Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 16;67(Pt 3):o643. doi: 10.1107/S1600536811005204

3,3′-Dibenzyl-1,1′-(2,4,6-trimethyl-m-phenyl­enedimethyl­ene)diimidazol-3-ium dibromide

Rosenani A Haque a, Abbas Washeel Salman a, Paremala Nadarajan a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3051991  PMID: 21522396

Abstract

In the title molecular salt, C31H34N4 2+·2Br, the central benzene ring makes dihedral angles of 80.47 (12) and 82.78 (12)° with the adjacent imidazole rings. The dihedral angle between the two terminal phenyl rings is 79.16 (13)°. In the crystal, the cations and anions are linked via C—H⋯Br hydrogen bonds, forming supra­molecular chains along the c axis.

Related literature

For applications of N-heterocyclic carbenes (NHCs), see: Winkelmann & Navarro (2010); Papini et al. (2008); Marion et al. (2007); Burstein & Glorius (2004); Sohn et al. (2004); Grasa et al. (2002); Singh & Nolan (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0o643-scheme1.jpg

Experimental

Crystal data

  • C31H34N4 2+·2Br

  • M r = 622.44

  • Monoclinic, Inline graphic

  • a = 8.9851 (2) Å

  • b = 12.8044 (2) Å

  • c = 25.6419 (5) Å

  • β = 102.611 (1)°

  • V = 2878.90 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 100 K

  • 0.49 × 0.43 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.337, T max = 0.585

  • 32884 measured reflections

  • 8490 independent reflections

  • 6550 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.101

  • S = 1.04

  • 8490 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005204/wn2422sup1.cif

e-67-0o643-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005204/wn2422Isup2.hkl

e-67-0o643-Isup2.hkl (407KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br2 0.97 2.90 3.754 (2) 147
C7—H7B⋯Br1i 0.97 2.92 3.787 (2) 149
C8—H8A⋯Br2 0.93 2.81 3.496 (3) 132
C10—H10A⋯Br1i 0.93 2.74 3.565 (2) 148
C18—H18B⋯Br2ii 0.97 2.74 3.702 (2) 172
C19—H19A⋯Br1i 0.93 2.74 3.553 (2) 147
C21—H21A⋯Br2iii 0.93 2.83 3.603 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RAH thanks Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). AWS thanks USM for the RU grant (1001/PKIMIA/843090). HKF and MH thank the Malaysian Government and USM for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

N-Heterocyclic carbenes (NHCs) have found widespread applications as ligands in organometallic chemistry during recent years (Winkelmann & Navarro, 2010). They typically have strong σ-donor properties but poor π-acceptor character and have been widely employed as alternatives to phosphine ligands to stabilise transition metal complexes. NHCs are relatively inexpensive, non-toxic and easily prepared from azolium salts (Papini et al., 2008). Notably, NHCs also exhibit excellent catalytic activity in metal-free organocatalysis (Marion et al., 2007) including umpolung and condensation of carbonyl compounds (Burstein & Glorius, 2004; Sohn et al., 2004) and transesterification reactions (Grasa et al., 2002; Singh & Nolan, 2005).

The asymmetric unit of the title compound, (Fig. 1), consists of one 1,3-bis(3-benzylimidazolium-1-ylmethyl)mesitylene cation and two bromide anions. The central benzene ring (C12–C17) makes dihedral angles of 80.47 (12)° and 82.78 (12)° with the adjacent imidazole rings (N1/N2/C8–C10) and (N3/N4/C19–C21). The dihedral angle between the two terminal phenyl rings (C1–C6) and (C23–C28) is 79.16 (13)°.

In the crystal structure (Fig. 2), the cations and anions are linked together via intermolecular C—H···Br (Table 1) hydrogen bonds, forming one-dimensional supramolecular chains along the c-axis.

Experimental

A mixture of imidazole (1.0 g, 14.0 mmol) and sodium hydroxide (0.6 g, 15.0 mmol) in DMSO (20 ml) was heated to 363 K for 2 h. The mixture was cooled at room temperature then 1,3-bis(bromomethyl)mesitylene (2.0 g, 6.5 mmol) in 10 ml of DMSO was added, heated to 413 K for 1 h and poured into water (200 ml), then cooled in an ice bath. The resulting precipitate was collected by filtration, washed with water (3x10 ml), and recrystallised from methanol/water to give 1,3-bis(N-imidazole-1-ylmethyl)mesitylene as an off-white solid (1.45 g, 79 %). Further, a mixture of 1,3-bis(N-imidazole-1-ylmethyl)mesitylene (0.7 g, 2.5 mmol) and benzyl bromide (1.0 g, 5.8 mmol) in 30 ml of acetonitrile, was refluxed for 24 h, then cooled to room temperature and left standing overnight, giving the title compound as light brown crystals which were isolated by decantation and washed with diethyl ether (2x5 ml) and placed in a desiccator. The yield was (1.15 g, 74%). The resulting crystals were suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. The highest peak in the final difference map was found at a distance of 0.77 Å from Br1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) one-dimensional supramolecular chains along the c-axis.

Crystal data

C31H34N42+·2Br F(000) = 1272
Mr = 622.44 Dx = 1.436 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9955 reflections
a = 8.9851 (2) Å θ = 2.3–29.9°
b = 12.8044 (2) Å µ = 2.84 mm1
c = 25.6419 (5) Å T = 100 K
β = 102.611 (1)° Plate, colourless
V = 2878.90 (10) Å3 0.49 × 0.43 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8490 independent reflections
Radiation source: fine-focus sealed tube 6550 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 30.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.337, Tmax = 0.585 k = −17→18
32884 measured reflections l = −30→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.6972P] where P = (Fo2 + 2Fc2)/3
8490 reflections (Δ/σ)max = 0.003
337 parameters Δρmax = 1.28 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6565 (2) 0.78480 (15) 0.80723 (7) 0.0240 (4)
N2 0.4998 (2) 0.82215 (14) 0.85747 (8) 0.0235 (4)
N3 0.9596 (2) 0.88648 (15) 1.09775 (8) 0.0244 (4)
N4 1.1823 (2) 0.82656 (14) 1.09554 (8) 0.0242 (4)
C1 0.9744 (3) 0.8645 (3) 0.74204 (12) 0.0452 (7)
H1A 1.0412 0.8088 0.7517 0.054*
C2 1.0150 (4) 0.9467 (3) 0.71276 (14) 0.0591 (9)
H2A 1.1091 0.9461 0.7033 0.071*
C3 0.9160 (4) 1.0297 (3) 0.69757 (12) 0.0504 (8)
H3A 0.9425 1.0845 0.6776 0.060*
C4 0.7775 (3) 1.0297 (2) 0.71252 (11) 0.0395 (6)
H4A 0.7102 1.0850 0.7024 0.047*
C5 0.7372 (3) 0.94820 (19) 0.74249 (10) 0.0309 (5)
H5A 0.6441 0.9499 0.7527 0.037*
C6 0.8349 (3) 0.86441 (19) 0.75719 (9) 0.0274 (5)
C7 0.7989 (3) 0.77211 (19) 0.78865 (9) 0.0268 (5)
H7A 0.7912 0.7101 0.7665 0.032*
H7B 0.8822 0.7616 0.8193 0.032*
C8 0.5118 (3) 0.76704 (19) 0.77738 (10) 0.0292 (5)
H8A 0.4861 0.7428 0.7424 0.035*
C9 0.4139 (3) 0.79170 (19) 0.80890 (10) 0.0298 (5)
H9A 0.3080 0.7886 0.7993 0.036*
C10 0.6473 (2) 0.81899 (16) 0.85554 (9) 0.0216 (4)
H10A 0.7289 0.8374 0.8830 0.026*
C11 0.4391 (2) 0.85726 (18) 0.90348 (9) 0.0248 (4)
H11A 0.3343 0.8340 0.8989 0.030*
H11B 0.4393 0.9330 0.9046 0.030*
C12 0.5310 (2) 0.81582 (16) 0.95579 (9) 0.0226 (4)
C13 0.6366 (2) 0.87950 (16) 0.98984 (9) 0.0225 (4)
C14 0.7047 (2) 0.84395 (17) 1.04123 (9) 0.0236 (4)
C15 0.6774 (3) 0.74111 (18) 1.05665 (9) 0.0261 (5)
C16 0.5809 (3) 0.67784 (17) 1.02034 (10) 0.0272 (5)
H16A 0.5668 0.6090 1.0298 0.033*
C17 0.5045 (2) 0.71272 (17) 0.97056 (9) 0.0249 (5)
C18 0.7980 (3) 0.91657 (17) 1.08167 (10) 0.0269 (5)
H18A 0.7914 0.9865 1.0668 0.032*
H18B 0.7547 0.9183 1.1132 0.032*
C19 1.0401 (2) 0.83681 (17) 1.06739 (9) 0.0236 (4)
H19A 1.0032 0.8134 1.0326 0.028*
C20 1.0534 (3) 0.90914 (19) 1.14621 (10) 0.0322 (5)
H20A 1.0258 0.9440 1.1745 0.039*
C21 1.1933 (3) 0.87145 (19) 1.14526 (10) 0.0315 (5)
H21A 1.2800 0.8750 1.1727 0.038*
C22 1.3042 (3) 0.76808 (17) 1.07770 (10) 0.0268 (5)
H22A 1.4030 0.7916 1.0976 0.032*
H22B 1.2985 0.7816 1.0401 0.032*
C23 1.2878 (2) 0.65205 (18) 1.08634 (9) 0.0236 (4)
C24 1.1996 (3) 0.59206 (19) 1.04611 (10) 0.0307 (5)
H24A 1.1554 0.6224 1.0134 0.037*
C25 1.1774 (3) 0.4869 (2) 1.05463 (12) 0.0395 (6)
H25A 1.1199 0.4464 1.0274 0.047*
C26 1.2404 (3) 0.44214 (19) 1.10336 (12) 0.0385 (6)
H26A 1.2218 0.3723 1.1095 0.046*
C27 1.3312 (3) 0.5008 (2) 1.14307 (11) 0.0360 (6)
H27A 1.3760 0.4701 1.1756 0.043*
C28 1.3553 (3) 0.6056 (2) 1.13442 (10) 0.0304 (5)
H28A 1.4171 0.6450 1.1611 0.036*
C29 0.6784 (3) 0.98590 (17) 0.97157 (10) 0.0263 (5)
H29A 0.7857 0.9975 0.9843 0.039*
H29B 0.6224 1.0388 0.9856 0.039*
H29C 0.6535 0.9888 0.9332 0.039*
C30 0.3955 (3) 0.64136 (19) 0.93407 (11) 0.0315 (5)
H30A 0.3917 0.5752 0.9513 0.047*
H30B 0.4297 0.6314 0.9015 0.047*
H30C 0.2956 0.6721 0.9262 0.047*
C31 0.7495 (3) 0.69928 (19) 1.11128 (10) 0.0336 (5)
H31A 0.7026 0.6341 1.1168 0.050*
H31B 0.7352 0.7485 1.1380 0.050*
H31C 0.8566 0.6887 1.1138 0.050*
Br1 0.03325 (2) 0.815324 (18) 0.928724 (9) 0.02679 (7)
Br2 0.59309 (3) 0.572410 (19) 0.692096 (9) 0.03010 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0227 (9) 0.0246 (9) 0.0250 (9) 0.0029 (7) 0.0060 (7) −0.0007 (7)
N2 0.0216 (9) 0.0207 (9) 0.0288 (10) 0.0030 (7) 0.0070 (7) 0.0024 (7)
N3 0.0271 (9) 0.0217 (9) 0.0264 (10) 0.0038 (7) 0.0100 (7) 0.0010 (8)
N4 0.0245 (9) 0.0191 (9) 0.0306 (10) 0.0010 (7) 0.0095 (7) 0.0012 (7)
C1 0.0230 (12) 0.066 (2) 0.0476 (16) −0.0013 (13) 0.0093 (11) 0.0009 (15)
C2 0.0332 (15) 0.089 (3) 0.060 (2) −0.0205 (16) 0.0208 (14) 0.0009 (19)
C3 0.0549 (19) 0.0547 (19) 0.0431 (17) −0.0281 (16) 0.0142 (14) −0.0028 (14)
C4 0.0529 (17) 0.0309 (14) 0.0354 (14) −0.0077 (12) 0.0111 (12) −0.0017 (11)
C5 0.0350 (13) 0.0304 (13) 0.0296 (12) −0.0032 (10) 0.0118 (10) −0.0056 (10)
C6 0.0244 (11) 0.0336 (13) 0.0242 (11) −0.0037 (9) 0.0050 (9) −0.0073 (9)
C7 0.0245 (11) 0.0302 (12) 0.0265 (11) 0.0061 (9) 0.0071 (9) −0.0041 (9)
C8 0.0279 (11) 0.0306 (13) 0.0274 (12) −0.0010 (9) 0.0025 (9) −0.0031 (10)
C9 0.0224 (11) 0.0298 (12) 0.0361 (13) −0.0006 (9) 0.0038 (9) −0.0004 (10)
C10 0.0224 (10) 0.0192 (10) 0.0234 (10) 0.0019 (8) 0.0055 (8) 0.0009 (8)
C11 0.0228 (10) 0.0236 (11) 0.0307 (12) 0.0053 (8) 0.0119 (9) 0.0026 (9)
C12 0.0235 (10) 0.0201 (10) 0.0281 (11) 0.0066 (8) 0.0140 (8) 0.0039 (9)
C13 0.0243 (10) 0.0171 (10) 0.0311 (12) 0.0048 (8) 0.0167 (9) 0.0025 (8)
C14 0.0226 (10) 0.0220 (11) 0.0304 (12) 0.0052 (8) 0.0149 (9) 0.0035 (9)
C15 0.0272 (11) 0.0234 (11) 0.0316 (12) 0.0078 (9) 0.0152 (9) 0.0069 (9)
C16 0.0326 (12) 0.0173 (11) 0.0361 (13) 0.0053 (9) 0.0171 (10) 0.0052 (9)
C17 0.0248 (10) 0.0186 (10) 0.0356 (12) 0.0029 (8) 0.0160 (9) 0.0003 (9)
C18 0.0278 (11) 0.0222 (11) 0.0339 (12) 0.0064 (9) 0.0136 (9) 0.0017 (9)
C19 0.0256 (11) 0.0205 (11) 0.0267 (11) 0.0010 (8) 0.0102 (9) 0.0015 (8)
C20 0.0388 (13) 0.0311 (13) 0.0274 (12) 0.0054 (10) 0.0089 (10) −0.0037 (10)
C21 0.0336 (13) 0.0279 (13) 0.0314 (13) 0.0051 (10) 0.0032 (10) −0.0044 (10)
C22 0.0230 (10) 0.0221 (11) 0.0386 (13) 0.0011 (8) 0.0138 (9) 0.0012 (9)
C23 0.0212 (10) 0.0224 (11) 0.0296 (11) 0.0034 (8) 0.0106 (8) 0.0024 (9)
C24 0.0291 (12) 0.0268 (12) 0.0345 (13) 0.0019 (9) 0.0031 (10) 0.0031 (10)
C25 0.0333 (13) 0.0279 (13) 0.0540 (17) −0.0006 (10) 0.0022 (12) −0.0048 (12)
C26 0.0368 (14) 0.0186 (12) 0.0631 (19) 0.0061 (10) 0.0175 (13) 0.0087 (11)
C27 0.0382 (14) 0.0359 (14) 0.0366 (14) 0.0139 (11) 0.0142 (11) 0.0137 (11)
C28 0.0283 (12) 0.0329 (13) 0.0304 (12) 0.0089 (10) 0.0074 (9) −0.0010 (10)
C29 0.0306 (11) 0.0195 (11) 0.0322 (12) 0.0034 (9) 0.0143 (9) 0.0045 (9)
C30 0.0342 (13) 0.0211 (11) 0.0415 (14) 0.0000 (10) 0.0135 (11) −0.0001 (10)
C31 0.0408 (14) 0.0254 (12) 0.0356 (14) 0.0047 (10) 0.0100 (11) 0.0089 (10)
Br1 0.02077 (11) 0.03140 (13) 0.02841 (12) 0.00005 (9) 0.00584 (8) 0.00150 (9)
Br2 0.03523 (13) 0.02893 (13) 0.02839 (13) −0.00436 (9) 0.01185 (9) −0.00585 (9)

Geometric parameters (Å, °)

N1—C10 1.333 (3) C14—C15 1.412 (3)
N1—C8 1.376 (3) C14—C18 1.504 (3)
N1—C7 1.468 (3) C15—C16 1.387 (4)
N2—C10 1.337 (3) C15—C31 1.507 (3)
N2—C9 1.371 (3) C16—C17 1.385 (3)
N2—C11 1.474 (3) C16—H16A 0.9300
N3—C19 1.334 (3) C17—C30 1.506 (3)
N3—C20 1.371 (3) C18—H18A 0.9700
N3—C18 1.472 (3) C18—H18B 0.9700
N4—C19 1.330 (3) C19—H19A 0.9300
N4—C21 1.382 (3) C20—C21 1.352 (3)
N4—C22 1.479 (3) C20—H20A 0.9300
C1—C2 1.387 (4) C21—H21A 0.9300
C1—C6 1.391 (3) C22—C23 1.514 (3)
C1—H1A 0.9300 C22—H22A 0.9700
C2—C3 1.386 (5) C22—H22B 0.9700
C2—H2A 0.9300 C23—C28 1.384 (3)
C3—C4 1.380 (4) C23—C24 1.388 (3)
C3—H3A 0.9300 C24—C25 1.385 (3)
C4—C5 1.390 (4) C24—H24A 0.9300
C4—H4A 0.9300 C25—C26 1.379 (4)
C5—C6 1.385 (3) C25—H25A 0.9300
C5—H5A 0.9300 C26—C27 1.380 (4)
C6—C7 1.505 (3) C26—H26A 0.9300
C7—H7A 0.9700 C27—C28 1.384 (4)
C7—H7B 0.9700 C27—H27A 0.9300
C8—C9 1.355 (3) C28—H28A 0.9300
C8—H8A 0.9300 C29—H29A 0.9600
C9—H9A 0.9300 C29—H29B 0.9600
C10—H10A 0.9300 C29—H29C 0.9600
C11—C12 1.510 (3) C30—H30A 0.9600
C11—H11A 0.9700 C30—H30B 0.9600
C11—H11B 0.9700 C30—H30C 0.9600
C12—C13 1.402 (3) C31—H31A 0.9600
C12—C17 1.408 (3) C31—H31B 0.9600
C13—C14 1.402 (3) C31—H31C 0.9600
C13—C29 1.515 (3)
C10—N1—C8 109.14 (18) C17—C16—C15 122.8 (2)
C10—N1—C7 124.97 (19) C17—C16—H16A 118.6
C8—N1—C7 125.85 (19) C15—C16—H16A 118.6
C10—N2—C9 108.90 (18) C16—C17—C12 118.1 (2)
C10—N2—C11 125.60 (19) C16—C17—C30 120.1 (2)
C9—N2—C11 125.44 (19) C12—C17—C30 121.8 (2)
C19—N3—C20 109.00 (19) N3—C18—C14 113.49 (18)
C19—N3—C18 126.1 (2) N3—C18—H18A 108.9
C20—N3—C18 124.88 (19) C14—C18—H18A 108.9
C19—N4—C21 109.05 (19) N3—C18—H18B 108.9
C19—N4—C22 124.8 (2) C14—C18—H18B 108.9
C21—N4—C22 125.9 (2) H18A—C18—H18B 107.7
C2—C1—C6 120.8 (3) N4—C19—N3 108.0 (2)
C2—C1—H1A 119.6 N4—C19—H19A 126.0
C6—C1—H1A 119.6 N3—C19—H19A 126.0
C3—C2—C1 120.4 (3) C21—C20—N3 107.3 (2)
C3—C2—H2A 119.8 C21—C20—H20A 126.3
C1—C2—H2A 119.8 N3—C20—H20A 126.3
C4—C3—C2 119.0 (3) C20—C21—N4 106.6 (2)
C4—C3—H3A 120.5 C20—C21—H21A 126.7
C2—C3—H3A 120.5 N4—C21—H21A 126.7
C3—C4—C5 120.9 (3) N4—C22—C23 110.43 (17)
C3—C4—H4A 119.6 N4—C22—H22A 109.6
C5—C4—H4A 119.6 C23—C22—H22A 109.6
C6—C5—C4 120.4 (2) N4—C22—H22B 109.6
C6—C5—H5A 119.8 C23—C22—H22B 109.6
C4—C5—H5A 119.8 H22A—C22—H22B 108.1
C5—C6—C1 118.7 (2) C28—C23—C24 119.5 (2)
C5—C6—C7 123.8 (2) C28—C23—C22 121.0 (2)
C1—C6—C7 117.5 (2) C24—C23—C22 119.5 (2)
N1—C7—C6 113.04 (19) C25—C24—C23 119.9 (2)
N1—C7—H7A 109.0 C25—C24—H24A 120.0
C6—C7—H7A 109.0 C23—C24—H24A 120.0
N1—C7—H7B 109.0 C26—C25—C24 120.2 (3)
C6—C7—H7B 109.0 C26—C25—H25A 119.9
H7A—C7—H7B 107.8 C24—C25—H25A 119.9
C9—C8—N1 106.7 (2) C25—C26—C27 120.1 (2)
C9—C8—H8A 126.6 C25—C26—H26A 119.9
N1—C8—H8A 126.6 C27—C26—H26A 119.9
C8—C9—N2 107.3 (2) C26—C27—C28 119.8 (2)
C8—C9—H9A 126.3 C26—C27—H27A 120.1
N2—C9—H9A 126.3 C28—C27—H27A 120.1
N1—C10—N2 107.92 (19) C23—C28—C27 120.4 (2)
N1—C10—H10A 126.0 C23—C28—H28A 119.8
N2—C10—H10A 126.0 C27—C28—H28A 119.8
N2—C11—C12 112.17 (17) C13—C29—H29A 109.5
N2—C11—H11A 109.2 C13—C29—H29B 109.5
C12—C11—H11A 109.2 H29A—C29—H29B 109.5
N2—C11—H11B 109.2 C13—C29—H29C 109.5
C12—C11—H11B 109.2 H29A—C29—H29C 109.5
H11A—C11—H11B 107.9 H29B—C29—H29C 109.5
C13—C12—C17 120.6 (2) C17—C30—H30A 109.5
C13—C12—C11 120.90 (19) C17—C30—H30B 109.5
C17—C12—C11 118.5 (2) H30A—C30—H30B 109.5
C12—C13—C14 119.6 (2) C17—C30—H30C 109.5
C12—C13—C29 120.7 (2) H30A—C30—H30C 109.5
C14—C13—C29 119.7 (2) H30B—C30—H30C 109.5
C13—C14—C15 119.9 (2) C15—C31—H31A 109.5
C13—C14—C18 120.7 (2) C15—C31—H31B 109.5
C15—C14—C18 119.2 (2) H31A—C31—H31B 109.5
C16—C15—C14 118.6 (2) C15—C31—H31C 109.5
C16—C15—C31 119.7 (2) H31A—C31—H31C 109.5
C14—C15—C31 121.7 (2) H31B—C31—H31C 109.5
C6—C1—C2—C3 −0.7 (5) C13—C14—C15—C31 179.4 (2)
C1—C2—C3—C4 0.7 (5) C18—C14—C15—C31 −5.0 (3)
C2—C3—C4—C5 0.2 (4) C14—C15—C16—C17 −3.1 (3)
C3—C4—C5—C6 −1.0 (4) C31—C15—C16—C17 176.5 (2)
C4—C5—C6—C1 0.9 (4) C15—C16—C17—C12 2.4 (3)
C4—C5—C6—C7 −178.8 (2) C15—C16—C17—C30 −177.1 (2)
C2—C1—C6—C5 −0.1 (4) C13—C12—C17—C16 2.5 (3)
C2—C1—C6—C7 179.7 (3) C11—C12—C17—C16 −175.25 (18)
C10—N1—C7—C6 −96.1 (3) C13—C12—C17—C30 −178.02 (19)
C8—N1—C7—C6 81.5 (3) C11—C12—C17—C30 4.2 (3)
C5—C6—C7—N1 −6.2 (3) C19—N3—C18—C14 30.3 (3)
C1—C6—C7—N1 174.1 (2) C20—N3—C18—C14 −152.4 (2)
C10—N1—C8—C9 0.2 (3) C13—C14—C18—N3 −116.1 (2)
C7—N1—C8—C9 −177.8 (2) C15—C14—C18—N3 68.3 (3)
N1—C8—C9—N2 −1.0 (3) C21—N4—C19—N3 −0.3 (3)
C10—N2—C9—C8 1.6 (3) C22—N4—C19—N3 174.75 (19)
C11—N2—C9—C8 179.0 (2) C20—N3—C19—N4 0.5 (3)
C8—N1—C10—N2 0.8 (2) C18—N3—C19—N4 178.19 (19)
C7—N1—C10—N2 178.76 (19) C19—N3—C20—C21 −0.6 (3)
C9—N2—C10—N1 −1.5 (2) C18—N3—C20—C21 −178.2 (2)
C11—N2—C10—N1 −178.90 (19) N3—C20—C21—N4 0.4 (3)
C10—N2—C11—C12 −42.9 (3) C19—N4—C21—C20 0.0 (3)
C9—N2—C11—C12 140.1 (2) C22—N4—C21—C20 −175.0 (2)
N2—C11—C12—C13 101.9 (2) C19—N4—C22—C23 −79.9 (3)
N2—C11—C12—C17 −80.3 (2) C21—N4—C22—C23 94.4 (3)
C17—C12—C13—C14 −6.5 (3) N4—C22—C23—C28 −88.0 (3)
C11—C12—C13—C14 171.21 (18) N4—C22—C23—C24 89.8 (3)
C17—C12—C13—C29 173.11 (18) C28—C23—C24—C25 1.2 (3)
C11—C12—C13—C29 −9.2 (3) C22—C23—C24—C25 −176.7 (2)
C12—C13—C14—C15 5.7 (3) C23—C24—C25—C26 1.2 (4)
C29—C13—C14—C15 −173.94 (18) C24—C25—C26—C27 −2.7 (4)
C12—C13—C14—C18 −169.92 (18) C25—C26—C27—C28 1.8 (4)
C29—C13—C14—C18 10.4 (3) C24—C23—C28—C27 −2.1 (3)
C13—C14—C15—C16 −1.0 (3) C22—C23—C28—C27 175.7 (2)
C18—C14—C15—C16 174.71 (19) C26—C27—C28—C23 0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···Br2 0.97 2.90 3.754 (2) 147
C7—H7B···Br1i 0.97 2.92 3.787 (2) 149
C8—H8A···Br2 0.93 2.81 3.496 (3) 132
C10—H10A···Br1i 0.93 2.74 3.565 (2) 148
C18—H18B···Br2ii 0.97 2.74 3.702 (2) 172
C19—H19A···Br1i 0.93 2.74 3.553 (2) 147
C21—H21A···Br2iii 0.93 2.83 3.603 (3) 141

Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2422).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burstein, C. & Glorius, F. (2004). Angew. Chem. Int. Ed. 43, 6205–6208. [DOI] [PubMed]
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Grasa, G. A., Kissling, R. M. & Nolan, S. P. (2002). Org. Lett. 4, 3583–3586. [DOI] [PubMed]
  5. Marion, N., Diez-Gonzáles, S. & Nolan, S. P. (2007). Angew. Chem. Int. Ed. 46, 2988–3000. [DOI] [PubMed]
  6. Papini, G., Bandoli, G., Dolmella, A., Lobbia, G. G., Pellei, M. & Santini, C. (2008). Inorg. Chem. Commun. 11, 1103–1106.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Singh, R. & Nolan, S. P. (2005). Chem. Commun. pp. 5456–5458. [DOI] [PubMed]
  9. Sohn, S. S., Rosen, E. L. & Bode, J. W. (2004). J. Am. Chem. Soc. 126, 14370–14371. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Winkelmann, O. H. & Navarro, O. (2010). Adv. Synth. Catal. 352, 212–214.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005204/wn2422sup1.cif

e-67-0o643-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005204/wn2422Isup2.hkl

e-67-0o643-Isup2.hkl (407KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES