Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o654. doi: 10.1107/S1600536811005046

3-Hy­droxy-1-methyl-2-[4-(piperidin-1-yl)phen­yl]quinolin-4(1H)-one

Michał Wera a, Vasyl G Pivovarenko b, Artur Sikorski a, Tadeusz Lis c, Jerzy Błażejowski a,*
PMCID: PMC3051995  PMID: 21522406

Abstract

There are two structurally similar but crystallographically independent mol­ecules (A and B) in the asymmetric unit of the title compound, C21H22N2O2, which are linked via two O—H⋯O hydrogen bonds. An intramolecular O—H⋯O hydrogen bond also occurs in each molecule. In the crystal, the A and B mol­ecules are further linked through C—H⋯O inter­actions. The benzene ring is twisted at an angle of 69.9 (1) and 83.4 (1)° relative to the 1,4-dihydro­quinoline skeleton in mol­ecules A and B, respectively. Adjacent 1,4-dihydro­quinoline units of mol­ecules A are parallel, while mol­ecules A and B are oriented at an angle of 32.8 (1)°.

Related literature

For general background to quinolin-4(1H)-ones, see: Bilokin’ et al. (2009); Mitscher (2005); Yushchenko et al. (2007); Sengupta & Kasha (1979). For related structures, see: Czaun et al. (2002); Mphahlele et al. (2002); Mphahlele & El-Nahas (2004). For inter­molecular inter­actions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Hradil et al. (1999); Yushchenko et al. (2006).graphic file with name e-67-0o654-scheme1.jpg

Experimental

Crystal data

  • C21H22N2O2

  • M r = 334.41

  • Monoclinic, Inline graphic

  • a = 9.621 (4) Å

  • b = 18.622 (6) Å

  • c = 18.955 (7) Å

  • β = 104.17 (3)°

  • V = 3293 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.40 × 0.35 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur PX diffractometer with a CCD area detector

  • 41668 measured reflections

  • 13682 independent reflections

  • 6901 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.133

  • S = 1.01

  • 13682 reflections

  • 455 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005046/om2406sup1.cif

e-67-0o654-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005046/om2406Isup2.hkl

e-67-0o654-Isup2.hkl (668.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11A⋯O12A 0.84 2.32 2.760 (2) 113
O11A—H11A⋯O12B 0.84 1.95 2.723 (2) 153
O11B—H11B⋯O12A 0.84 2.01 2.791 (2) 154
O11B—H11B⋯O12B 0.84 2.30 2.741 (2) 113
C24B—H24D⋯O12Ai 0.99 2.52 3.475 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–11).

supplementary crystallographic information

Comment

Apart from their interesting biological activities (Mitscher, 2005), quinolin-4(1H)-ones display dual fluorescence, the result of Excited State Intramolecular Proton Transfer (ESIPT), if they are substituted with –OH and phenyl in the pyridine-4(1H)-one ring in the vicinity of the carbonyl group and the N atom, respectively (Yushchenko et al., 2007). Influenced by the properties of the medium, ESIPT makes 3-hydroxy-2-phenylquinolin-4(1H)-ones interesting fluorescent probes sensitive to features of a medium (Bilokin' et al., 2009). Since ESIPT is believed to depend on the mutual orientation of the 1,4-dihydroquinoline and benzene fragments (Yushchenko et al., 2007), we undertook investigations into the structure of potential fluorescent sensors belonging to the latter group of compounds. Here the structure of 3-hydroxy-1-methyl-(-2-[4-(piperidin-1-yl)phenyl]quinolin-4(1H)-one is presented.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenylquinolin-4(1H)-one moiety are typical of this group of compounds (Czaun et al., 2002; Mphahlele et al., 2002; Mphahlele & El-Nahas, 2004). With respective average deviations from planarity of 0.0163 (1)° (A) or 0.0180 (1)° (B) and 0.0078 (1)° (A) or 0.0059 (1)° (B), the 1,4-dihydroquinoline and benzene ring systems are oriented at a dihedral angle of 69.9 (1)° (A) or 83.4 (1)° (B) (in crystalline 3-hydroxy-2-phenylquinolin-4(1H)-one: dimethyl sulfoxide, 1:1, this angle is equal to 45.2 (1)° (Czaun et al., 2002)). As mentioned above, the latter angle appears to be important for explaining the mechanism of ESIPT in this group of compounds (Yushchenko et al., 2007).

In the crystal lattice, two structurally similar but crystallographically independent molecules (A and B), linked via two O–H···O hydrogen bonds (Aakeröy et al., 1992), are present in the asymmetric unit (Table 1, Fig. 1). Molecules A are in contact with neighboring B ones through C–H···O (Novoa et al., 2006) interactions (Table 1, Fig. 2). Adjacent 1,4-dihydroquinoline units of molecules A are parallel – they lie at an angle of 0.0 (1)° – while molecules A and B are oriented at an angle of 32.8 (1)°. The O12–H12···O13 intramolecular hydrogen bonds (Table 1, Figs. 1 and 2) are the ones that may be involved in ESIPT; the phenomenon originally disclosed in 3-hydroxy-2-phenyl-4H-chromen-4-ones (Sengupta & Kasha, 1979), which are analogues of 3-hydroxy-2-phenylquinolin-4(1H)-ones.

Experimental

The title compound was synthesized in two steps. First a mixture of 2-(methylamino)benzoic acid, 2-bromo-1-(4-fluorophenyl)ethanone and potassium carbonate in dimethylformamide was heated at 325 K for 1 h to obtain 2-(4-fluorophenyl)-2-oxoethyl 2-(methylamino)benzoate. On further heating with polyphosphoric acid (395 K, 2 h), this yielded 2-(4-fluorophenyl)-3-hydroxy-1-methyl-quinolin-4(1H)-one (Hradil et al., 1999; Yushchenko et al., 2006). The latter compound was then separated, dissolved in piperidine and the solution stored in a sealed tube at 445 K for 50 h. The reactant mixture was subsequently poured into 1% aq HCl and the precipitate separated by filtration. Crystals suitable for X-ray investigations were grown from dimethylformamide (m.p. = 566–568 K).

The X-ray measurements were carried out at 180 K. Below this temperature, a phase transition occurs, which doubles parameter c of the unit cell.

Refinement

H atoms of C–H bonds were positioned geometrically, with C–H = 0.95 Å, 0.98 Å and 0.99 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and 1.5 for alkyl H atoms. H atoms of O–H bonds were positioned geometrically with O–H = 0.84 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of molecules A and B of the title compound together with the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H···O hydrogen bonds are represented by dashed lines.

Fig. 2.

Fig. 2.

The arrangement of molecules A and B in the crystal. The O–H···O interactions are represented by dashed lines, the C–H···O contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry code: (i) –x + 1, –y + 1, –z + 1.]

Crystal data

C21H22N2O2 F(000) = 1424
Mr = 334.41 Dx = 1.349 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19567 reflections
a = 9.621 (4) Å θ = 3–35°
b = 18.622 (6) Å µ = 0.09 mm1
c = 18.955 (7) Å T = 180 K
β = 104.17 (3)° Block, colorless
V = 3293 (2) Å3 0.40 × 0.35 × 0.30 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur PX diffractometer with a CCD area detector' 6901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
graphite θmax = 35.1°, θmin = 3.1°
ω and φ scans h = −15→13
41668 measured reflections k = −30→24
13682 independent reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
13682 reflections (Δ/σ)max = 0.001
455 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.62758 (10) 0.35031 (6) 0.98211 (5) 0.0217 (2)
N1B −0.01996 (10) 0.36909 (6) 0.49772 (5) 0.0227 (2)
C2A 0.48185 (12) 0.35224 (6) 0.95022 (6) 0.0202 (2)
C2B 0.12649 (12) 0.36293 (6) 0.52659 (6) 0.0204 (2)
C3A 0.42999 (12) 0.33671 (6) 0.87742 (6) 0.0202 (2)
C3B 0.17973 (12) 0.34211 (6) 0.59775 (6) 0.0203 (2)
C4A 0.52258 (12) 0.31590 (6) 0.83202 (6) 0.0193 (2)
C4B 0.08833 (13) 0.32634 (7) 0.64502 (6) 0.0219 (2)
C5A 0.77324 (13) 0.29184 (7) 0.82809 (7) 0.0251 (3)
H5A 0.7395 0.2782 0.7785 0.030*
C5B −0.16279 (13) 0.31646 (8) 0.65442 (7) 0.0286 (3)
H5B −0.1281 0.3033 0.7040 0.034*
C6A 0.91803 (14) 0.29110 (7) 0.85969 (7) 0.0301 (3)
H6A 0.9841 0.2778 0.8321 0.036*
C6B −0.30772 (14) 0.32021 (8) 0.62521 (7) 0.0318 (3)
H6B −0.3729 0.3102 0.6544 0.038*
C7A 0.96681 (14) 0.31024 (8) 0.93299 (7) 0.0299 (3)
H7A 1.0669 0.3104 0.9546 0.036*
C7B −0.35874 (13) 0.33903 (7) 0.55167 (7) 0.0283 (3)
H7B −0.4592 0.3410 0.5311 0.034*
C8A 0.87355 (13) 0.32885 (7) 0.97444 (7) 0.0264 (3)
H8A 0.9089 0.3405 1.0244 0.032*
C8B −0.26632 (13) 0.35457 (7) 0.50900 (7) 0.0259 (3)
H8B −0.3030 0.3670 0.4593 0.031*
C9A 0.72446 (13) 0.33055 (6) 0.94225 (6) 0.0203 (2)
C9B −0.11638 (12) 0.35211 (6) 0.53882 (6) 0.0204 (2)
C10A 0.67400 (12) 0.31256 (6) 0.86814 (6) 0.0197 (2)
C10B −0.06406 (12) 0.33181 (7) 0.61233 (6) 0.0214 (2)
O11A 0.28603 (9) 0.33866 (5) 0.84855 (5) 0.0281 (2)
H11A 0.2683 0.3277 0.8042 0.042*
O11B 0.32439 (9) 0.33503 (5) 0.62420 (5) 0.0257 (2)
H11B 0.3421 0.3211 0.6676 0.039*
O12A 0.47359 (9) 0.30034 (5) 0.76573 (4) 0.0259 (2)
O12B 0.13899 (9) 0.30750 (6) 0.71000 (5) 0.0320 (2)
C13A 0.68432 (14) 0.37058 (8) 1.05886 (6) 0.0283 (3)
H13A 0.6080 0.3929 1.0774 0.042*
H13B 0.7633 0.4048 1.0627 0.042*
H13C 0.7194 0.3276 1.0876 0.042*
C13B −0.07655 (14) 0.39398 (8) 0.42239 (7) 0.0325 (3)
H13D −0.1427 0.4341 0.4220 0.049*
H13E −0.1276 0.3545 0.3928 0.049*
H13F 0.0030 0.4099 0.4023 0.049*
C14A 0.38208 (13) 0.37134 (7) 0.99616 (6) 0.0211 (2)
C14B 0.22385 (12) 0.37982 (7) 0.47866 (6) 0.0212 (2)
C15A 0.35906 (13) 0.32537 (7) 1.04993 (6) 0.0232 (3)
H15A 0.4066 0.2803 1.0570 0.028*
C15B 0.25605 (13) 0.32892 (7) 0.43131 (7) 0.0239 (3)
H15B 0.2171 0.2820 0.4304 0.029*
C16A 0.26762 (13) 0.34414 (7) 1.09372 (6) 0.0232 (3)
H16A 0.2544 0.3117 1.1302 0.028*
C16B 0.34430 (13) 0.34540 (7) 0.38519 (7) 0.0235 (3)
H16B 0.3639 0.3096 0.3533 0.028*
C17A 0.19498 (13) 0.40993 (7) 1.08483 (6) 0.0232 (3)
C17B 0.40451 (12) 0.41371 (6) 0.38511 (6) 0.0206 (2)
C18A 0.21631 (15) 0.45534 (7) 1.02923 (7) 0.0312 (3)
H18A 0.1676 0.5001 1.0211 0.037*
C18B 0.36954 (15) 0.46512 (7) 0.43209 (7) 0.0318 (3)
H18B 0.4059 0.5126 0.4324 0.038*
C19A 0.30755 (15) 0.43583 (7) 0.98596 (7) 0.0306 (3)
H19A 0.3192 0.4674 0.9485 0.037*
C19B 0.28269 (15) 0.44759 (7) 0.47807 (7) 0.0315 (3)
H19B 0.2629 0.4832 0.5102 0.038*
N20A 0.10083 (11) 0.42989 (6) 1.12809 (5) 0.0251 (2)
N20B 0.49979 (11) 0.43049 (5) 0.34169 (5) 0.0228 (2)
C21A 0.09634 (16) 0.38008 (9) 1.18785 (8) 0.0382 (4)
H21A 0.1923 0.3784 1.2220 0.046*
H21B 0.0739 0.3313 1.1676 0.046*
C21B 0.51323 (15) 0.37533 (7) 0.28849 (7) 0.0312 (3)
H21C 0.4189 0.3690 0.2536 0.037*
H21D 0.5389 0.3292 0.3143 0.037*
C22A −0.01350 (16) 0.40103 (9) 1.22943 (8) 0.0387 (4)
H22A −0.1109 0.3954 1.1974 0.046*
H22B −0.0051 0.3683 1.2714 0.046*
C22B 0.62434 (14) 0.39258 (8) 0.24620 (7) 0.0304 (3)
H22C 0.7214 0.3891 0.2791 0.036*
H22D 0.6177 0.3568 0.2069 0.036*
C23A 0.00603 (16) 0.47724 (9) 1.25640 (8) 0.0413 (4)
H23A 0.0999 0.4825 1.2919 0.050*
H23B −0.0703 0.4900 1.2810 0.050*
C23B 0.60333 (15) 0.46696 (8) 0.21334 (7) 0.0329 (3)
H23C 0.5094 0.4701 0.1776 0.039*
H23D 0.6795 0.4776 0.1880 0.039*
C24A −0.00105 (18) 0.52637 (8) 1.19200 (9) 0.0441 (4)
H24A 0.0162 0.5765 1.2094 0.053*
H24B −0.0983 0.5240 1.1591 0.053*
C24B 0.60962 (16) 0.52036 (7) 0.27452 (8) 0.0352 (3)
H24C 0.7057 0.5183 0.3086 0.042*
H24D 0.5956 0.5695 0.2540 0.042*
C25A 0.10870 (17) 0.50598 (8) 1.14988 (9) 0.0414 (4)
H25A 0.0936 0.5363 1.1057 0.050*
H25B 0.2059 0.5162 1.1803 0.050*
C25B 0.49643 (16) 0.50524 (7) 0.31595 (8) 0.0336 (3)
H25C 0.5113 0.5380 0.3583 0.040*
H25D 0.4006 0.5155 0.2840 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0208 (5) 0.0283 (6) 0.0166 (5) 0.0005 (4) 0.0060 (4) −0.0027 (4)
N1B 0.0199 (5) 0.0330 (6) 0.0158 (5) 0.0022 (4) 0.0056 (4) 0.0024 (4)
C2A 0.0211 (6) 0.0213 (6) 0.0205 (6) 0.0020 (5) 0.0094 (5) 0.0009 (5)
C2B 0.0202 (6) 0.0238 (6) 0.0199 (5) 0.0001 (5) 0.0098 (5) −0.0005 (5)
C3A 0.0177 (6) 0.0248 (6) 0.0191 (5) 0.0024 (5) 0.0067 (5) 0.0012 (5)
C3B 0.0171 (6) 0.0256 (6) 0.0189 (5) −0.0007 (5) 0.0059 (5) −0.0009 (5)
C4A 0.0209 (6) 0.0198 (6) 0.0186 (5) 0.0007 (5) 0.0073 (5) 0.0014 (5)
C4B 0.0195 (6) 0.0293 (7) 0.0175 (5) −0.0022 (5) 0.0060 (5) 0.0001 (5)
C5A 0.0233 (6) 0.0334 (7) 0.0208 (6) 0.0018 (5) 0.0093 (5) −0.0015 (5)
C5B 0.0218 (6) 0.0441 (8) 0.0216 (6) −0.0016 (6) 0.0085 (5) 0.0046 (6)
C6A 0.0220 (6) 0.0402 (8) 0.0309 (7) 0.0038 (6) 0.0119 (6) −0.0022 (6)
C6B 0.0219 (6) 0.0437 (8) 0.0328 (7) −0.0025 (6) 0.0126 (6) 0.0034 (6)
C7A 0.0190 (6) 0.0365 (8) 0.0334 (7) 0.0031 (5) 0.0048 (6) −0.0035 (6)
C7B 0.0166 (6) 0.0346 (8) 0.0330 (7) 0.0000 (5) 0.0047 (5) 0.0026 (6)
C8A 0.0220 (6) 0.0326 (7) 0.0234 (6) 0.0014 (5) 0.0033 (5) −0.0029 (5)
C8B 0.0214 (6) 0.0319 (7) 0.0227 (6) 0.0019 (5) 0.0025 (5) 0.0016 (5)
C9A 0.0214 (6) 0.0224 (6) 0.0184 (5) 0.0002 (5) 0.0071 (5) −0.0003 (5)
C9B 0.0193 (6) 0.0242 (6) 0.0187 (5) 0.0000 (5) 0.0067 (5) −0.0011 (5)
C10A 0.0193 (6) 0.0225 (6) 0.0187 (5) 0.0008 (5) 0.0072 (5) 0.0012 (5)
C10B 0.0189 (6) 0.0281 (7) 0.0181 (5) −0.0021 (5) 0.0063 (5) 0.0000 (5)
O11A 0.0186 (4) 0.0456 (6) 0.0204 (4) 0.0042 (4) 0.0055 (4) −0.0026 (4)
O11B 0.0173 (4) 0.0390 (6) 0.0214 (4) −0.0008 (4) 0.0059 (3) 0.0030 (4)
O12A 0.0242 (5) 0.0354 (5) 0.0178 (4) 0.0042 (4) 0.0044 (4) −0.0007 (4)
O12B 0.0226 (5) 0.0537 (6) 0.0193 (4) −0.0044 (4) 0.0040 (4) 0.0058 (4)
C13A 0.0290 (7) 0.0360 (8) 0.0201 (6) −0.0034 (6) 0.0066 (5) −0.0054 (5)
C13B 0.0295 (7) 0.0499 (9) 0.0189 (6) 0.0089 (6) 0.0074 (5) 0.0091 (6)
C14A 0.0214 (6) 0.0252 (6) 0.0182 (5) 0.0007 (5) 0.0077 (5) −0.0017 (5)
C14B 0.0191 (6) 0.0276 (7) 0.0181 (5) 0.0001 (5) 0.0070 (5) 0.0012 (5)
C15A 0.0226 (6) 0.0260 (6) 0.0227 (6) 0.0030 (5) 0.0089 (5) 0.0010 (5)
C15B 0.0242 (6) 0.0247 (6) 0.0257 (6) −0.0031 (5) 0.0114 (5) 0.0006 (5)
C16A 0.0237 (6) 0.0276 (7) 0.0205 (6) 0.0013 (5) 0.0099 (5) 0.0023 (5)
C16B 0.0250 (6) 0.0244 (6) 0.0246 (6) −0.0014 (5) 0.0127 (5) −0.0023 (5)
C17A 0.0209 (6) 0.0299 (7) 0.0201 (6) 0.0012 (5) 0.0074 (5) −0.0014 (5)
C17B 0.0199 (6) 0.0237 (6) 0.0200 (6) 0.0003 (5) 0.0082 (5) 0.0008 (5)
C18A 0.0374 (7) 0.0308 (7) 0.0307 (7) 0.0120 (6) 0.0186 (6) 0.0078 (6)
C18B 0.0441 (8) 0.0243 (7) 0.0340 (7) −0.0074 (6) 0.0231 (6) −0.0047 (6)
C19A 0.0388 (8) 0.0307 (7) 0.0280 (7) 0.0076 (6) 0.0192 (6) 0.0076 (6)
C19B 0.0432 (8) 0.0256 (7) 0.0333 (7) −0.0040 (6) 0.0241 (6) −0.0071 (6)
N20A 0.0258 (5) 0.0292 (6) 0.0238 (5) 0.0037 (5) 0.0131 (5) 0.0012 (4)
N20B 0.0259 (5) 0.0215 (5) 0.0247 (5) −0.0015 (4) 0.0133 (4) 0.0003 (4)
C21A 0.0403 (8) 0.0473 (9) 0.0349 (8) 0.0146 (7) 0.0245 (7) 0.0140 (7)
C21B 0.0340 (7) 0.0312 (7) 0.0346 (7) −0.0067 (6) 0.0203 (6) −0.0081 (6)
C22A 0.0386 (8) 0.0528 (10) 0.0326 (7) 0.0115 (7) 0.0236 (7) 0.0100 (7)
C22B 0.0313 (7) 0.0359 (8) 0.0288 (7) −0.0021 (6) 0.0169 (6) −0.0038 (6)
C23A 0.0339 (8) 0.0656 (11) 0.0280 (7) 0.0033 (7) 0.0146 (6) −0.0062 (7)
C23B 0.0339 (7) 0.0434 (8) 0.0243 (6) 0.0013 (6) 0.0128 (6) 0.0064 (6)
C24A 0.0555 (10) 0.0388 (9) 0.0498 (9) 0.0015 (7) 0.0353 (8) −0.0071 (7)
C24B 0.0471 (8) 0.0283 (7) 0.0385 (8) −0.0014 (6) 0.0260 (7) 0.0063 (6)
C25A 0.0518 (9) 0.0355 (8) 0.0478 (9) −0.0040 (7) 0.0332 (8) −0.0098 (7)
C25B 0.0428 (8) 0.0268 (7) 0.0382 (8) 0.0044 (6) 0.0236 (7) 0.0069 (6)

Geometric parameters (Å, °)

N1A—C2A 1.3848 (16) C15A—C16A 1.3938 (16)
N1A—C9A 1.3856 (15) C15A—H15A 0.9500
N1A—C13A 1.4723 (16) C15B—C16B 1.3938 (16)
N1B—C2B 1.3858 (16) C15B—H15B 0.9500
N1B—C9B 1.3861 (15) C16A—C17A 1.3999 (18)
N1B—C13B 1.4728 (16) C16A—H16A 0.9500
C2A—C3A 1.3783 (17) C16B—C17B 1.3979 (17)
C2A—C14A 1.4884 (16) C16B—H16B 0.9500
C2B—C3B 1.3761 (17) C17A—C18A 1.4048 (17)
C2B—C14B 1.4895 (16) C17A—N20A 1.4124 (15)
C3A—O11A 1.3594 (15) C17B—C18B 1.4035 (17)
C3A—C4A 1.4352 (16) C17B—N20B 1.4088 (15)
C3B—O11B 1.3653 (15) C18A—C19A 1.3885 (17)
C3B—C4B 1.4311 (16) C18A—H18A 0.9500
C4A—O12A 1.2628 (14) C18B—C19B 1.3861 (17)
C4A—C10A 1.4514 (18) C18B—H18B 0.9500
C4B—O12B 1.2586 (15) C19A—H19A 0.9500
C4B—C10B 1.4489 (18) C19B—H19B 0.9500
C5A—C6A 1.3751 (19) N20A—C25A 1.4727 (18)
C5A—C10A 1.4113 (16) N20A—C21A 1.4729 (17)
C5A—H5A 0.9500 N20B—C21B 1.4670 (16)
C5B—C6B 1.3703 (19) N20B—C25B 1.4727 (17)
C5B—C10B 1.4112 (16) C21A—C22A 1.5159 (17)
C5B—H5B 0.9500 C21A—H21A 0.9900
C6A—C7A 1.3995 (19) C21A—H21B 0.9900
C6A—H6A 0.9500 C21B—C22B 1.5192 (17)
C6B—C7B 1.4043 (19) C21B—H21C 0.9900
C6B—H6B 0.9500 C21B—H21D 0.9900
C7A—C8A 1.3738 (18) C22A—C23A 1.504 (2)
C7A—H7A 0.9500 C22A—H22A 0.9900
C7B—C8B 1.3713 (17) C22A—H22B 0.9900
C7B—H7B 0.9500 C22B—C23B 1.512 (2)
C8A—C9A 1.4150 (18) C22B—H22C 0.9900
C8A—H8A 0.9500 C22B—H22D 0.9900
C8B—C9B 1.4154 (18) C23A—C24A 1.514 (2)
C8B—H8B 0.9500 C23A—H23A 0.9900
C9A—C10A 1.4097 (17) C23A—H23B 0.9900
C9B—C10B 1.4123 (17) C23B—C24B 1.517 (2)
O11A—H11A 0.8400 C23B—H23C 0.9900
O11B—H11B 0.8400 C23B—H23D 0.9900
C13A—H13A 0.9800 C24A—C25A 1.5196 (19)
C13A—H13B 0.9800 C24A—H24A 0.9900
C13A—H13C 0.9800 C24A—H24B 0.9900
C13B—H13D 0.9800 C24B—C25B 1.5167 (18)
C13B—H13E 0.9800 C24B—H24C 0.9900
C13B—H13F 0.9800 C24B—H24D 0.9900
C14A—C19A 1.3877 (18) C25A—H25A 0.9900
C14A—C15A 1.3897 (17) C25A—H25B 0.9900
C14B—C19B 1.3844 (18) C25B—H25C 0.9900
C14B—C15B 1.3913 (17) C25B—H25D 0.9900
C2A—N1A—C9A 120.87 (10) C17A—C16A—H16A 119.4
C2A—N1A—C13A 121.04 (10) C15B—C16B—C17B 121.14 (11)
C9A—N1A—C13A 118.08 (10) C15B—C16B—H16B 119.4
C2B—N1B—C9B 120.98 (10) C17B—C16B—H16B 119.4
C2B—N1B—C13B 120.51 (10) C16A—C17A—C18A 117.18 (11)
C9B—N1B—C13B 118.50 (10) C16A—C17A—N20A 122.18 (11)
C3A—C2A—N1A 120.75 (10) C18A—C17A—N20A 120.62 (11)
C3A—C2A—C14A 120.57 (11) C16B—C17B—C18B 117.15 (11)
N1A—C2A—C14A 118.67 (10) C16B—C17B—N20B 122.12 (10)
C3B—C2B—N1B 120.59 (10) C18B—C17B—N20B 120.71 (11)
C3B—C2B—C14B 121.24 (11) C19A—C18A—C17A 121.01 (12)
N1B—C2B—C14B 118.17 (10) C19A—C18A—H18A 119.5
O11A—C3A—C2A 118.74 (10) C17A—C18A—H18A 119.5
O11A—C3A—C4A 119.12 (10) C19B—C18B—C17B 120.89 (12)
C2A—C3A—C4A 122.10 (11) C19B—C18B—H18B 119.6
O11B—C3B—C2B 119.24 (10) C17B—C18B—H18B 119.6
O11B—C3B—C4B 118.53 (10) C14A—C19A—C18A 121.60 (12)
C2B—C3B—C4B 122.22 (11) C14A—C19A—H19A 119.2
O12A—C4A—C3A 121.55 (11) C18A—C19A—H19A 119.2
O12A—C4A—C10A 123.13 (10) C14B—C19B—C18B 122.04 (11)
C3A—C4A—C10A 115.30 (11) C14B—C19B—H19B 119.0
O12B—C4B—C3B 121.33 (11) C18B—C19B—H19B 119.0
O12B—C4B—C10B 123.16 (10) C17A—N20A—C25A 114.83 (10)
C3B—C4B—C10B 115.49 (10) C17A—N20A—C21A 115.13 (10)
C6A—C5A—C10A 121.00 (12) C25A—N20A—C21A 113.53 (11)
C6A—C5A—H5A 119.5 C17B—N20B—C21B 115.19 (10)
C10A—C5A—H5A 119.5 C17B—N20B—C25B 116.01 (9)
C6B—C5B—C10B 121.36 (12) C21B—N20B—C25B 115.63 (10)
C6B—C5B—H5B 119.3 N20A—C21A—C22A 113.16 (12)
C10B—C5B—H5B 119.3 N20A—C21A—H21A 108.9
C5A—C6A—C7A 119.19 (11) C22A—C21A—H21A 108.9
C5A—C6A—H6A 120.4 N20A—C21A—H21B 108.9
C7A—C6A—H6A 120.4 C22A—C21A—H21B 108.9
C5B—C6B—C7B 119.19 (12) H21A—C21A—H21B 107.8
C5B—C6B—H6B 120.4 N20B—C21B—C22B 113.98 (11)
C7B—C6B—H6B 120.4 N20B—C21B—H21C 108.8
C8A—C7A—C6A 121.65 (12) C22B—C21B—H21C 108.8
C8A—C7A—H7A 119.2 N20B—C21B—H21D 108.8
C6A—C7A—H7A 119.2 C22B—C21B—H21D 108.8
C8B—C7B—C6B 121.23 (12) H21C—C21B—H21D 107.7
C8B—C7B—H7B 119.4 C23A—C22A—C21A 111.99 (13)
C6B—C7B—H7B 119.4 C23A—C22A—H22A 109.2
C7A—C8A—C9A 119.61 (12) C21A—C22A—H22A 109.2
C7A—C8A—H8A 120.2 C23A—C22A—H22B 109.2
C9A—C8A—H8A 120.2 C21A—C22A—H22B 109.2
C7B—C8B—C9B 120.16 (12) H22A—C22A—H22B 107.9
C7B—C8B—H8B 119.9 C23B—C22B—C21B 111.76 (11)
C9B—C8B—H8B 119.9 C23B—C22B—H22C 109.3
N1A—C9A—C10A 119.54 (11) C21B—C22B—H22C 109.3
N1A—C9A—C8A 121.13 (11) C23B—C22B—H22D 109.3
C10A—C9A—C8A 119.33 (10) C21B—C22B—H22D 109.3
N1B—C9B—C10B 119.32 (11) H22C—C22B—H22D 107.9
N1B—C9B—C8B 121.68 (11) C22A—C23A—C24A 108.59 (12)
C10B—C9B—C8B 119.00 (10) C22A—C23A—H23A 110.0
C9A—C10A—C5A 119.19 (11) C24A—C23A—H23A 110.0
C9A—C10A—C4A 121.40 (10) C22A—C23A—H23B 110.0
C5A—C10A—C4A 119.41 (11) C24A—C23A—H23B 110.0
C5B—C10B—C9B 119.03 (11) H23A—C23A—H23B 108.4
C5B—C10B—C4B 119.65 (11) C22B—C23B—C24B 108.01 (11)
C9B—C10B—C4B 121.31 (10) C22B—C23B—H23C 110.1
C3A—O11A—H11A 109.5 C24B—C23B—H23C 110.1
C3B—O11B—H11B 109.5 C22B—C23B—H23D 110.1
N1A—C13A—H13A 109.5 C24B—C23B—H23D 110.1
N1A—C13A—H13B 109.5 H23C—C23B—H23D 108.4
H13A—C13A—H13B 109.5 C23A—C24A—C25A 111.89 (13)
N1A—C13A—H13C 109.5 C23A—C24A—H24A 109.2
H13A—C13A—H13C 109.5 C25A—C24A—H24A 109.2
H13B—C13A—H13C 109.5 C23A—C24A—H24B 109.2
N1B—C13B—H13D 109.5 C25A—C24A—H24B 109.2
N1B—C13B—H13E 109.5 H24A—C24A—H24B 107.9
H13D—C13B—H13E 109.5 C25B—C24B—C23B 112.00 (12)
N1B—C13B—H13F 109.5 C25B—C24B—H24C 109.2
H13D—C13B—H13F 109.5 C23B—C24B—H24C 109.2
H13E—C13B—H13F 109.5 C25B—C24B—H24D 109.2
C19A—C14A—C15A 117.75 (11) C23B—C24B—H24D 109.2
C19A—C14A—C2A 120.70 (10) H24C—C24B—H24D 107.9
C15A—C14A—C2A 121.55 (11) N20A—C25A—C24A 113.15 (12)
C19B—C14B—C15B 117.37 (11) N20A—C25A—H25A 108.9
C19B—C14B—C2B 121.12 (11) C24A—C25A—H25A 108.9
C15B—C14B—C2B 121.49 (11) N20A—C25A—H25B 108.9
C14A—C15A—C16A 121.29 (12) C24A—C25A—H25B 108.9
C14A—C15A—H15A 119.4 H25A—C25A—H25B 107.8
C16A—C15A—H15A 119.4 N20B—C25B—C24B 112.74 (11)
C14B—C15B—C16B 121.38 (12) N20B—C25B—H25C 109.0
C14B—C15B—H15B 119.3 C24B—C25B—H25C 109.0
C16B—C15B—H15B 119.3 N20B—C25B—H25D 109.0
C15A—C16A—C17A 121.14 (11) C24B—C25B—H25D 109.0
C15A—C16A—H16A 119.4 H25C—C25B—H25D 107.8
C9A—N1A—C2A—C3A −2.05 (18) C8B—C9B—C10B—C4B 178.16 (12)
C13A—N1A—C2A—C3A 176.69 (11) O12B—C4B—C10B—C5B 0.8 (2)
C9A—N1A—C2A—C14A 177.88 (11) C3B—C4B—C10B—C5B 179.28 (12)
C13A—N1A—C2A—C14A −3.38 (17) O12B—C4B—C10B—C9B −179.02 (12)
C9B—N1B—C2B—C3B −2.25 (18) C3B—C4B—C10B—C9B −0.57 (17)
C13B—N1B—C2B—C3B 177.70 (12) C3A—C2A—C14A—C19A −68.97 (17)
C9B—N1B—C2B—C14B 178.07 (11) N1A—C2A—C14A—C19A 111.11 (14)
C13B—N1B—C2B—C14B −1.98 (17) C3A—C2A—C14A—C15A 110.36 (14)
N1A—C2A—C3A—O11A 179.44 (11) N1A—C2A—C14A—C15A −69.56 (16)
C14A—C2A—C3A—O11A −0.49 (17) C3B—C2B—C14B—C19B −85.44 (16)
N1A—C2A—C3A—C4A 1.92 (18) N1B—C2B—C14B—C19B 94.23 (15)
C14A—C2A—C3A—C4A −178.00 (11) C3B—C2B—C14B—C15B 96.39 (15)
N1B—C2B—C3B—O11B 178.60 (11) N1B—C2B—C14B—C15B −83.93 (15)
C14B—C2B—C3B—O11B −1.73 (18) C19A—C14A—C15A—C16A −1.90 (19)
N1B—C2B—C3B—C4B −0.32 (19) C2A—C14A—C15A—C16A 178.75 (11)
C14B—C2B—C3B—C4B 179.35 (11) C19B—C14B—C15B—C16B 0.13 (19)
O11A—C3A—C4A—O12A 0.99 (18) C2B—C14B—C15B—C16B 178.36 (12)
C2A—C3A—C4A—O12A 178.50 (11) C14A—C15A—C16A—C17A 0.34 (19)
O11A—C3A—C4A—C10A −177.63 (10) C14B—C15B—C16B—C17B 0.38 (19)
C2A—C3A—C4A—C10A −0.12 (17) C15A—C16A—C17A—C18A 1.11 (19)
O11B—C3B—C4B—O12B 1.21 (18) C15A—C16A—C17A—N20A 179.44 (12)
C2B—C3B—C4B—O12B −179.86 (12) C15B—C16B—C17B—C18B −1.44 (19)
O11B—C3B—C4B—C10B −177.27 (10) C15B—C16B—C17B—N20B 176.69 (11)
C2B—C3B—C4B—C10B 1.66 (18) C16A—C17A—C18A—C19A −1.0 (2)
C10A—C5A—C6A—C7A 0.9 (2) N20A—C17A—C18A—C19A −179.35 (12)
C10B—C5B—C6B—C7B 0.6 (2) C16B—C17B—C18B—C19B 2.1 (2)
C5A—C6A—C7A—C8A 0.9 (2) N20B—C17B—C18B—C19B −176.11 (12)
C5B—C6B—C7B—C8B −0.8 (2) C15A—C14A—C19A—C18A 2.0 (2)
C6A—C7A—C8A—C9A −1.6 (2) C2A—C14A—C19A—C18A −178.62 (13)
C6B—C7B—C8B—C9B −0.2 (2) C17A—C18A—C19A—C14A −0.6 (2)
C2A—N1A—C9A—C10A 0.34 (17) C15B—C14B—C19B—C18B 0.5 (2)
C13A—N1A—C9A—C10A −178.43 (11) C2B—C14B—C19B—C18B −177.74 (13)
C2A—N1A—C9A—C8A 179.67 (11) C17B—C18B—C19B—C14B −1.6 (2)
C13A—N1A—C9A—C8A 0.89 (17) C16A—C17A—N20A—C25A 140.73 (13)
C7A—C8A—C9A—N1A −178.84 (12) C18A—C17A—N20A—C25A −41.00 (17)
C7A—C8A—C9A—C10A 0.48 (19) C16A—C17A—N20A—C21A 6.07 (18)
C2B—N1B—C9B—C10B 3.28 (17) C18A—C17A—N20A—C21A −175.65 (13)
C13B—N1B—C9B—C10B −176.67 (12) C16B—C17B—N20B—C21B 9.31 (17)
C2B—N1B—C9B—C8B −176.71 (11) C18B—C17B—N20B—C21B −172.62 (12)
C13B—N1B—C9B—C8B 3.34 (18) C16B—C17B—N20B—C25B 148.90 (13)
C7B—C8B—C9B—N1B −178.50 (12) C18B—C17B—N20B—C25B −33.03 (17)
C7B—C8B—C9B—C10B 1.51 (19) C17A—N20A—C21A—C22A −176.03 (12)
N1A—C9A—C10A—C5A −179.41 (11) C25A—N20A—C21A—C22A 48.73 (17)
C8A—C9A—C10A—C5A 1.25 (18) C17B—N20B—C21B—C22B −175.92 (11)
N1A—C9A—C10A—C4A 1.49 (18) C25B—N20B—C21B—C22B 44.34 (17)
C8A—C9A—C10A—C4A −177.84 (11) N20A—C21A—C22A—C23A −53.71 (18)
C6A—C5A—C10A—C9A −1.97 (19) N20B—C21B—C22B—C23B −50.97 (17)
C6A—C5A—C10A—C4A 177.14 (12) C21A—C22A—C23A—C24A 56.61 (17)
O12A—C4A—C10A—C9A 179.83 (11) C21B—C22B—C23B—C24B 57.25 (15)
C3A—C4A—C10A—C9A −1.57 (17) C22A—C23A—C24A—C25A −56.29 (18)
O12A—C4A—C10A—C5A 0.74 (18) C22B—C23B—C24B—C25B −58.65 (16)
C3A—C4A—C10A—C5A 179.34 (11) C17A—N20A—C25A—C24A 176.14 (12)
C6B—C5B—C10B—C9B 0.6 (2) C21A—N20A—C25A—C24A −48.48 (18)
C6B—C5B—C10B—C4B −179.21 (13) C23A—C24A—C25A—N20A 53.05 (19)
N1B—C9B—C10B—C5B 178.31 (12) C17B—N20B—C25B—C24B 175.63 (12)
C8B—C9B—C10B—C5B −1.70 (18) C21B—N20B—C25B—C24B −44.96 (17)
N1B—C9B—C10B—C4B −1.84 (18) C23B—C24B—C25B—N20B 52.75 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O11A—H11A···O12A 0.84 2.32 2.760 (2) 113
O11A—H11A···O12B 0.84 1.95 2.723 (2) 153
O11B—H11B···O12A 0.84 2.01 2.791 (2) 154
O11B—H11B···O12B 0.84 2.30 2.741 (2) 113
C24B—H24D···O12Ai 0.99 2.52 3.475 (2) 162

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2406).

References

  1. Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.
  2. Bilokin’, M. D., Shvadchak, V. V., Yushchenko, D. A., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2009). J. Fluoresc. 19, 545–553. [DOI] [PubMed]
  3. Czaun, M., Ganszky, I., Speier, G. & Párkányi, L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 379–380.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hradil, P., Hlaváč, J. & Lemr, K. (1999). J. Heterocycl. Chem. 36, 141–144.
  6. Mitscher, L. D. (2005). Chem. Rev. 105, 559–592. [DOI] [PubMed]
  7. Mphahlele, M. J. & El-Nahas, A. M. (2004). J. Mol. Struct. 688, 129–136.
  8. Mphahlele, M. J., Fernandes, M. A., El-Nahas, A. M., Ottosson, H., Ndlovu, S. M., Sithole, H. M., Dladla, B. S. & De Waal, D. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 2159–2164.
  9. Novoa, J. J., Mota, F. & DOria, E. (2006). Hydrogen BondingNew Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  10. Oxford Diffraction (2003). CrysAlis RED and CrysAlis CCD Oxford Diffraction Poland, Wrocław, Poland.
  11. Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Yushchenko, D. A., Bilokin’, M. D., Pyvovarenko, O. V., Duportail, G., Mély, Y. & Pivovarenko, V. G. (2006). Tetrahedron Lett. 47, 905–908.
  15. Yushchenko, D. A., Shvadchak, V. V., Klymchenko, A. S., Duportail, G., Pivovarenko, V. G. & Mély, Y. (2007). J. Phys. Chem. A, 111, 8986–8992. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005046/om2406sup1.cif

e-67-0o654-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005046/om2406Isup2.hkl

e-67-0o654-Isup2.hkl (668.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES