Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):m323–m324. doi: 10.1107/S1600536811004375

Dichlorido(3,5,5′-trimethyl-1,3′-bi-1H-pyrazole-κ2 N 2,N 2′)copper(II)

Lhoussaine El Ghayati a, Lahcen El Ammari b, Mohamed Labd Taha c, El Mostafa Tjiou a,*
PMCID: PMC3051990  PMID: 21522255

Abstract

In the title complex, [CuCl2(C9H12N4)], the CuII atom exhibits a distorted square-planar coordination geometry involving two chloride ions and two N-atom donors from the bipyrazole ligand. The chelate ring including the CuII atom is essentially planar, with a maximum deviation of 0.0181 (17) Å for one of the coordinated N atoms. This plane forms a dihedral angle of 30.75 (6)° with the CuCl2 plane. In the crystal, each pair of adjacent mol­ecules is linked into a centrosymmetric dimer by N—H⋯Cl hydrogen bonds. The crystal structure is stabilized by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds and weak slipped π–π stacking inter­actions between symmetry-related mol­ecules, with an inter­planar separation of 3.439 (19) Å and a centroid–centroid distance of 3.581 (19) Å.

Related literature

For the preparation of biheterocyclic complexes, see: Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010); Cohen-Fernandez et al. (1979); Tarrago et al. (1980). For applications of transition metal complexes with biheterocyclic ligands, see: Bekhit & Abdel-Aziem (2004); Benabdallah et al. (2007); Das & Mittra (1978); Sendai et al. (2000); Attayibat et al. (2006). graphic file with name e-67-0m323-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C9H12N4)]

  • M r = 310.67

  • Triclinic, Inline graphic

  • a = 8.5475 (2) Å

  • b = 9.3475 (3) Å

  • c = 9.3512 (3) Å

  • α = 66.379 (2)°

  • β = 62.876 (1)°

  • γ = 78.065 (2)°

  • V = 608.99 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 296 K

  • 0.26 × 0.16 × 0.08 mm

Data collection

  • Bruker X8 APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.661, T max = 0.838

  • 19588 measured reflections

  • 5535 independent reflections

  • 4468 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.096

  • S = 1.04

  • 5535 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004375/fj2386sup1.cif

e-67-0m323-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004375/fj2386Isup2.hkl

e-67-0m323-Isup2.hkl (271KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 2.38 3.1587 (12) 150
C7—H7B⋯N1ii 0.96 2.61 3.483 (2) 151
C9—H9B⋯Cl1iii 0.96 2.79 3.5377 (19) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

The 1,1'-bipyrazoles and 3,4'-bipyrazoles have been the subject of several studies (Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010). A particular interest has been brought to 1,3'-bipyrazoles which present, contrary to those cited above, a carbon– nitrogen bond between the two pyrazoles (Cohen-Fernandez et al. (1979); Tarrago et al. 1980).

The ability of biheterocycles to form biochemically interesting complexes, with transition metals has prompted several researchers to test them in some areas: medicine (Bekhit & Abdel-Aziem, (2004); Sendai et al. 2000), agriculture (Das & Mittra, 1978) corrosion (Benabdallah et al. 2007) and as extractors of metals such as Cu2+, Cd2+ and Pb2+ (Attayibat et al. 2006). To better understand the interactions between the bipyrazoles and transition metals we have chosen to study some copper complex of bipyrazole possessing a Carbone-nitrogen bond between the two pyrazolics cycles.

The title molecule is built up from two interconnected five-membered rings as schown in Fig.1. Each of the two heterocyclic rings and the linked carbon are almost planar with a maximum deviations of -0.0101 (15) Å and -0.0107 (15) Å from N1 and N3 respectively. The dihedral angle between them is about 3.80 (9)°. The CuII ion is surrounded by two nitrogen atoms belonging to the organic molecule and two chlorides which form a very distorted square planar.The values of adjacent angles around the CuII ions are in the range 78.14 (5)–98.297 (16)° and 151.99 (4)–161.72 (4)° (Table 1), which confirms the distorted square-planar geometry. The chelate ring (N1—N2—C4—N3) and the copper atom are almost planar with a maximum deviations of 0.0181 (17) Å from C4 and build dihedral angle of 30.75 (6)° with the plane through the three ions: CuII+ and two Cl-.

In the crystal, each pair of molecules linked by N4—H4···Cl1 hydrogen bonds form a dimer as schown in Fig.2 and table 2. The structure is held together by weak slipped π-π stacking between symmetry related molecules (N3—N4—C4—C5—C6 rings) with interplanar distance of 3.439 (19) Å and centroid to centroid vector of 3.581 (19) Å (Fig. 2). The crystal structure is also stabilized by an intermolecular C7—H7B···N1 and C9—H9B···Cl1 hydrogen bonds as schown in Fig.2 and Table 2.

Experimental

The title compound was synthesized by mixing a solution of bipyrazole in methanol and an aqueous solution of cupric chloride with ligand/metal ratio of 2. Heating was maintaind for few minutes.Then a pinch of NaCl was added and heating was continued until the solution became clear. After a long time, green crystals were collected and dried over P2O5.

Refinement

The C-bound H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 for methylene and methyl. Reflections 2–43 110, 250, 3–21, 114 and 1–31 were omitted because of the large difference between their calculated and observed intensities.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram showing hydrogen-bonded (dashed lines) complex molecules and distance between centroids.

Crystal data

[CuCl2(C9H12N4)] Z = 2
Mr = 310.67 F(000) = 314
Triclinic, P1 Dx = 1.694 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5475 (2) Å Cell parameters from 5535 reflections
b = 9.3475 (3) Å θ = 2.9–35.5°
c = 9.3512 (3) Å µ = 2.21 mm1
α = 66.379 (2)° T = 296 K
β = 62.876 (1)° Prism, clear green
γ = 78.065 (2)° 0.26 × 0.16 × 0.08 mm
V = 608.99 (3) Å3

Data collection

Bruker X8 APEXII area-detector diffractometer 5535 independent reflections
Radiation source: fine-focus sealed tube 4468 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 35.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→13
Tmin = 0.661, Tmax = 0.838 k = −15→15
19588 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.1288P] where P = (Fo2 + 2Fc2)/3
5535 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.15845 (2) 0.378309 (18) 0.126139 (19) 0.03371 (6)
Cl1 0.32602 (6) 0.27845 (5) −0.07595 (5) 0.04576 (10)
Cl2 0.17371 (7) 0.63132 (4) −0.04198 (5) 0.05123 (11)
N1 0.19189 (18) 0.19578 (13) 0.32890 (15) 0.0350 (2)
N2 0.06621 (18) 0.19922 (13) 0.48517 (14) 0.0338 (2)
N3 −0.03865 (17) 0.41525 (14) 0.32360 (14) 0.0341 (2)
N4 −0.16369 (17) 0.52865 (15) 0.34407 (15) 0.0357 (2)
H4 −0.1782 0.6055 0.2609 0.043*
C1 0.2969 (2) 0.07094 (17) 0.3644 (2) 0.0415 (3)
C2 0.2341 (3) −0.00505 (18) 0.5432 (2) 0.0471 (4)
H2 0.2824 −0.0952 0.6008 0.056*
C3 0.0881 (3) 0.07866 (16) 0.61715 (19) 0.0406 (3)
C4 −0.05733 (19) 0.32244 (15) 0.48068 (15) 0.0304 (2)
C5 −0.1967 (2) 0.37413 (18) 0.60475 (17) 0.0368 (3)
H5 −0.2360 0.3297 0.7234 0.044*
C6 −0.26295 (19) 0.50668 (17) 0.51088 (18) 0.0344 (2)
C7 −0.4133 (2) 0.6144 (2) 0.5670 (2) 0.0456 (3)
H7A −0.4235 0.6954 0.4680 0.068*
H7B −0.3936 0.6602 0.6326 0.068*
H7C −0.5199 0.5571 0.6366 0.068*
C8 −0.0262 (4) 0.0550 (2) 0.8008 (2) 0.0576 (5)
H8A −0.1176 0.1347 0.8090 0.086*
H8B 0.0429 0.0607 0.8553 0.086*
H8C −0.0779 −0.0457 0.8567 0.086*
C9 0.4575 (3) 0.0306 (3) 0.2294 (3) 0.0605 (6)
H9A 0.4677 0.1029 0.1184 0.091*
H9B 0.4495 −0.0735 0.2372 0.091*
H9C 0.5591 0.0362 0.2453 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.04382 (11) 0.02877 (8) 0.02047 (8) 0.00351 (6) −0.00980 (7) −0.00738 (5)
Cl1 0.0559 (2) 0.04221 (17) 0.02692 (14) 0.01764 (15) −0.01377 (14) −0.01382 (13)
Cl2 0.0665 (3) 0.03027 (15) 0.03254 (17) −0.00083 (15) −0.00632 (17) −0.00494 (12)
N1 0.0460 (7) 0.0321 (5) 0.0255 (5) 0.0042 (4) −0.0167 (5) −0.0094 (4)
N2 0.0466 (7) 0.0307 (5) 0.0221 (4) −0.0015 (4) −0.0159 (4) −0.0052 (4)
N3 0.0410 (6) 0.0351 (5) 0.0211 (4) 0.0044 (4) −0.0124 (4) −0.0083 (4)
N4 0.0386 (6) 0.0383 (5) 0.0261 (5) 0.0048 (4) −0.0128 (4) −0.0112 (4)
C1 0.0589 (10) 0.0325 (6) 0.0408 (7) 0.0091 (6) −0.0303 (7) −0.0141 (5)
C2 0.0759 (12) 0.0306 (6) 0.0423 (8) 0.0058 (6) −0.0376 (8) −0.0085 (5)
C3 0.0649 (10) 0.0296 (5) 0.0295 (6) −0.0066 (6) −0.0262 (7) −0.0023 (5)
C4 0.0375 (6) 0.0313 (5) 0.0207 (5) −0.0060 (4) −0.0111 (4) −0.0062 (4)
C5 0.0420 (7) 0.0409 (6) 0.0217 (5) −0.0071 (5) −0.0074 (5) −0.0096 (5)
C6 0.0332 (6) 0.0398 (6) 0.0288 (6) −0.0058 (5) −0.0075 (5) −0.0147 (5)
C7 0.0378 (8) 0.0488 (8) 0.0470 (9) −0.0006 (6) −0.0081 (6) −0.0253 (7)
C8 0.0937 (16) 0.0430 (8) 0.0262 (6) −0.0065 (9) −0.0249 (8) −0.0007 (6)
C9 0.0735 (14) 0.0597 (11) 0.0552 (11) 0.0337 (10) −0.0389 (11) −0.0298 (9)

Geometric parameters (Å, °)

Cu1—N3 1.9496 (12) C2—H2 0.9300
Cu1—N1 2.0707 (11) C3—C8 1.485 (2)
Cu1—Cl1 2.2106 (4) C4—C5 1.396 (2)
Cu1—Cl2 2.2456 (4) C5—C6 1.385 (2)
N1—C1 1.3436 (18) C5—H5 0.9300
N1—N2 1.3720 (17) C6—C7 1.488 (2)
N2—C3 1.3552 (17) C7—H7A 0.9600
N2—C4 1.3935 (18) C7—H7B 0.9600
N3—C4 1.3260 (16) C7—H7C 0.9600
N3—N4 1.3453 (17) C8—H8A 0.9600
N4—C6 1.3431 (18) C8—H8B 0.9600
N4—H4 0.8600 C8—H8C 0.9600
C1—C2 1.406 (2) C9—H9A 0.9600
C1—C9 1.486 (3) C9—H9B 0.9600
C2—C3 1.375 (3) C9—H9C 0.9600
N3—Cu1—N1 78.14 (5) N3—C4—C5 111.28 (12)
N3—Cu1—Cl1 161.72 (4) N3—C4—N2 114.03 (12)
N1—Cu1—Cl1 97.11 (3) C5—C4—N2 134.67 (12)
N3—Cu1—Cl2 93.55 (4) C6—C5—C4 104.26 (12)
N1—Cu1—Cl2 151.99 (4) C6—C5—H5 127.9
Cl1—Cu1—Cl2 98.297 (16) C4—C5—H5 127.9
C1—N1—N2 105.58 (12) N4—C6—C5 107.30 (13)
C1—N1—Cu1 142.15 (11) N4—C6—C7 121.67 (14)
N2—N1—Cu1 112.27 (8) C5—C6—C7 131.03 (14)
C3—N2—N1 111.92 (13) C6—C7—H7A 109.5
C3—N2—C4 132.08 (13) C6—C7—H7B 109.5
N1—N2—C4 116.00 (10) H7A—C7—H7B 109.5
C4—N3—N4 105.72 (11) C6—C7—H7C 109.5
C4—N3—Cu1 119.46 (10) H7A—C7—H7C 109.5
N4—N3—Cu1 134.50 (9) H7B—C7—H7C 109.5
C6—N4—N3 111.41 (12) C3—C8—H8A 109.5
C6—N4—H4 124.3 C3—C8—H8B 109.5
N3—N4—H4 124.3 H8A—C8—H8B 109.5
N1—C1—C2 109.39 (15) C3—C8—H8C 109.5
N1—C1—C9 122.85 (15) H8A—C8—H8C 109.5
C2—C1—C9 127.70 (14) H8B—C8—H8C 109.5
C3—C2—C1 107.25 (13) C1—C9—H9A 109.5
C3—C2—H2 126.4 C1—C9—H9B 109.5
C1—C2—H2 126.4 H9A—C9—H9B 109.5
N2—C3—C2 105.86 (14) C1—C9—H9C 109.5
N2—C3—C8 123.69 (16) H9A—C9—H9C 109.5
C2—C3—C8 130.41 (15) H9B—C9—H9C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···Cl1i 0.86 2.38 3.1587 (12) 150
C7—H7B···N1ii 0.96 2.61 3.483 (2) 151
C9—H9B···Cl1iii 0.96 2.79 3.5377 (19) 135

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2386).

References

  1. Arrieta, A., Cardillo, J. R., Cossio, F. P., Diaz-Ortiz, A., de la JoséGomez-Escalouilla, M., Hoz, A., Langa, F. & Morèno, A. (1998). Tetrahedron, 54, 13167–13180.
  2. Attayibat, A., Radi, S., Lekchiri, Y. A., Hacht, B., Morcellet, M., Bacquet, M. & Willai, S. (2006). J. Chem. Res. 10, 655–657.
  3. Bekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945. [DOI] [PubMed]
  4. Benabdallah, M., Touzani, R., Dafali, A., Hammouti, B. & El Kadiri, S. (2007). Mater. Lett. 61, 1197–1204.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cohen-Fernandez, P., Erkelens, C., Van Eendenburg, C. G. M., Verhoeven, J. J. & Harbaken, C. L. (1979). J. Org. Chem. 44, 4156–4160.
  7. Das, N. B. & Mittra, A. S. (1978). J. Indian Chem. Soc. 55, 829–831.
  8. El Ghayati, L., Tjiou, E. M. & El Ammari, L. (2010). Acta Cryst. E66, m134–m135. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Juanes, O., De Mendoza, J. & Rodriguez-Ubis, J. C. (1985). J. Chem. Soc. Chem. Commun. 24, 1765–1766.
  12. Sendai, H. O., Togane, T. I., Yachimata, K. S. & Sakura, T. O. (2000). US Patent No. 6 121 305.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tarrago, G., Ramdani, A., Elguero, J. & Espada, M. (1980). J. Heterocycl. Chem. 17, 137–142.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004375/fj2386sup1.cif

e-67-0m323-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004375/fj2386Isup2.hkl

e-67-0m323-Isup2.hkl (271KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES