Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):m328. doi: 10.1107/S1600536811004818

{6,6′-Dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}nickel(II) dimethyl­formamide monosolvate

Kouassi Ayikoé a, Ray J Butcher a,*, Yilma Gultneh a
PMCID: PMC3051997  PMID: 21522259

Abstract

In the title compound, [Ni(C18H18N2O4)]·C3H7NO, the central NiII atom is in a square-planar O2N2 coordination environment. The planar Ni–salen moieties (r.m.s. deviation for the plane through the conjugated part of the Ni–salen group = 0.07 Å) form parallel stacks in the a-axis direction, with alternating Ni⋯Ni separations of 3.5339 (7) and 3.6165 (7) Å. In the crystal, there are weak inter­molecular C—H⋯O inter­actions involving the dimethyl­formamide O and phenolate O atoms.

Related literature

For stacking of Ni–salen units, see: Abe et al. (2006); Assey et al. (2010); Feng et al. (2007); Miyamura et al. (1995); Vasil’eva et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-0m328-scheme1.jpg

Experimental

Crystal data

  • [Ni(C18H18N2O4)]·C3H7NO

  • M r = 458.15

  • Monoclinic, Inline graphic

  • a = 6.8601 (1) Å

  • b = 15.3432 (3) Å

  • c = 18.9065 (4) Å

  • β = 91.676 (2)°

  • V = 1989.17 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.75 mm−1

  • T = 110 K

  • 0.53 × 0.35 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.750, T max = 1.000

  • 7909 measured reflections

  • 3911 independent reflections

  • 3513 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.114

  • S = 1.10

  • 3911 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004818/tk2717sup1.cif

e-67-0m328-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004818/tk2717Isup2.hkl

e-67-0m328-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—N1 1.8503 (17)
Ni—N2 1.8502 (17)
Ni—O1 1.8609 (13)
Ni—O2 1.8594 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1S 0.95 2.62 3.310 (3) 130
C9—H9A⋯O2i 0.99 2.45 3.334 (3) 148
C10—H10A⋯O1ii 0.99 2.45 3.348 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. KA wishes to thank the National Science Foundation’s AGEP Fellowship for support.

supplementary crystallographic information

Comment

The title compound is a composed of one mononuclear nickel salen-type complex and one molecule of dimethylformamide as solvate. The central Ni is in a square planar O2N2 coordination environment (Fig. 1). The Ni—N and Ni—O bond distances, Table 1, are in the normal range for Ni-salen type complexes (Allen, 2002). The planar Ni salen moieties form parallel stacks in the a direction with alternating Ni—Ni separations of 3.5339 (7) and 3.6165 (7) Å as is common for this type of complex (Abe et al., 2006; Assey et al., 2010; Feng et al., 2007; Miyamura et al., 1995; Vasil'eva et al., 2003). There are weak intermolecular C—H···O interactions involving the DMF O and phenolic O atoms (Table 2 and Fig. 2).

Experimental

The ligand, N,N'-bis(3-methoxysalicylaldehyde)ethylenediimine (H2L1), was synthesized in a conventional way by mixing o-vanillin with ethylenediamine. To 10 g (0.066 mole) of o-vanillin weighed into a 100 ml round-bottom flask, 30 ml of methanol and 3 mL (0.035 mole) of ethylenediamine were added drop-wise while stirring. The resulting mixture was refluxed at a regulated temperature of 313 K overnight. The yellow precipitate was filtered under vacuum, dissolved in methanol and filtered a second time.

To a stirred bright yellow solution of 20 ml methanol containing 0.9 g (2.74 mmol) of H2L1, a 20 ml green methanol solution of 0.65 g NiCl2.6H2O (2.73 mmol) was added drop-wise with continuous stirring. About 2 to 3 drops of triethylamine was added to activate deprotonation of the 2-hydroxyl group on the aldehyde moiety and promote oxygen binding to the metal. The resulting dark brown complex solution was stirred and refluxed overnight at 313 K, rotary-evaporated and washed with ethanol to obtain a brown solid in over 90% yield. The complex (7 mg) was dissolved in 5 ml of N,N'-dimethyl formamide and filtered into a crystallization tube. Sufficient amount of diethyl ether was slowly layered over the dissolved complex yielding red brown crystals after several days.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for CH3].

Figures

Fig. 1.

Fig. 1.

The molecular structures of the complex, C18H18N3NiO5, and solvent, C3H7NO, showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing for C18H18N3NiO5.C3H7NO, viewed down the a axis showing overlapping Nisalen units.

Crystal data

[Ni(C18H18N2O4)]·C3H7NO F(000) = 960
Mr = 458.15 Dx = 1.530 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 5823 reflections
a = 6.8601 (1) Å θ = 5.5–73.9°
b = 15.3432 (3) Å µ = 1.75 mm1
c = 18.9065 (4) Å T = 110 K
β = 91.676 (2)° Prism, red brown
V = 1989.17 (6) Å3 0.53 × 0.35 × 0.28 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector 3911 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3513 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 10.5081 pixels mm-1 θmax = 74.1°, θmin = 5.5°
ω scans h = −8→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −18→18
Tmin = 0.750, Tmax = 1.000 l = −22→23
7909 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0443P)2 + 2.5615P] where P = (Fo2 + 2Fc2)/3
3911 reflections (Δ/σ)max = 0.001
275 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.74901 (5) 0.498467 (19) 0.526650 (16) 0.01230 (13)
O1 0.7304 (2) 0.41708 (9) 0.59911 (7) 0.0156 (3)
O2 0.7642 (2) 0.58041 (9) 0.59906 (7) 0.0153 (3)
O3 0.7206 (2) 0.32568 (9) 0.71759 (7) 0.0202 (3)
O4 0.7569 (2) 0.67226 (9) 0.71712 (7) 0.0219 (3)
O1S 0.5907 (2) −0.00040 (9) 0.71449 (9) 0.0270 (4)
N1 0.7406 (2) 0.41614 (11) 0.45511 (9) 0.0159 (3)
N2 0.7631 (2) 0.57987 (11) 0.45478 (9) 0.0160 (3)
N1S 0.2629 (3) −0.00026 (10) 0.69058 (10) 0.0191 (4)
C1 0.7385 (3) 0.33191 (13) 0.59320 (10) 0.0143 (4)
C2 0.7330 (3) 0.27939 (13) 0.65578 (10) 0.0159 (4)
C3 0.7344 (3) 0.27729 (14) 0.78197 (11) 0.0214 (4)
H3A 0.7272 0.3173 0.8222 0.032*
H3B 0.8588 0.2459 0.7845 0.032*
H3C 0.6266 0.2355 0.7834 0.032*
C4 0.7376 (3) 0.18962 (13) 0.65251 (11) 0.0198 (4)
H4A 0.7304 0.1564 0.6948 0.024*
C5 0.7531 (3) 0.14675 (13) 0.58720 (12) 0.0257 (5)
H5A 0.7577 0.0849 0.5853 0.031*
C6 0.7613 (3) 0.19459 (15) 0.52644 (12) 0.0251 (5)
H6A 0.7735 0.1657 0.4823 0.030*
C7 0.7518 (3) 0.28656 (14) 0.52840 (11) 0.0191 (4)
C8 0.7480 (3) 0.33263 (14) 0.46263 (11) 0.0194 (4)
H8A 0.7513 0.2987 0.4207 0.023*
C9 0.7123 (3) 0.45208 (15) 0.38295 (10) 0.0219 (4)
H9A 0.5720 0.4523 0.3692 0.026*
H9B 0.7824 0.4159 0.3486 0.026*
C10 0.7908 (3) 0.54324 (14) 0.38323 (10) 0.0215 (4)
H10A 0.9310 0.5429 0.3722 0.026*
H10B 0.7202 0.5789 0.3472 0.026*
C11 0.7590 (3) 0.66365 (14) 0.46181 (11) 0.0195 (4)
H11A 0.7622 0.6974 0.4197 0.023*
C12 0.7500 (3) 0.71005 (14) 0.52714 (11) 0.0192 (4)
C13 0.7388 (3) 0.80217 (15) 0.52450 (12) 0.0252 (5)
H13A 0.7355 0.8308 0.4799 0.030*
C14 0.7328 (3) 0.85024 (14) 0.58504 (13) 0.0268 (5)
H14A 0.7254 0.9120 0.5827 0.032*
C15 0.7376 (3) 0.80773 (13) 0.65102 (12) 0.0203 (4)
H15A 0.7318 0.8411 0.6933 0.024*
C16 0.7506 (3) 0.71821 (13) 0.65496 (10) 0.0164 (4)
C17 0.7597 (3) 0.72153 (15) 0.78123 (11) 0.0220 (4)
H17A 0.7687 0.6818 0.8218 0.033*
H17B 0.6397 0.7559 0.7836 0.033*
H17C 0.8726 0.7607 0.7823 0.033*
C18 0.7554 (3) 0.66541 (13) 0.59253 (10) 0.0146 (4)
C1S 0.4214 (3) −0.00156 (11) 0.73382 (12) 0.0181 (4)
H1SA 0.4011 −0.0035 0.7833 0.022*
C2S 0.0692 (3) −0.00288 (14) 0.71929 (14) 0.0270 (5)
H2SA 0.0795 −0.0017 0.7711 0.040*
H2SB 0.0029 −0.0564 0.7038 0.040*
H2SC −0.0057 0.0478 0.7024 0.040*
C3S 0.2806 (5) 0.00255 (16) 0.61430 (13) 0.0347 (6)
H3SA 0.4173 0.0120 0.6028 0.052*
H3SB 0.2009 0.0503 0.5948 0.052*
H3SC 0.2355 −0.0528 0.5938 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0174 (2) 0.0113 (2) 0.00815 (19) −0.00089 (12) 0.00040 (13) 0.00026 (11)
O1 0.0232 (7) 0.0109 (6) 0.0127 (6) −0.0014 (5) 0.0010 (5) 0.0000 (5)
O2 0.0216 (7) 0.0113 (6) 0.0131 (6) −0.0013 (5) 0.0005 (5) −0.0001 (5)
O3 0.0333 (8) 0.0145 (7) 0.0130 (7) 0.0003 (6) 0.0024 (6) 0.0026 (5)
O4 0.0373 (9) 0.0150 (7) 0.0135 (7) −0.0009 (6) 0.0018 (6) −0.0027 (5)
O1S 0.0217 (8) 0.0249 (9) 0.0347 (9) 0.0000 (6) 0.0039 (7) 0.0014 (6)
N1 0.0175 (8) 0.0195 (9) 0.0105 (8) −0.0004 (7) −0.0001 (6) −0.0017 (6)
N2 0.0169 (8) 0.0201 (9) 0.0110 (8) −0.0018 (6) −0.0002 (6) 0.0023 (6)
N1S 0.0239 (9) 0.0172 (9) 0.0162 (9) −0.0004 (7) −0.0001 (7) 0.0003 (6)
C1 0.0135 (9) 0.0121 (9) 0.0173 (9) −0.0003 (7) 0.0005 (7) −0.0002 (7)
C2 0.0140 (9) 0.0163 (10) 0.0176 (9) −0.0002 (7) 0.0012 (7) 0.0000 (7)
C3 0.0244 (11) 0.0227 (10) 0.0171 (10) −0.0001 (8) 0.0008 (8) 0.0067 (8)
C4 0.0203 (10) 0.0152 (10) 0.0238 (11) −0.0002 (8) −0.0001 (8) 0.0035 (8)
C5 0.0328 (12) 0.0108 (9) 0.0334 (13) −0.0007 (8) −0.0017 (10) −0.0022 (8)
C6 0.0339 (12) 0.0177 (11) 0.0237 (11) −0.0002 (9) 0.0001 (9) −0.0073 (8)
C7 0.0207 (10) 0.0175 (10) 0.0190 (10) 0.0012 (8) −0.0008 (8) −0.0036 (8)
C8 0.0233 (10) 0.0202 (10) 0.0146 (9) −0.0008 (8) 0.0001 (8) −0.0074 (8)
C9 0.0272 (11) 0.0281 (11) 0.0104 (9) −0.0022 (9) −0.0006 (8) −0.0006 (8)
C10 0.0259 (11) 0.0274 (11) 0.0114 (9) −0.0025 (9) 0.0018 (8) 0.0014 (8)
C11 0.0235 (10) 0.0194 (10) 0.0155 (9) −0.0012 (8) −0.0005 (8) 0.0079 (8)
C12 0.0205 (10) 0.0175 (10) 0.0195 (10) 0.0008 (8) 0.0020 (8) 0.0034 (8)
C13 0.0320 (12) 0.0164 (10) 0.0272 (12) −0.0003 (9) −0.0001 (9) 0.0087 (8)
C14 0.0347 (13) 0.0111 (10) 0.0344 (13) −0.0007 (9) 0.0005 (10) 0.0022 (9)
C15 0.0192 (10) 0.0146 (10) 0.0270 (11) −0.0005 (8) 0.0018 (8) −0.0043 (8)
C16 0.0137 (9) 0.0161 (9) 0.0192 (10) −0.0008 (7) −0.0002 (7) 0.0000 (8)
C17 0.0250 (11) 0.0232 (11) 0.0178 (10) 0.0007 (8) 0.0010 (8) −0.0079 (8)
C18 0.0135 (9) 0.0124 (9) 0.0179 (10) −0.0008 (7) −0.0002 (7) 0.0002 (7)
C1S 0.0229 (10) 0.0114 (9) 0.0200 (10) −0.0017 (7) 0.0006 (8) −0.0005 (7)
C2S 0.0208 (11) 0.0254 (12) 0.0347 (13) −0.0012 (8) 0.0004 (9) 0.0028 (9)
C3S 0.0537 (17) 0.0342 (14) 0.0161 (11) 0.0016 (11) −0.0033 (11) −0.0005 (9)

Geometric parameters (Å, °)

Ni—N1 1.8503 (17) C6—H6A 0.9500
Ni—N2 1.8502 (17) C7—C8 1.430 (3)
Ni—O1 1.8609 (13) C8—H8A 0.9500
Ni—O2 1.8594 (13) C9—C10 1.499 (3)
O1—C1 1.313 (2) C9—H9A 0.9900
O2—C18 1.311 (2) C9—H9B 0.9900
O3—C2 1.372 (2) C10—H10A 0.9900
O3—C3 1.427 (2) C10—H10B 0.9900
O4—C16 1.370 (2) C11—C12 1.429 (3)
O4—C17 1.428 (2) C11—H11A 0.9500
O1S—C1S 1.228 (3) C12—C18 1.413 (3)
N1—C8 1.290 (3) C12—C13 1.416 (3)
N1—C9 1.479 (2) C13—C14 1.363 (3)
N2—C11 1.293 (3) C13—H13A 0.9500
N2—C10 1.482 (2) C14—C15 1.407 (3)
N1S—C1S 1.341 (3) C14—H14A 0.9500
N1S—C2S 1.451 (3) C15—C16 1.378 (3)
N1S—C3S 1.451 (3) C15—H15A 0.9500
C1—C7 1.414 (3) C16—C18 1.433 (3)
C1—C2 1.433 (3) C17—H17A 0.9800
C2—C4 1.379 (3) C17—H17B 0.9800
C3—H3A 0.9800 C17—H17C 0.9800
C3—H3B 0.9800 C1S—H1SA 0.9500
C3—H3C 0.9800 C2S—H2SA 0.9800
C4—C5 1.406 (3) C2S—H2SB 0.9800
C4—H4A 0.9500 C2S—H2SC 0.9800
C5—C6 1.366 (3) C3S—H3SA 0.9800
C5—H5A 0.9500 C3S—H3SB 0.9800
C6—C7 1.413 (3) C3S—H3SC 0.9800
N2—Ni—N1 85.71 (8) C10—C9—H9B 110.1
N2—Ni—O2 94.66 (7) H9A—C9—H9B 108.4
N1—Ni—O2 178.51 (7) N2—C10—C9 107.53 (16)
N2—Ni—O1 179.01 (7) N2—C10—H10A 110.2
N1—Ni—O1 94.51 (7) C9—C10—H10A 110.2
O2—Ni—O1 85.14 (6) N2—C10—H10B 110.2
C1—O1—Ni 126.96 (12) C9—C10—H10B 110.2
C18—O2—Ni 127.00 (12) H10A—C10—H10B 108.5
C2—O3—C3 116.94 (16) N2—C11—C12 125.87 (19)
C16—O4—C17 117.06 (16) N2—C11—H11A 117.1
C8—N1—C9 118.40 (17) C12—C11—H11A 117.1
C8—N1—Ni 126.67 (15) C18—C12—C13 120.97 (19)
C9—N1—Ni 114.85 (13) C18—C12—C11 120.96 (19)
C11—N2—C10 118.33 (17) C13—C12—C11 118.07 (19)
C11—N2—Ni 126.45 (14) C14—C13—C12 120.9 (2)
C10—N2—Ni 115.16 (13) C14—C13—H13A 119.6
C1S—N1S—C2S 120.44 (19) C12—C13—H13A 119.6
C1S—N1S—C3S 121.1 (2) C13—C14—C15 119.53 (19)
C2S—N1S—C3S 118.5 (2) C13—C14—H14A 120.2
O1—C1—C7 124.57 (18) C15—C14—H14A 120.2
O1—C1—C2 119.16 (17) C16—C15—C14 120.6 (2)
C7—C1—C2 116.27 (18) C16—C15—H15A 119.7
O3—C2—C4 123.86 (18) C14—C15—H15A 119.7
O3—C2—C1 114.57 (17) O4—C16—C15 124.02 (19)
C4—C2—C1 121.56 (18) O4—C16—C18 114.50 (17)
O3—C3—H3A 109.5 C15—C16—C18 121.47 (19)
O3—C3—H3B 109.5 O4—C17—H17A 109.5
H3A—C3—H3B 109.5 O4—C17—H17B 109.5
O3—C3—H3C 109.5 H17A—C17—H17B 109.5
H3A—C3—H3C 109.5 O4—C17—H17C 109.5
H3B—C3—H3C 109.5 H17A—C17—H17C 109.5
C2—C4—C5 120.60 (19) H17B—C17—H17C 109.5
C2—C4—H4A 119.7 O2—C18—C12 124.36 (18)
C5—C4—H4A 119.7 O2—C18—C16 119.15 (17)
C6—C5—C4 119.57 (19) C12—C18—C16 116.49 (18)
C6—C5—H5A 120.2 O1S—C1S—N1S 125.1 (2)
C4—C5—H5A 120.2 O1S—C1S—H1SA 117.4
C5—C6—C7 120.8 (2) N1S—C1S—H1SA 117.4
C5—C6—H6A 119.6 N1S—C2S—H2SA 109.5
C7—C6—H6A 119.6 N1S—C2S—H2SB 109.5
C6—C7—C1 121.21 (19) H2SA—C2S—H2SB 109.5
C6—C7—C8 118.07 (19) N1S—C2S—H2SC 109.5
C1—C7—C8 120.68 (19) H2SA—C2S—H2SC 109.5
N1—C8—C7 125.91 (19) H2SB—C2S—H2SC 109.5
N1—C8—H8A 117.0 N1S—C3S—H3SA 109.5
C7—C8—H8A 117.0 N1S—C3S—H3SB 109.5
N1—C9—C10 107.90 (16) H3SA—C3S—H3SB 109.5
N1—C9—H9A 110.1 N1S—C3S—H3SC 109.5
C10—C9—H9A 110.1 H3SA—C3S—H3SC 109.5
N1—C9—H9B 110.1 H3SB—C3S—H3SC 109.5
N2—Ni—O1—C1 111 (4) C2—C1—C7—C8 176.74 (18)
N1—Ni—O1—C1 8.14 (16) C9—N1—C8—C7 −172.29 (19)
O2—Ni—O1—C1 −170.41 (16) Ni—N1—C8—C7 4.3 (3)
N2—Ni—O2—C18 8.98 (16) C6—C7—C8—N1 −179.6 (2)
N1—Ni—O2—C18 113 (3) C1—C7—C8—N1 2.8 (3)
O1—Ni—O2—C18 −170.05 (16) C8—N1—C9—C10 −156.46 (19)
N2—Ni—N1—C8 172.71 (18) Ni—N1—C9—C10 26.6 (2)
O2—Ni—N1—C8 68 (3) C11—N2—C10—C9 −157.70 (19)
O1—Ni—N1—C8 −8.25 (18) Ni—N2—C10—C9 25.0 (2)
N2—Ni—N1—C9 −10.60 (14) N1—C9—C10—N2 −31.2 (2)
O2—Ni—N1—C9 −115 (3) C10—N2—C11—C12 −174.43 (19)
O1—Ni—N1—C9 168.43 (14) Ni—N2—C11—C12 2.5 (3)
N1—Ni—N2—C11 174.22 (18) N2—C11—C12—C18 3.5 (3)
O2—Ni—N2—C11 −7.22 (18) N2—C11—C12—C13 −177.6 (2)
O1—Ni—N2—C11 71 (4) C18—C12—C13—C14 −0.1 (3)
N1—Ni—N2—C10 −8.76 (14) C11—C12—C13—C14 −179.0 (2)
O2—Ni—N2—C10 169.79 (14) C12—C13—C14—C15 0.0 (3)
O1—Ni—N2—C10 −112 (4) C13—C14—C15—C16 0.8 (3)
Ni—O1—C1—C7 −4.0 (3) C17—O4—C16—C15 −3.2 (3)
Ni—O1—C1—C2 176.32 (13) C17—O4—C16—C18 177.79 (16)
C3—O3—C2—C4 6.9 (3) C14—C15—C16—O4 179.68 (19)
C3—O3—C2—C1 −173.86 (17) C14—C15—C16—C18 −1.4 (3)
O1—C1—C2—O3 −0.4 (3) Ni—O2—C18—C12 −6.0 (3)
C7—C1—C2—O3 179.85 (17) Ni—O2—C18—C16 173.96 (13)
O1—C1—C2—C4 178.85 (18) C13—C12—C18—O2 179.44 (19)
C7—C1—C2—C4 −0.9 (3) C11—C12—C18—O2 −1.6 (3)
O3—C2—C4—C5 −179.16 (18) C13—C12—C18—C16 −0.5 (3)
C1—C2—C4—C5 1.6 (3) C11—C12—C18—C16 178.44 (18)
C2—C4—C5—C6 −0.7 (3) O4—C16—C18—O2 0.3 (3)
C4—C5—C6—C7 −0.9 (3) C15—C16—C18—O2 −178.73 (18)
C5—C6—C7—C1 1.6 (3) O4—C16—C18—C12 −179.74 (17)
C5—C6—C7—C8 −175.9 (2) C15—C16—C18—C12 1.2 (3)
O1—C1—C7—C6 179.6 (2) C2S—N1S—C1S—O1S 179.27 (18)
C2—C1—C7—C6 −0.7 (3) C3S—N1S—C1S—O1S 0.1 (3)
O1—C1—C7—C8 −3.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O1S 0.95 2.62 3.310 (3) 130
C9—H9A···O2i 0.99 2.45 3.334 (3) 148
C10—H10A···O1ii 0.99 2.45 3.348 (3) 151

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2717).

References

  1. Abe, Y., Akao, H., Yoshida, Y., Takashima, H., Tanase, T., Mukai, H. & Ohta, K. (2006). Inorg. Chim. Acta, 359, 3147–3155.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Assey, G., Gultneh, Y. & Butcher, R. J. (2010). Acta Cryst. E66, m654–m655. [DOI] [PMC free article] [PubMed]
  4. Feng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem 26, 1033–1038.
  5. Miyamura, K., Mihara, A., Fujii, T., Gohshi, Y. & Ishii, Y. (1995). J. Am. Chem. Soc. 117, 2377–2378.
  6. Oxford Diffraction (2009). CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vasil’eva, S. V., Chepurnaya, I. A., Logvinov, S. A., Gaman’kov, P. V. & Timonov, A. M. (2003). Russ. J. Electrochem. 39, 310–313.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811004818/tk2717sup1.cif

e-67-0m328-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004818/tk2717Isup2.hkl

e-67-0m328-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES