.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Kartal, A., Albayrak, Ç., Ağar, A., Ocak Ískeleli, N. & Erdönmez, A. (2006). Acta Cryst. E62, o2720–o2721.
  6. Lenznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanine: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim, New York: VCH Publishers Inc.
  7. McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
  8. Petek, H., Akdemir, N., Ağar, E., Özil, M. & Şenel, İ. (2004). Acta Cryst. E60, o1105–o1106.
  9. Şahin, O., Büyükgüngör, O., Şaşmaz, S. & Kantar, C. (2007). Acta Cryst. E63, o4205. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wöhrle, D. (2001). Macromol. Rapid Commun. 22, 68–97.
  12. Wu, X., Jiang, J. & Zhang, X. (2010). Acta Cryst. E66, o795. [DOI] [PMC free article] [PubMed]
  13. Yazıcı, S., Akdemir, N., Ağar, E., Özil, M., Şenel, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1119–o1120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006118/lr2003sup1.cif

e-67-0o705-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006118/lr2003Isup2.hkl

e-67-0o705-Isup2.hkl (373.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES