Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o656. doi: 10.1107/S1600536811005216

(5S)-3-Chloro-5-[(1R,2S,5R)-2-isopropyl-5-methyl­cyclo­hex­yloxy]-4-(4-methyl­piperidin-1-yl)furan-2(5H)-one

Xiao-Mei Wang a, Jian-Hua Fu a, Song-Liang Cai a, Zhao-Yang Wang a,*
PMCID: PMC3051989  PMID: 21522408

Abstract

The title compound, C20H32ClNO3, was obtained via a tandem asymmetric Michael addition–elimination reaction of (5S)-3,4-dichloro-5-(l-menth­yloxy)furan-2(5H)-one and 4-methyl­piperidine in the presence of potassium fluoride. The furan­one ring is approximately planar [maximum atomic deviation = 0.022 (2) Å] while the cyclo­hexane ring adopts a chair conformation. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a derivative of 4-amino-2(5H)-furan­one. For the biological activity of 4-amino-2(5H)-furan­ones, see: Lattmann et al. (2005); Prasad & Gandi (2010); Steenackers et al. (2010). For asymmetric Michael addition reactions of 2(5H)-furan­one and for the synthesis of the title compound, see: Song et al. (2009).graphic file with name e-67-0o656-scheme1.jpg

Experimental

Crystal data

  • C20H32ClNO3

  • M r = 369.92

  • Orthorhombic, Inline graphic

  • a = 9.187 (5) Å

  • b = 9.248 (5) Å

  • c = 24.987 (12) Å

  • V = 2122.9 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.28 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.940, T max = 0.947

  • 12264 measured reflections

  • 4505 independent reflections

  • 2620 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.112

  • S = 1.01

  • 4505 reflections

  • 231 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), 1921 Friedel pairs

  • Flack parameter: 0.10 (8)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005216/go2003sup1.cif

e-67-0o656-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005216/go2003Isup2.hkl

e-67-0o656-Isup2.hkl (220.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.98 2.44 3.376 (3) 160
C18—H18B⋯O2ii 0.97 2.54 3.393 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

supplementary crystallographic information

Comment

2(5H)-furanones are heterocyclic carbonyl compounds, which are widespread in natural and in synthetic products (Prasad & Gandi, 2010; Steenackers et al., 2010). 5-menthyloxy-3,4-dihalo-2(5H)-furanones, being a kind of chiral synthons, are widely used in asymmetric Michael addition-elimination tandem reactions (Song et al., 2009). 4-amino-2(5H)-furanones show an antibiotic activity against Staphylococcus aureus (Lattmann et al., 2005).

We are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 4-methylpiperidine in the presence of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound, which has four chiral centers (C4(S), C5(R), C6(S), C9(R)) contains a five-membered furanone ring and a six-membered cyclohexane ring connected each other via C4—O3—C5 ether bond. The furanone ring of C4—O1—C1—C2—C3 is approximately planar, whereas a six-membered cyclohexane ring displays a chair conformation. At the same time, the furanone ring is connected to piperidine heterocycle via C3—N1 bond.

Experimental

The precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran (2.0 mL) under nitrogen atmosphere, tetrahydrofuran solution of 4-methylpiperidine (2.0 mmol) was added. The reaction was carried out by stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.5685 g (76.8%).

Refinement

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the crystal packing.

Crystal data

C20H32ClNO3 F(000) = 800
Mr = 369.92 Dx = 1.157 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2408 reflections
a = 9.187 (5) Å θ = 2.7–19.8°
b = 9.248 (5) Å µ = 0.20 mm1
c = 24.987 (12) Å T = 298 K
V = 2122.9 (19) Å3 Block, colourless
Z = 4 0.32 × 0.30 × 0.28 mm

Data collection

Bruker APEXII area-detector diffractometer 4505 independent reflections
Radiation source: fine-focus sealed tube 2620 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 26.8°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.940, Tmax = 0.947 k = −11→10
12264 measured reflections l = −31→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.001P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4505 reflections Δρmax = 0.13 e Å3
231 parameters Δρmin = −0.16 e Å3
24 restraints Absolute structure: Flack (1983), 1921 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.10 (8)

Special details

Experimental. Data for (I): [α]20°D = 96.2° (c 0.600, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.769 (3H, d, J = 6.8 Hz, CH3), 0.831-0.934 (7H, m, CH, 2CH3), 0.981-1.166 (5H, m, CH2, CH3), 1.212-1.756 (9H, m, 3CH, 3CH2), 2.160-2.271 (2H, m, CH2), 2.974-3.090 (2H, m, CH2), 3.529-3.581 (1H, m, CH), 4.079-4.335 (2H, m, CH2), 5.762 (1H, s, CH), ESI-MS, m/z (%): Calcd for C20H32ClNO3+([M+H]+): 370.21(100.0), 372.20(32.0), Found: 370.29 (45.0), 372.33(15.0).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.60861 (9) −0.13528 (9) 0.17373 (3) 0.0923 (3)
C3 0.7320 (3) 0.0841 (3) 0.23600 (8) 0.0557 (6)
C4 0.8425 (3) 0.0853 (3) 0.28119 (8) 0.0578 (6)
H4 0.9252 0.1479 0.2725 0.069*
C2 0.7123 (3) −0.0578 (3) 0.22267 (9) 0.0621 (7)
C1 0.8084 (3) −0.1478 (4) 0.25291 (10) 0.0681 (7)
C5 0.8604 (3) 0.1414 (3) 0.37500 (8) 0.0621 (6)
H5 0.9630 0.1522 0.3650 0.074*
C6 0.8125 (3) 0.2733 (3) 0.40633 (9) 0.0702 (8)
H6 0.7085 0.2604 0.4136 0.084*
C7 0.8883 (4) 0.2751 (4) 0.46068 (10) 0.0956 (9)
H7A 0.9919 0.2897 0.4554 0.115*
H7B 0.8517 0.3558 0.4815 0.115*
C10 0.8414 (4) 0.0021 (4) 0.40651 (11) 0.0960 (11)
H10A 0.8791 −0.0780 0.3856 0.115*
H10B 0.7385 −0.0149 0.4124 0.115*
C11 0.8269 (4) 0.4160 (4) 0.37596 (11) 0.0878 (10)
H11 0.7799 0.4016 0.3412 0.105*
C9 0.9194 (5) 0.0065 (4) 0.46042 (11) 0.1115 (13)
H9 1.0238 0.0194 0.4538 0.134*
C8 0.8648 (6) 0.1363 (5) 0.49177 (11) 0.1279 (14)
H8A 0.7619 0.1245 0.4993 0.153*
H8B 0.9160 0.1419 0.5257 0.153*
C13 0.7463 (5) 0.5387 (4) 0.40314 (16) 0.1393 (16)
H13A 0.7508 0.6236 0.3811 0.209*
H13B 0.7906 0.5586 0.4371 0.209*
H13C 0.6465 0.5117 0.4084 0.209*
C14 0.9795 (6) 0.4590 (5) 0.36473 (16) 0.1399 (16)
H14A 1.0262 0.4871 0.3975 0.210*
H14B 0.9802 0.5388 0.3402 0.210*
H14C 1.0308 0.3788 0.3493 0.210*
C18 0.7583 (3) 0.4266 (3) 0.17613 (10) 0.0709 (7)
H18A 0.8318 0.3755 0.1557 0.085*
H18B 0.7946 0.5232 0.1833 0.085*
C19 0.7345 (3) 0.3499 (3) 0.22804 (9) 0.0711 (7)
H19A 0.8266 0.3401 0.2467 0.085*
H19B 0.6696 0.4065 0.2504 0.085*
C16 0.5572 (3) 0.2862 (3) 0.13592 (10) 0.0750 (8)
H16A 0.4646 0.2930 0.1174 0.090*
H16B 0.6226 0.2290 0.1140 0.090*
C15 0.5354 (3) 0.2122 (3) 0.18891 (9) 0.0691 (7)
H15A 0.4628 0.2643 0.2095 0.083*
H15B 0.4996 0.1149 0.1830 0.083*
C17 0.6204 (3) 0.4374 (3) 0.14313 (10) 0.0755 (8)
H17 0.5498 0.4957 0.1631 0.091*
C20 0.6467 (4) 0.5099 (4) 0.08935 (13) 0.1153 (13)
H20A 0.5553 0.5251 0.0716 0.173*
H20B 0.7073 0.4490 0.0676 0.173*
H20C 0.6941 0.6012 0.0948 0.173*
N1 0.6712 (2) 0.2061 (3) 0.21914 (8) 0.0635 (6)
O3 0.77190 (15) 0.13329 (19) 0.32666 (5) 0.0606 (4)
O1 0.88796 (18) −0.0624 (2) 0.28665 (6) 0.0692 (5)
O2 0.8292 (2) −0.2765 (3) 0.25154 (9) 0.0958 (7)
C12 0.8980 (9) −0.1363 (5) 0.49012 (16) 0.193 (2)
H12A 0.7961 −0.1514 0.4966 0.290*
H12B 0.9489 −0.1329 0.5237 0.290*
H12C 0.9355 −0.2142 0.4688 0.290*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0966 (5) 0.0925 (6) 0.0878 (5) −0.0040 (5) −0.0238 (4) −0.0303 (4)
C3 0.0532 (14) 0.0716 (19) 0.0423 (11) −0.0039 (13) 0.0037 (10) −0.0047 (12)
C4 0.0566 (14) 0.0663 (19) 0.0507 (13) −0.0053 (12) −0.0014 (11) −0.0038 (12)
C2 0.0612 (16) 0.072 (2) 0.0534 (13) −0.0043 (14) −0.0029 (12) −0.0094 (13)
C1 0.0596 (15) 0.077 (2) 0.0677 (16) 0.0055 (16) 0.0053 (13) −0.0158 (17)
C5 0.0649 (16) 0.0735 (17) 0.0478 (12) −0.0011 (14) −0.0084 (11) −0.0026 (13)
C6 0.0673 (16) 0.092 (2) 0.0511 (13) 0.0086 (15) −0.0004 (12) −0.0171 (15)
C7 0.132 (3) 0.100 (2) 0.0542 (15) −0.003 (2) −0.0164 (17) −0.0124 (17)
C10 0.132 (3) 0.092 (2) 0.0633 (16) −0.020 (2) −0.0195 (18) 0.0117 (17)
C11 0.126 (3) 0.078 (2) 0.0596 (16) 0.022 (2) −0.0152 (17) −0.0160 (16)
C9 0.173 (3) 0.094 (3) 0.0678 (18) −0.024 (3) −0.037 (2) 0.0227 (19)
C8 0.183 (4) 0.150 (3) 0.0514 (16) −0.022 (3) −0.016 (2) 0.002 (2)
C13 0.161 (4) 0.120 (3) 0.137 (3) 0.055 (3) −0.042 (3) −0.052 (3)
C14 0.165 (4) 0.103 (3) 0.152 (3) 0.002 (3) 0.053 (3) 0.013 (3)
C18 0.0791 (18) 0.0660 (18) 0.0678 (15) −0.0153 (14) −0.0104 (14) 0.0016 (14)
C19 0.0835 (19) 0.0686 (19) 0.0610 (15) −0.0105 (16) −0.0154 (14) −0.0090 (14)
C16 0.0752 (18) 0.084 (2) 0.0663 (16) −0.0017 (16) −0.0243 (13) −0.0002 (16)
C15 0.0592 (15) 0.0720 (18) 0.0760 (17) −0.0043 (13) −0.0121 (13) −0.0002 (15)
C17 0.087 (2) 0.0695 (19) 0.0700 (15) −0.0068 (17) −0.0108 (15) 0.0073 (15)
C20 0.144 (3) 0.112 (3) 0.091 (2) −0.029 (2) −0.022 (2) 0.040 (2)
N1 0.0670 (13) 0.0634 (14) 0.0601 (11) −0.0079 (12) −0.0147 (10) 0.0039 (11)
O3 0.0557 (9) 0.0823 (12) 0.0436 (8) 0.0034 (9) −0.0045 (7) −0.0074 (9)
O1 0.0577 (10) 0.0779 (13) 0.0719 (10) 0.0108 (10) −0.0093 (9) −0.0086 (10)
O2 0.0908 (14) 0.0731 (15) 0.1237 (17) 0.0195 (12) −0.0096 (12) −0.0176 (14)
C12 0.339 (7) 0.136 (4) 0.105 (3) −0.040 (5) −0.072 (4) 0.049 (3)

Geometric parameters (Å, °)

Cl1—C2 1.708 (2) C8—H8B 0.9700
C3—N1 1.327 (3) C13—H13A 0.9600
C3—C2 1.366 (4) C13—H13B 0.9600
C3—C4 1.519 (3) C13—H13C 0.9600
C4—O3 1.381 (3) C14—H14A 0.9600
C4—O1 1.435 (3) C14—H14B 0.9600
C4—H4 0.9800 C14—H14C 0.9600
C2—C1 1.429 (4) C18—C19 1.495 (4)
C1—O2 1.206 (4) C18—C17 1.514 (4)
C1—O1 1.367 (3) C18—H18A 0.9700
C5—O3 1.458 (3) C18—H18B 0.9700
C5—C6 1.514 (4) C19—N1 1.468 (3)
C5—C10 1.520 (4) C19—H19A 0.9700
C5—H5 0.9800 C19—H19B 0.9700
C6—C7 1.526 (4) C16—C15 1.504 (3)
C6—C11 1.529 (4) C16—C17 1.525 (4)
C6—H6 0.9800 C16—H16A 0.9700
C7—C8 1.516 (4) C16—H16B 0.9700
C7—H7A 0.9700 C15—N1 1.460 (3)
C7—H7B 0.9700 C15—H15A 0.9700
C10—C9 1.526 (4) C15—H15B 0.9700
C10—H10A 0.9700 C17—C20 1.521 (4)
C10—H10B 0.9700 C17—H17 0.9800
C11—C14 1.484 (5) C20—H20A 0.9600
C11—C13 1.516 (5) C20—H20B 0.9600
C11—H11 0.9800 C20—H20C 0.9600
C9—C8 1.519 (5) C12—H12A 0.9600
C9—C12 1.527 (5) C12—H12B 0.9600
C9—H9 0.9800 C12—H12C 0.9600
C8—H8A 0.9700
N1—C3—C2 133.1 (2) C11—C13—H13B 109.5
N1—C3—C4 120.7 (2) H13A—C13—H13B 109.5
C2—C3—C4 106.1 (2) C11—C13—H13C 109.5
O3—C4—O1 111.37 (19) H13A—C13—H13C 109.5
O3—C4—C3 107.47 (18) H13B—C13—H13C 109.5
O1—C4—C3 105.0 (2) C11—C14—H14A 109.5
O3—C4—H4 110.9 C11—C14—H14B 109.5
O1—C4—H4 110.9 H14A—C14—H14B 109.5
C3—C4—H4 110.9 C11—C14—H14C 109.5
C3—C2—C1 110.4 (2) H14A—C14—H14C 109.5
C3—C2—Cl1 130.7 (2) H14B—C14—H14C 109.5
C1—C2—Cl1 118.6 (2) C19—C18—C17 112.4 (2)
O2—C1—O1 120.2 (3) C19—C18—H18A 109.1
O2—C1—C2 131.1 (3) C17—C18—H18A 109.1
O1—C1—C2 108.7 (3) C19—C18—H18B 109.1
O3—C5—C6 107.9 (2) C17—C18—H18B 109.1
O3—C5—C10 108.7 (2) H18A—C18—H18B 107.9
C6—C5—C10 112.4 (2) N1—C19—C18 110.9 (2)
O3—C5—H5 109.2 N1—C19—H19A 109.5
C6—C5—H5 109.2 C18—C19—H19A 109.5
C10—C5—H5 109.2 N1—C19—H19B 109.5
C5—C6—C7 109.6 (2) C18—C19—H19B 109.5
C5—C6—C11 114.4 (2) H19A—C19—H19B 108.0
C7—C6—C11 113.1 (2) C15—C16—C17 111.3 (2)
C5—C6—H6 106.3 C15—C16—H16A 109.4
C7—C6—H6 106.3 C17—C16—H16A 109.4
C11—C6—H6 106.3 C15—C16—H16B 109.4
C8—C7—C6 112.4 (3) C17—C16—H16B 109.4
C8—C7—H7A 109.1 H16A—C16—H16B 108.0
C6—C7—H7A 109.1 N1—C15—C16 111.1 (2)
C8—C7—H7B 109.1 N1—C15—H15A 109.4
C6—C7—H7B 109.1 C16—C15—H15A 109.4
H7A—C7—H7B 107.8 N1—C15—H15B 109.4
C5—C10—C9 112.4 (3) C16—C15—H15B 109.4
C5—C10—H10A 109.1 H15A—C15—H15B 108.0
C9—C10—H10A 109.1 C18—C17—C20 112.2 (3)
C5—C10—H10B 109.1 C18—C17—C16 108.8 (2)
C9—C10—H10B 109.1 C20—C17—C16 111.1 (2)
H10A—C10—H10B 107.9 C18—C17—H17 108.2
C14—C11—C13 110.2 (4) C20—C17—H17 108.2
C14—C11—C6 114.0 (3) C16—C17—H17 108.2
C13—C11—C6 112.4 (3) C17—C20—H20A 109.5
C14—C11—H11 106.5 C17—C20—H20B 109.5
C13—C11—H11 106.5 H20A—C20—H20B 109.5
C6—C11—H11 106.5 C17—C20—H20C 109.5
C8—C9—C10 108.7 (3) H20A—C20—H20C 109.5
C8—C9—C12 112.9 (4) H20B—C20—H20C 109.5
C10—C9—C12 110.2 (3) C3—N1—C15 123.8 (2)
C8—C9—H9 108.3 C3—N1—C19 123.74 (19)
C10—C9—H9 108.3 C15—N1—C19 112.4 (2)
C12—C9—H9 108.3 C4—O3—C5 115.85 (16)
C7—C8—C9 111.0 (3) C1—O1—C4 109.6 (2)
C7—C8—H8A 109.4 C9—C12—H12A 109.5
C9—C8—H8A 109.4 C9—C12—H12B 109.5
C7—C8—H8B 109.4 H12A—C12—H12B 109.5
C9—C8—H8B 109.4 C9—C12—H12C 109.5
H8A—C8—H8B 108.0 H12A—C12—H12C 109.5
C11—C13—H13A 109.5 H12B—C12—H12C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.98 2.44 3.376 (3) 160
C18—H18B···O2ii 0.97 2.54 3.393 (4) 147

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2003).

References

  1. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Lattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919–921. [DOI] [PubMed]
  5. Prasad, K. R. & Gandi, V. R. (2010). Tetrahedron Asymmetry, 21, 275–276.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.
  9. Steenackers, H. P., Levin, J., Janssens, J. S., Weerdt, A. D., Balzarini, J., Vanderleyden, J., De Vos, D. E. & De Keersmaecker, S. C. (2010). Bioorg. Med. Chem. 18, 5224–5233. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005216/go2003sup1.cif

e-67-0o656-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005216/go2003Isup2.hkl

e-67-0o656-Isup2.hkl (220.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES