Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o632. doi: 10.1107/S1600536811004685

3-Iodo-2-methyl-1-phenyl­sulfonyl-1H-indole

C Ramathilagam a, Velu Saravanan b, A K Mohanakrishnan b, G Chakkaravarthi c, P R Umarani d, V Manivannan e,*
PMCID: PMC3051985  PMID: 21522386

Abstract

In the title compound, C15H12INO2S, the sulfonyl-bound phenyl ring forms a dihedral angle 82.84 (9)° with the indole ring system. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond. The crystal structure exhibits weak inter­molecular C—H⋯π inter­actions and π–π inter­actions between the indole groups [centroid–centroid distance between the five-membered and six-membered rings of the indole group = 3.7617 (18) Å].

Related literature

For the biological properties of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).graphic file with name e-67-0o632-scheme1.jpg

Experimental

Crystal data

  • C15H12INO2S

  • M r = 397.22

  • Monoclinic, Inline graphic

  • a = 10.7068 (3) Å

  • b = 16.2670 (4) Å

  • c = 8.5147 (2) Å

  • β = 104.540 (1)°

  • V = 1435.49 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.536, T max = 0.648

  • 21249 measured reflections

  • 5276 independent reflections

  • 3696 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.144

  • S = 1.06

  • 5276 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.56 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004685/gk2346sup1.cif

e-67-0o632-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004685/gk2346Isup2.hkl

e-67-0o632-Isup2.hkl (253.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.29 2.871 (4) 120
C4—H4⋯Cg3i 0.93 2.65 3.517 (5) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

CR wishes to acknowledge AMET University management, India, for their kind support.

supplementary crystallographic information

Comment

Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. The geometric parameters of the title molecule (Fig. 1) agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring makes the dihedral angle of 82.84 (9)° with the indole ring system. The sum of the bond angles around N1 [359.4 (2)°] indicates that N1 atom is sp2 hybridized. The molecular structure is stabilized by weak intramolecular C—H···O hydrogen bond. The crystal structure exhibits weak intermolecular C—H···π (Table 1) and π–π interactions [Cg1···Cg3 (1 - x,-y,1 - z) 3.7617 (18) Å; Cg1 and Cg3 are the centroids of the rings N1/C7/C8/C9/C14 and C9—C14, respectively].

Experimental

3-Iodo-2-methylindole (5 g,0.02 mmole) was dissolved in distilled benzene (100 ml).To this, benzenesulfonyl chloride(3.23 ml,0.025 mmol) and 60% aqueous NaOH solution (40 g in 67.0 ml) were added along with tetrabutyl ammonium hydrogensulfate (1.0 g). This two phase system was stirred at room temperature for 2 h. It was then diluted with water (200 ml) and the organic layer was separated. The aqueous layer was extracted with benzene (2x20 ml). The combined organic layer was dried(Na2SO4).The benzene was then removed completely and the crude product was recrystallized from methanol (m.p. 395–397 K).

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The components of the anisotropic displacement parameters in direction of the bond of I1 and C8 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Crystal packing viewed along the b axis.

Crystal data

C15H12INO2S F(000) = 776
Mr = 397.22 Dx = 1.838 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8510 reflections
a = 10.7068 (3) Å θ = 2.5–30.4°
b = 16.2670 (4) Å µ = 2.38 mm1
c = 8.5147 (2) Å T = 295 K
β = 104.540 (1)° Block, colourless
V = 1435.49 (6) Å3 0.30 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 5276 independent reflections
Radiation source: fine-focus sealed tube 3696 reflections with I > 2σ(I)
graphite Rint = 0.023
ω and φ scans θmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→16
Tmin = 0.536, Tmax = 0.648 k = −23→24
21249 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.987P] where P = (Fo2 + 2Fc2)/3
5276 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.94 e Å3
1 restraint Δρmin = −1.56 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8489 (3) 0.14775 (16) 0.8788 (3) 0.0350 (5)
C2 0.8848 (4) 0.0951 (2) 1.0097 (4) 0.0495 (7)
H2 0.8265 0.0574 1.0324 0.059*
C3 1.0098 (4) 0.0998 (3) 1.1063 (5) 0.0638 (10)
H3 1.0365 0.0646 1.1944 0.077*
C4 1.0940 (4) 0.1562 (3) 1.0722 (5) 0.0643 (11)
H4 1.1778 0.1587 1.1375 0.077*
C5 1.0569 (3) 0.2092 (3) 0.9431 (5) 0.0556 (9)
H5 1.1149 0.2478 0.9227 0.067*
C6 0.9331 (3) 0.20492 (19) 0.8436 (4) 0.0433 (6)
H6 0.9073 0.2398 0.7549 0.052*
C7 0.7397 (3) 0.04833 (16) 0.5161 (3) 0.0329 (5)
C8 0.7262 (3) −0.03190 (16) 0.4724 (3) 0.0336 (5)
C9 0.6619 (2) −0.07527 (14) 0.5739 (3) 0.0297 (4)
C10 0.6230 (3) −0.15718 (17) 0.5777 (4) 0.0387 (6)
H10 0.6379 −0.1950 0.5025 0.046*
C11 0.5626 (3) −0.1805 (2) 0.6940 (4) 0.0478 (7)
H11 0.5362 −0.2348 0.6978 0.057*
C12 0.5402 (3) −0.1249 (2) 0.8061 (4) 0.0486 (7)
H12 0.5005 −0.1429 0.8852 0.058*
C13 0.5753 (3) −0.0428 (2) 0.8043 (4) 0.0435 (6)
H13 0.5585 −0.0055 0.8792 0.052*
C14 0.6367 (2) −0.01869 (15) 0.6857 (3) 0.0309 (5)
C15 0.7993 (4) 0.1168 (2) 0.4432 (5) 0.0509 (7)
H15A 0.8230 0.0972 0.3483 0.076*
H15B 0.8748 0.1362 0.5208 0.076*
H15C 0.7383 0.1609 0.4137 0.076*
N1 0.6822 (2) 0.05838 (13) 0.6481 (3) 0.0335 (4)
O1 0.6046 (2) 0.13114 (15) 0.8577 (4) 0.0552 (6)
O2 0.6719 (2) 0.21172 (13) 0.6496 (3) 0.0533 (6)
S1 0.68958 (6) 0.14402 (4) 0.75748 (10) 0.03797 (16)
I1 0.78752 (3) −0.084909 (16) 0.28650 (3) 0.06383 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0355 (12) 0.0307 (11) 0.0379 (13) 0.0043 (9) 0.0078 (10) −0.0078 (10)
C2 0.0583 (19) 0.0487 (17) 0.0391 (15) 0.0014 (14) 0.0076 (14) 0.0020 (12)
C3 0.071 (3) 0.070 (2) 0.0421 (18) 0.020 (2) −0.0008 (17) 0.0018 (17)
C4 0.0421 (17) 0.087 (3) 0.056 (2) 0.0121 (17) −0.0013 (15) −0.025 (2)
C5 0.0409 (16) 0.065 (2) 0.061 (2) −0.0088 (14) 0.0131 (14) −0.0205 (18)
C6 0.0436 (15) 0.0406 (14) 0.0458 (15) −0.0039 (11) 0.0117 (12) −0.0062 (12)
C7 0.0368 (12) 0.0290 (11) 0.0337 (12) −0.0026 (9) 0.0107 (9) 0.0026 (9)
C8 0.0411 (13) 0.0293 (11) 0.0303 (11) −0.0013 (9) 0.0088 (9) 0.0012 (8)
C9 0.0297 (11) 0.0280 (11) 0.0287 (11) −0.0016 (8) 0.0025 (8) 0.0014 (8)
C10 0.0444 (14) 0.0295 (12) 0.0376 (13) −0.0067 (10) 0.0021 (11) −0.0005 (10)
C11 0.0440 (15) 0.0395 (15) 0.0552 (17) −0.0157 (12) 0.0036 (13) 0.0100 (13)
C12 0.0407 (15) 0.0578 (19) 0.0489 (17) −0.0109 (13) 0.0143 (12) 0.0130 (15)
C13 0.0415 (14) 0.0501 (16) 0.0427 (15) −0.0046 (12) 0.0178 (12) 0.0006 (12)
C14 0.0272 (10) 0.0321 (11) 0.0326 (11) −0.0008 (8) 0.0058 (9) 0.0005 (9)
C15 0.064 (2) 0.0396 (15) 0.0548 (18) −0.0110 (14) 0.0261 (15) 0.0073 (14)
N1 0.0389 (11) 0.0255 (9) 0.0373 (11) −0.0027 (8) 0.0120 (9) −0.0033 (8)
O1 0.0433 (11) 0.0543 (13) 0.0750 (17) 0.0013 (10) 0.0278 (11) −0.0227 (12)
O2 0.0528 (13) 0.0308 (10) 0.0659 (15) 0.0113 (9) −0.0047 (11) 0.0013 (10)
S1 0.0335 (3) 0.0299 (3) 0.0491 (4) 0.0048 (2) 0.0078 (3) −0.0079 (3)
I1 0.0954 (2) 0.05448 (17) 0.05233 (17) 0.00090 (11) 0.03859 (15) −0.00527 (9)

Geometric parameters (Å, °)

C1—C6 1.380 (4) C9—C14 1.399 (4)
C1—C2 1.381 (4) C9—C10 1.399 (3)
C1—S1 1.759 (3) C10—C11 1.365 (5)
C2—C3 1.386 (6) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.379 (5)
C3—C4 1.367 (7) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.387 (5)
C4—C5 1.375 (6) C12—H12 0.9300
C4—H4 0.9300 C13—C14 1.392 (4)
C5—C6 1.384 (5) C13—H13 0.9300
C5—H5 0.9300 C14—N1 1.411 (3)
C6—H6 0.9300 C15—H15A 0.9600
C7—C8 1.355 (4) C15—H15B 0.9600
C7—N1 1.420 (3) C15—H15C 0.9600
C7—C15 1.493 (4) N1—S1 1.667 (2)
C8—C9 1.421 (4) O1—S1 1.411 (3)
C8—I1 2.050 (3) O2—S1 1.416 (3)
C6—C1—C2 121.9 (3) C9—C10—H10 120.7
C6—C1—S1 119.1 (2) C10—C11—C12 121.0 (3)
C2—C1—S1 119.0 (2) C10—C11—H11 119.5
C1—C2—C3 118.5 (4) C12—C11—H11 119.5
C1—C2—H2 120.8 C11—C12—C13 122.0 (3)
C3—C2—H2 120.8 C11—C12—H12 119.0
C4—C3—C2 120.0 (4) C13—C12—H12 119.0
C4—C3—H3 120.0 C12—C13—C14 117.2 (3)
C2—C3—H3 120.0 C12—C13—H13 121.4
C3—C4—C5 121.1 (3) C14—C13—H13 121.4
C3—C4—H4 119.4 C13—C14—C9 121.0 (2)
C5—C4—H4 119.4 C13—C14—N1 132.0 (3)
C4—C5—C6 119.9 (4) C9—C14—N1 107.0 (2)
C4—C5—H5 120.0 C7—C15—H15A 109.5
C6—C5—H5 120.0 C7—C15—H15B 109.5
C1—C6—C5 118.6 (3) H15A—C15—H15B 109.5
C1—C6—H6 120.7 C7—C15—H15C 109.5
C5—C6—H6 120.7 H15A—C15—H15C 109.5
C8—C7—N1 106.9 (2) H15B—C15—H15C 109.5
C8—C7—C15 129.1 (3) C14—N1—C7 108.7 (2)
N1—C7—C15 123.9 (3) C14—N1—S1 125.89 (19)
C7—C8—C9 110.2 (2) C7—N1—S1 124.72 (18)
C7—C8—I1 125.8 (2) O1—S1—O2 120.43 (16)
C9—C8—I1 124.00 (18) O1—S1—N1 105.47 (13)
C14—C9—C10 120.1 (2) O2—S1—N1 107.93 (14)
C14—C9—C8 107.1 (2) O1—S1—C1 109.09 (15)
C10—C9—C8 132.8 (3) O2—S1—C1 107.83 (14)
C11—C10—C9 118.7 (3) N1—S1—C1 105.06 (12)
C11—C10—H10 120.7
C6—C1—C2—C3 −0.7 (5) C8—C9—C14—C13 −179.2 (3)
S1—C1—C2—C3 −178.7 (3) C10—C9—C14—N1 −177.8 (2)
C1—C2—C3—C4 0.7 (6) C8—C9—C14—N1 1.6 (3)
C2—C3—C4—C5 0.3 (6) C13—C14—N1—C7 179.0 (3)
C3—C4—C5—C6 −1.1 (6) C9—C14—N1—C7 −2.0 (3)
C2—C1—C6—C5 −0.1 (5) C13—C14—N1—S1 8.1 (4)
S1—C1—C6—C5 177.9 (2) C9—C14—N1—S1 −172.91 (19)
C4—C5—C6—C1 1.0 (5) C8—C7—N1—C14 1.6 (3)
N1—C7—C8—C9 −0.5 (3) C15—C7—N1—C14 −179.7 (3)
C15—C7—C8—C9 −179.2 (3) C8—C7—N1—S1 172.6 (2)
N1—C7—C8—I1 179.13 (18) C15—C7—N1—S1 −8.7 (4)
C15—C7—C8—I1 0.5 (5) C14—N1—S1—O1 −19.0 (3)
C7—C8—C9—C14 −0.7 (3) C7—N1—S1—O1 171.5 (2)
I1—C8—C9—C14 179.62 (18) C14—N1—S1—O2 −149.0 (2)
C7—C8—C9—C10 178.6 (3) C7—N1—S1—O2 41.5 (3)
I1—C8—C9—C10 −1.1 (4) C14—N1—S1—C1 96.2 (2)
C14—C9—C10—C11 −1.3 (4) C7—N1—S1—C1 −73.3 (2)
C8—C9—C10—C11 179.5 (3) C6—C1—S1—O1 −139.6 (2)
C9—C10—C11—C12 0.0 (5) C2—C1—S1—O1 38.4 (3)
C10—C11—C12—C13 1.3 (5) C6—C1—S1—O2 −7.2 (3)
C11—C12—C13—C14 −1.1 (5) C2—C1—S1—O2 170.8 (3)
C12—C13—C14—C9 −0.2 (4) C6—C1—S1—N1 107.7 (2)
C12—C13—C14—N1 178.7 (3) C2—C1—S1—N1 −74.2 (3)
C10—C9—C14—C13 1.4 (4)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.
D—H···A D—H H···A D···A D—H···A
C13—H13···O1 0.93 2.29 2.871 (4) 120
C4—H4···Cg3i 0.93 2.65 3.517 (5) 156

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2346).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917. [DOI] [PubMed]
  3. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542. [DOI] [PMC free article] [PubMed]
  4. Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.
  5. Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004685/gk2346sup1.cif

e-67-0o632-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004685/gk2346Isup2.hkl

e-67-0o632-Isup2.hkl (253.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES