Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 16;67(Pt 3):m342. doi: 10.1107/S1600536811004867

catena-Poly[[[diaqua­cadmium]-μ-2,2′-(1,2-phenyl­enedi­oxy)diacetato] mono­hydrate]

Huan-Fu Hou a, Xiu-Ling Zhang a,b,*
PMCID: PMC3052000  PMID: 21522271

Abstract

In the title coordination complex, {[Cd(C10H8O6)(H2O)2]·H2O}n the CdII atom is seven-coordinated in a distorted penta­gonal–bipyramidal geometry, the penta­gonal plane comprising four O-atom donors from the 2,2′-(1,2-phenyl­enedi­oxy)diacetate chelate ligand together with a bridging carboxyl­ate O-atom donor, with the axial sites occupied by two water mol­ecules. The resulting helical chains extend along the b axis and are inter­connected by extensive O—H⋯O hydrogen-bonding inter­actions, which also involve the water mol­ecule of solvation, giving a three-dimensional structure.

Related literature

For rigid polycarboxyl­ate ligands, see: Liu et al. (2010); Rao et al. (2004). For flexible carboxyl­ate complexes, see: Dai et al. (2009)graphic file with name e-67-0m342-scheme1.jpg

Experimental

Crystal data

  • [Cd(C10H8O6)(H2O)2]·H2O

  • M r = 390.61

  • Monoclinic, Inline graphic

  • a = 7.624 (1) Å

  • b = 7.156 (1) Å

  • c = 23.190 (2) Å

  • β = 93.083 (1)°

  • V = 1263.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.671, T max = 0.787

  • 7467 measured reflections

  • 2893 independent reflections

  • 2676 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.049

  • S = 1.05

  • 2893 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004867/zs2094sup1.cif

e-67-0m342-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004867/zs2094Isup2.hkl

e-67-0m342-Isup2.hkl (142.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O3Wi 0.84 2.11 2.892 (3) 154
O1W—H12W⋯O1ii 0.84 1.87 2.686 (2) 164
O2W—H21W⋯O6iii 0.84 2.06 2.873 (3) 165
O2W—H22W⋯O3Wiv 0.84 2.03 2.860 (3) 170
O3W—H31W⋯O6 0.84 2.09 2.887 (3) 157
O3W—H32W⋯O2v 0.85 1.99 2.835 (2) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20971018), the Natural Science Foundation of Shandong Province (grant No. ZR2010BL010) and the Key Technologies R&D Program of Shandong Province (grant No. 2010GWZ20251).

supplementary crystallographic information

Comment

Rigid polycarboxylate ligands have been employed extensively for the construction of metal-organic polymers, e.g. 1,3-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and 4,4'-biphenyldicarboxylate (Liu et al., 2010; Rao et al., 2004). Compared to rigid ligands with a single conformation, flexible ligands may adopt variable conformations when coordinated to metal ions, making it more difficult to predict and control the final coordination networks. Therefore using flexible ligands in the formation of coordination polymers may generate novel complexes with interesting topologies and attractive properties (Dai et al., 2009). The title compound {[(C10H8O6)(H2O)2Cd] . H2O}n (I), was prepared from the reaction of the flexible carboxylate ligand, the 1,2-phenylenedioxydiacetate dianion (PDA) with CdII and the structure is reported here.

In (I) (Fig. 1) the CdII cation is seven-coordinated, involving two carboxyl and two phenoxy O donors (O2, O3, O4, O5) from a PDA ligand [Cd—O range 2.2424 (19) Å–2.5285 (16) Å], and a bridging carboxylate O donor (O6) [Cd—Oi, 2.3596 (15) Å] [for symmetry code (i), see Table 1], which lie in the pentagonal plane of a distorted pentagonal bipyramid. Two water molecules (O1W, O2W) occupy the axial sites (Cd—O, 2.296 (2), 2.316 (2) Å]. The bond angles about CdII are in the range of 61.11 (5) to 165.45 (5) °. The mononuclear units of (I) are connected via the bridging O6i atoms to give helical chains extending along the b axis of the unit cell (Fig. 2). The chains are further inter-connected by extensive hydrogen-bonding interactions (Table 1) involving also the water molecule of solvation (O3W), giving rise to the three-dimensional molecular architecture (Fig. 3).

Experimental

A mixture of 1,2-phenylenedioxydiacetic acid (H2PDA) (0.023 g, 0.1 mmol) and Cd(NO3)2 . 4H2O (0.038 g, 0.1 mmol) in H2O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 160 °C for 72 h, giving colorless block crystals of (I), which were collected by filtration. The crystals obtained were washed with water and dried in air. Yield: 0.029 g (74% based on Cd).

Refinement

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93–0.97%A and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water molecules were located from the Fourier map with the O—H distances being fixed at 0.85%A and allowed to ride on their parent oxygen atoms in the final cycles of refinement, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the CdIIcoordination environment of (I) with the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. For symmetry code (i), see Table 1.

Fig. 2.

Fig. 2.

The one-dimensional helical chain structure of (I) viewed along the a axis.

Fig. 3.

Fig. 3.

The packing diagram of (I) viewed along the b axis.

Crystal data

[Cd(C10H8O6)(H2O)2]·H2O F(000) = 776
Mr = 390.61 Dx = 2.054 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4670 reflections
a = 7.624 (1) Å θ = 2.8–27.5°
b = 7.156 (1) Å µ = 1.77 mm1
c = 23.190 (2) Å T = 296 K
β = 93.083 (1)° Block, colorless
V = 1263.4 (3) Å3 0.25 × 0.20 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2893 independent reflections
Radiation source: fine-focus sealed tube 2676 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.671, Tmax = 0.787 k = −9→5
7467 measured reflections l = −29→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.8227P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
2893 reflections Δρmax = 0.52 e Å3
181 parameters Δρmin = −0.43 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9769 (3) 1.4246 (3) 0.10705 (9) 0.0281 (4)
C2 0.9052 (3) 1.3164 (3) 0.05451 (8) 0.0262 (4)
H2A 0.8158 1.3898 0.0336 0.031*
H2B 0.9990 1.2920 0.0289 0.031*
C3 0.7673 (2) 1.0222 (3) 0.03073 (8) 0.0220 (4)
C4 0.7833 (3) 1.0442 (3) −0.02803 (8) 0.0258 (4)
H4 0.8419 1.1472 −0.0421 0.031*
C5 0.7109 (3) 0.9109 (3) −0.06585 (9) 0.0297 (4)
H5 0.7212 0.9252 −0.1054 0.036*
C6 0.6246 (3) 0.7584 (3) −0.04544 (9) 0.0302 (4)
H6 0.5769 0.6701 −0.0712 0.036*
C7 0.6081 (3) 0.7354 (3) 0.01373 (9) 0.0281 (4)
H7 0.5491 0.6324 0.0276 0.034*
C8 0.6802 (3) 0.8668 (3) 0.05152 (8) 0.0224 (4)
C9 0.5795 (3) 0.7102 (3) 0.13513 (8) 0.0267 (4)
H9A 0.6249 0.5924 0.1215 0.032*
H9B 0.4555 0.7172 0.1236 0.032*
C10 0.6045 (2) 0.7211 (3) 0.20018 (8) 0.0218 (4)
Cd1 0.834230 (19) 1.08605 (2) 0.178353 (6) 0.02552 (6)
O1 1.0404 (3) 1.5791 (2) 0.09652 (8) 0.0474 (5)
O2 0.9688 (2) 1.3536 (2) 0.15657 (6) 0.0364 (4)
O3 0.8318 (2) 1.1441 (2) 0.07256 (6) 0.0286 (3)
O4 0.6707 (2) 0.8613 (2) 0.11069 (6) 0.0296 (3)
O5 0.6948 (2) 0.8467 (2) 0.22331 (6) 0.0315 (3)
O6 0.53106 (19) 0.59313 (18) 0.22765 (6) 0.0274 (3)
O1W 1.0606 (2) 0.8817 (2) 0.16508 (7) 0.0370 (4)
H11W 1.1442 0.8811 0.1902 0.044*
H12W 1.0565 0.7756 0.1495 0.044*
O2W 0.5593 (2) 1.2223 (2) 0.18164 (7) 0.0349 (3)
H21W 0.5675 1.3249 0.1990 0.042*
H22W 0.5013 1.1503 0.2021 0.042*
O3W 0.1714 (2) 0.5083 (3) 0.25089 (8) 0.0464 (4)
H31W 0.2619 0.5523 0.2366 0.056*
H32W 0.1072 0.4657 0.2230 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0339 (11) 0.0221 (10) 0.0289 (10) −0.0027 (8) 0.0077 (8) −0.0028 (8)
C2 0.0357 (11) 0.0191 (9) 0.0239 (9) −0.0037 (8) 0.0043 (8) 0.0035 (7)
C3 0.0235 (9) 0.0226 (9) 0.0198 (9) −0.0007 (7) 0.0004 (7) −0.0008 (7)
C4 0.0292 (10) 0.0281 (10) 0.0205 (9) −0.0020 (8) 0.0037 (7) 0.0030 (8)
C5 0.0344 (11) 0.0387 (12) 0.0164 (9) 0.0008 (9) 0.0029 (8) −0.0009 (8)
C6 0.0362 (11) 0.0331 (11) 0.0211 (9) −0.0040 (9) −0.0010 (8) −0.0056 (8)
C7 0.0321 (10) 0.0279 (10) 0.0243 (9) −0.0067 (8) 0.0005 (8) 0.0002 (8)
C8 0.0264 (10) 0.0249 (9) 0.0160 (8) −0.0004 (8) 0.0007 (7) 0.0019 (7)
C9 0.0346 (11) 0.0245 (10) 0.0211 (9) −0.0092 (8) 0.0014 (8) 0.0043 (7)
C10 0.0226 (9) 0.0209 (9) 0.0220 (9) 0.0029 (7) 0.0023 (7) 0.0044 (7)
Cd1 0.03076 (9) 0.02554 (9) 0.02014 (8) −0.00652 (6) 0.00025 (6) 0.00165 (5)
O1 0.0815 (14) 0.0236 (8) 0.0382 (10) −0.0203 (8) 0.0143 (9) −0.0043 (7)
O2 0.0522 (10) 0.0328 (8) 0.0241 (7) −0.0176 (7) 0.0026 (7) −0.0013 (6)
O3 0.0426 (8) 0.0255 (7) 0.0178 (7) −0.0125 (6) 0.0021 (6) 0.0009 (5)
O4 0.0446 (9) 0.0285 (7) 0.0157 (6) −0.0153 (6) 0.0021 (6) 0.0024 (5)
O5 0.0389 (8) 0.0353 (8) 0.0204 (7) −0.0119 (7) 0.0006 (6) 0.0027 (6)
O6 0.0338 (8) 0.0252 (7) 0.0232 (7) −0.0036 (6) 0.0030 (6) 0.0072 (5)
O1W 0.0427 (9) 0.0333 (8) 0.0345 (8) 0.0032 (7) −0.0016 (7) −0.0098 (7)
O2W 0.0424 (9) 0.0286 (8) 0.0336 (8) −0.0016 (7) 0.0005 (7) −0.0062 (6)
O3W 0.0347 (9) 0.0617 (12) 0.0428 (10) −0.0130 (8) 0.0006 (7) −0.0060 (9)

Geometric parameters (Å, °)

C1—O1 1.237 (3) C9—C10 1.512 (3)
C1—O2 1.260 (3) C9—H9A 0.9700
C1—C2 1.520 (3) C9—H9B 0.9700
C2—O3 1.427 (2) C10—O5 1.237 (2)
C2—H2A 0.9700 C10—O6 1.263 (2)
C2—H2B 0.9700 Cd1—O2 2.2424 (19)
C3—C4 1.383 (3) Cd1—O1W 2.2957 (19)
C3—O3 1.375 (2) Cd1—O5 2.2956 (17)
C3—C8 1.394 (3) Cd1—O2W 2.316 (2)
C4—C5 1.390 (3) Cd1—O6i 2.3596 (15)
C4—H4 0.9300 Cd1—O3 2.4874 (14)
C5—C6 1.372 (3) Cd1—O4 2.5285 (16)
C5—H5 0.9300 O6—Cd1ii 2.3596 (15)
C6—C7 1.394 (3) O1W—H11W 0.8397
C6—H6 0.9300 O1W—H12W 0.8402
C7—C8 1.380 (3) O2W—H21W 0.8383
C7—H7 0.9300 O2W—H22W 0.8414
C8—O4 1.379 (2) O3W—H31W 0.8417
C9—O4 1.420 (2) O3W—H32W 0.8470
O1—C1—O2 125.4 (2) O2—Cd1—O5 165.45 (5)
O1—C1—C2 115.13 (19) O1W—Cd1—O5 87.45 (7)
O2—C1—C2 119.45 (17) O2—Cd1—O2W 94.24 (7)
O3—C2—C1 109.57 (16) O1W—Cd1—O2W 163.87 (6)
O3—C2—H2A 109.8 O5—Cd1—O2W 81.78 (7)
C1—C2—H2A 109.8 O2—Cd1—O6i 90.47 (5)
O3—C2—H2B 109.8 O1W—Cd1—O6i 81.05 (6)
C1—C2—H2B 109.8 O5—Cd1—O6i 77.63 (5)
H2A—C2—H2B 108.2 O2W—Cd1—O6i 108.07 (5)
C4—C3—O3 125.13 (18) O2—Cd1—O3 67.33 (5)
C4—C3—C8 120.01 (17) O1W—Cd1—O3 86.56 (6)
O3—C3—C8 114.86 (16) O5—Cd1—O3 126.40 (5)
C3—C4—C5 119.38 (19) O2W—Cd1—O3 90.19 (5)
C3—C4—H4 120.3 O6i—Cd1—O3 152.55 (5)
C5—C4—H4 120.3 O2—Cd1—O4 128.28 (5)
C6—C5—C4 120.65 (19) O1W—Cd1—O4 82.00 (7)
C6—C5—H5 119.7 O5—Cd1—O4 65.31 (5)
C4—C5—H5 119.7 O2W—Cd1—O4 82.60 (6)
C5—C6—C7 120.26 (19) O6i—Cd1—O4 139.69 (5)
C5—C6—H6 119.9 O3—Cd1—O4 61.11 (5)
C7—C6—H6 119.9 C1—O2—Cd1 126.53 (13)
C8—C7—C6 119.37 (19) C3—O3—C2 118.18 (15)
C8—C7—H7 120.3 C3—O3—Cd1 124.97 (11)
C6—C7—H7 120.3 C2—O3—Cd1 116.84 (11)
O4—C8—C7 124.89 (17) C8—O4—C9 118.20 (15)
O4—C8—C3 114.77 (16) C8—O4—Cd1 123.27 (11)
C7—C8—C3 120.33 (17) C9—O4—Cd1 118.19 (11)
O4—C9—C10 108.73 (15) C10—O5—Cd1 127.30 (13)
O4—C9—H9A 109.9 C10—O6—Cd1ii 107.39 (12)
C10—C9—H9A 109.9 Cd1—O1W—H11W 117.3
O4—C9—H9B 109.9 Cd1—O1W—H12W 128.5
C10—C9—H9B 109.9 H11W—O1W—H12W 107.6
H9A—C9—H9B 108.3 Cd1—O2W—H21W 109.9
O5—C10—O6 124.02 (18) Cd1—O2W—H22W 105.4
O5—C10—C9 120.46 (16) H21W—O2W—H22W 107.1
O6—C10—C9 115.50 (17) H31W—O3W—H32W 106.7
O2—Cd1—O1W 99.05 (8)
O1—C1—C2—O3 −178.37 (19) O2—Cd1—O3—C2 −3.57 (13)
O2—C1—C2—O3 1.9 (3) O1W—Cd1—O3—C2 −104.87 (14)
O3—C3—C4—C5 −179.58 (19) O5—Cd1—O3—C2 170.85 (12)
C8—C3—C4—C5 0.4 (3) O2W—Cd1—O3—C2 90.94 (14)
C3—C4—C5—C6 −0.1 (3) O6i—Cd1—O3—C2 −41.85 (19)
C4—C5—C6—C7 0.1 (3) O4—Cd1—O3—C2 172.37 (15)
C5—C6—C7—C8 −0.3 (3) C7—C8—O4—C9 −0.3 (3)
C6—C7—C8—O4 179.02 (19) C3—C8—O4—C9 178.21 (17)
C6—C7—C8—C3 0.6 (3) C7—C8—O4—Cd1 172.86 (15)
C4—C3—C8—O4 −179.20 (18) C3—C8—O4—Cd1 −8.6 (2)
O3—C3—C8—O4 0.8 (2) C10—C9—O4—C8 173.41 (16)
C4—C3—C8—C7 −0.6 (3) C10—C9—O4—Cd1 −0.1 (2)
O3—C3—C8—C7 179.33 (18) O2—Cd1—O4—C8 13.52 (17)
O4—C9—C10—O5 −0.9 (3) O1W—Cd1—O4—C8 −81.73 (15)
O4—C9—C10—O6 −179.40 (16) O5—Cd1—O4—C8 −172.60 (16)
O1—C1—O2—Cd1 174.23 (18) O2W—Cd1—O4—C8 103.08 (15)
C2—C1—O2—Cd1 −6.0 (3) O6i—Cd1—O4—C8 −147.63 (13)
O1W—Cd1—O2—C1 87.61 (19) O3—Cd1—O4—C8 8.75 (14)
O5—Cd1—O2—C1 −156.6 (2) O2—Cd1—O4—C9 −173.33 (13)
O2W—Cd1—O2—C1 −83.22 (19) O1W—Cd1—O4—C9 91.42 (15)
O6i—Cd1—O2—C1 168.62 (19) O5—Cd1—O4—C9 0.55 (13)
O3—Cd1—O2—C1 5.22 (17) O2W—Cd1—O4—C9 −83.77 (14)
O4—Cd1—O2—C1 0.7 (2) O6i—Cd1—O4—C9 25.53 (18)
C4—C3—O3—C2 6.8 (3) O3—Cd1—O4—C9 −178.10 (16)
C8—C3—O3—C2 −173.16 (17) O6—C10—O5—Cd1 −179.96 (13)
C4—C3—O3—Cd1 −172.35 (15) C9—C10—O5—Cd1 1.6 (3)
C8—C3—O3—Cd1 7.7 (2) O2—Cd1—O5—C10 159.4 (2)
C1—C2—O3—C3 −176.97 (17) O1W—Cd1—O5—C10 −83.56 (17)
C1—C2—O3—Cd1 2.2 (2) O2W—Cd1—O5—C10 84.40 (17)
O2—Cd1—O3—C3 175.58 (16) O6i—Cd1—O5—C10 −164.95 (18)
O1W—Cd1—O3—C3 74.28 (16) O3—Cd1—O5—C10 0.3 (2)
O5—Cd1—O3—C3 −10.00 (17) O4—Cd1—O5—C10 −1.19 (16)
O2W—Cd1—O3—C3 −89.91 (15) O5—C10—O6—Cd1ii −17.0 (2)
O6i—Cd1—O3—C3 137.30 (14) C9—C10—O6—Cd1ii 161.49 (13)
O4—Cd1—O3—C3 −8.48 (14)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H11W···O3Wi 0.84 2.11 2.892 (3) 154
O1W—H12W···O1iii 0.84 1.87 2.686 (2) 164
O2W—H21W···O6iv 0.84 2.06 2.873 (3) 165
O2W—H22W···O3Wv 0.84 2.03 2.860 (3) 170
O3W—H31W···O6 0.84 2.09 2.887 (3) 157
O3W—H32W···O2vi 0.85 1.99 2.835 (2) 176

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x+1/2, y+1/2, −z+1/2; (vi) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2094).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dai, F. N., He, H. Y., Gao, D. L., Ye, F., Qiu, X. L. & Sun, D. F. (2009). CrystEngComm, 11, 2516–2522.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Liu, D., Ren, Z. G., Li, H. X., Chen, Y., Wang, J., Zhang, Y. & Lang, J. P. (2010). CrystEngComm, 12, 1912–1919.
  7. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004867/zs2094sup1.cif

e-67-0m342-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004867/zs2094Isup2.hkl

e-67-0m342-Isup2.hkl (142.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES