Abstract
In the title compound, C9H9NO2S, the benzene ring and the acetonitrile group are approximately coplanar, with a C—C—C—C torsion angle of 1.1 (3)° between them. In the crystal, molecules are linked via intermolecular C—H⋯O hydrogen bonds into layers parallel to (001).
Related literature
For general background to and the biological activity of COX-2 inhibitors, see: Orjales et al. (2008 ▶); Zarghi et al. (2008 ▶); Shah et al. (2010 ▶); Arico et al. (2002 ▶); Davies et al. (2002 ▶); Sawaoka et al. (1998 ▶); Liu et al. (2000 ▶); Pasinetti (2001 ▶); Norman et al. (1995 ▶). For a related structure, see: Charlier et al. (2004 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C9H9NO2S
M r = 195.23
Triclinic,
a = 5.5599 (2) Å
b = 8.0942 (3) Å
c = 10.9006 (4) Å
α = 81.162 (2)°
β = 85.347 (2)°
γ = 74.458 (2)°
V = 466.60 (3) Å3
Z = 2
Mo Kα radiation
μ = 0.31 mm−1
T = 296 K
0.51 × 0.28 × 0.14 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.810, T max = 0.957
5970 measured reflections
1826 independent reflections
1673 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.038
wR(F 2) = 0.110
S = 1.09
1826 reflections
119 parameters
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.42 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003837/is2671sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003837/is2671Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5A⋯O1i | 0.93 | 2.47 | 3.384 (2) | 169 |
| C9—H9B⋯O2ii | 0.96 | 2.39 | 3.343 (3) | 175 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).
supplementary crystallographic information
Comment
Compounds bearing the 4-methylsulfonylphenyl moiety are found to possess diverse biological properties. They are found to be highly potent and specific COX-2 inhibitors (Orjales et al., 2008; Zarghi et al., 2008; Shah et al., 2010). Recent studies have shown that selective COX-2 inhibitors can induce apoptosis in colon, stomach, prostate, and breast cancer cell lines (Arico et al., 2002; Davies et al., 2002; Sawaoka et al., 1998; Liu et al., 2000). Selective COX-2 inhibitors offer potential treatment for the prophylactic prevention of inflammatory neurodegerative disorders such as Alzheimer's disease (Pasinetti, 2001). They are also found to be anti-inflammatory agents (Norman et al., 1995). The crystal structure of a methylsulfonylphenyl derivative has been reported (Charlier et al., 2004).
The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C1–C6) and the acetonitrile group (C7/C8/N1) are approximately coplanar [torsion angles C1—C6—C7—C8 = 1.1 (3) and C5—C6—C7—C8 = -178.67 (16) °]. In the crystal packing (Fig. 2), the molecules are linked via intermolecular C5–H5A···O1 and C9–H9B···O2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (001).
Experimental
4-Methylthiophenylacetonitrile (0.1 mol) was taken in 3 mL of acetic anhydride and cooled to 5°C. To the reaction mixture sodium tungstate (0.02 mol) was added followed by 30% hydrogen peroxide (0.2 mol) in 1.2 mL of acetic acid and water mixture (in 2:1 ratio). The temperature of the reaction mixture was slowly brought to room temperature. The completion of reaction was monitored by TLC. The solid precipitate was filtered and washed with water until the pH became neutral. The product was dried at 65 °C for 10-12 h. The product was then recrystallized in methanol (m. p.: 120–124 °C).
Refinement
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.88 Å from C3 and the deepest hole is located at 0.74 Å from S1. A rotating-group model was applied for the methyl group.
Figures
Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Crystal data
| C9H9NO2S | Z = 2 |
| Mr = 195.23 | F(000) = 204 |
| Triclinic, P1 | Dx = 1.390 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.5599 (2) Å | Cell parameters from 4240 reflections |
| b = 8.0942 (3) Å | θ = 2.6–33.0° |
| c = 10.9006 (4) Å | µ = 0.31 mm−1 |
| α = 81.162 (2)° | T = 296 K |
| β = 85.347 (2)° | Block, colourless |
| γ = 74.458 (2)° | 0.51 × 0.28 × 0.14 mm |
| V = 466.60 (3) Å3 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 1826 independent reflections |
| Radiation source: fine-focus sealed tube | 1673 reflections with I > 2σ(I) |
| graphite | Rint = 0.023 |
| φ and ω scans | θmax = 26.0°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
| Tmin = 0.810, Tmax = 0.957 | k = −9→9 |
| 5970 measured reflections | l = −13→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.110 | H-atom parameters constrained |
| S = 1.09 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.1771P] where P = (Fo2 + 2Fc2)/3 |
| 1826 reflections | (Δ/σ)max = 0.001 |
| 119 parameters | Δρmax = 0.29 e Å−3 |
| 0 restraints | Δρmin = −0.42 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.64766 (8) | 0.30347 (6) | 0.36428 (4) | 0.04502 (19) | |
| O1 | 0.6714 (4) | 0.45775 (18) | 0.28743 (16) | 0.0728 (5) | |
| O2 | 0.4011 (3) | 0.2889 (2) | 0.40261 (19) | 0.0773 (5) | |
| N1 | 1.5750 (4) | −0.2897 (2) | −0.02043 (19) | 0.0638 (5) | |
| C1 | 1.1353 (3) | −0.0135 (2) | 0.15700 (17) | 0.0427 (4) | |
| H1A | 1.2799 | −0.0114 | 0.1081 | 0.051* | |
| C2 | 1.0162 (3) | 0.1282 (2) | 0.21644 (17) | 0.0429 (4) | |
| H2A | 1.0801 | 0.2246 | 0.2080 | 0.051* | |
| C3 | 0.8008 (3) | 0.1237 (2) | 0.28841 (15) | 0.0365 (4) | |
| C4 | 0.7055 (3) | −0.0194 (2) | 0.30170 (17) | 0.0439 (4) | |
| H4A | 0.5607 | −0.0212 | 0.3505 | 0.053* | |
| C5 | 0.8260 (3) | −0.1598 (2) | 0.24231 (18) | 0.0445 (4) | |
| H5A | 0.7620 | −0.2561 | 0.2512 | 0.053* | |
| C6 | 1.0422 (3) | −0.1580 (2) | 0.16938 (15) | 0.0370 (4) | |
| C7 | 1.1679 (4) | −0.3160 (2) | 0.10645 (18) | 0.0464 (4) | |
| H7A | 1.2073 | −0.4167 | 0.1694 | 0.056* | |
| H7B | 1.0511 | −0.3343 | 0.0517 | 0.056* | |
| C8 | 1.3966 (4) | −0.3021 (2) | 0.03441 (18) | 0.0468 (4) | |
| C9 | 0.8180 (4) | 0.2777 (3) | 0.4977 (2) | 0.0586 (5) | |
| H9A | 0.7482 | 0.3732 | 0.5433 | 0.088* | |
| H9B | 0.9891 | 0.2744 | 0.4738 | 0.088* | |
| H9C | 0.8100 | 0.1716 | 0.5490 | 0.088* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0405 (3) | 0.0414 (3) | 0.0506 (3) | −0.00199 (19) | −0.00442 (19) | −0.0129 (2) |
| O1 | 0.1054 (14) | 0.0367 (8) | 0.0691 (10) | −0.0059 (8) | −0.0101 (9) | −0.0042 (7) |
| O2 | 0.0381 (8) | 0.0876 (12) | 0.1116 (14) | −0.0088 (7) | 0.0091 (8) | −0.0496 (11) |
| N1 | 0.0653 (12) | 0.0591 (11) | 0.0703 (12) | −0.0208 (9) | 0.0182 (10) | −0.0217 (9) |
| C1 | 0.0428 (9) | 0.0427 (10) | 0.0458 (10) | −0.0169 (7) | 0.0069 (7) | −0.0099 (7) |
| C2 | 0.0466 (10) | 0.0382 (9) | 0.0479 (10) | −0.0185 (7) | 0.0028 (8) | −0.0079 (7) |
| C3 | 0.0367 (8) | 0.0361 (8) | 0.0354 (8) | −0.0072 (7) | −0.0024 (6) | −0.0042 (6) |
| C4 | 0.0390 (9) | 0.0468 (10) | 0.0474 (10) | −0.0153 (8) | 0.0042 (7) | −0.0070 (8) |
| C5 | 0.0471 (10) | 0.0393 (9) | 0.0519 (10) | −0.0200 (8) | −0.0002 (8) | −0.0062 (8) |
| C6 | 0.0395 (9) | 0.0366 (8) | 0.0351 (8) | −0.0094 (7) | −0.0051 (7) | −0.0050 (7) |
| C7 | 0.0500 (10) | 0.0394 (9) | 0.0516 (11) | −0.0119 (8) | −0.0004 (8) | −0.0123 (8) |
| C8 | 0.0567 (12) | 0.0381 (9) | 0.0463 (10) | −0.0094 (8) | −0.0016 (9) | −0.0138 (8) |
| C9 | 0.0550 (12) | 0.0689 (14) | 0.0505 (11) | −0.0037 (10) | −0.0073 (9) | −0.0231 (10) |
Geometric parameters (Å, °)
| S1—O1 | 1.4239 (16) | C4—C5 | 1.381 (3) |
| S1—O2 | 1.4306 (16) | C4—H4A | 0.9300 |
| S1—C9 | 1.755 (2) | C5—C6 | 1.388 (2) |
| S1—C3 | 1.7657 (17) | C5—H5A | 0.9300 |
| N1—C8 | 1.136 (3) | C6—C7 | 1.519 (2) |
| C1—C6 | 1.385 (2) | C7—C8 | 1.461 (3) |
| C1—C2 | 1.387 (2) | C7—H7A | 0.9700 |
| C1—H1A | 0.9300 | C7—H7B | 0.9700 |
| C2—C3 | 1.383 (2) | C9—H9A | 0.9600 |
| C2—H2A | 0.9300 | C9—H9B | 0.9600 |
| C3—C4 | 1.382 (3) | C9—H9C | 0.9600 |
| O1—S1—O2 | 117.73 (12) | C4—C5—H5A | 119.8 |
| O1—S1—C9 | 108.35 (11) | C6—C5—H5A | 119.8 |
| O2—S1—C9 | 108.32 (12) | C1—C6—C5 | 119.12 (16) |
| O1—S1—C3 | 108.95 (9) | C1—C6—C7 | 122.56 (16) |
| O2—S1—C3 | 108.26 (9) | C5—C6—C7 | 118.32 (15) |
| C9—S1—C3 | 104.42 (9) | C8—C7—C6 | 113.81 (15) |
| C6—C1—C2 | 120.95 (16) | C8—C7—H7A | 108.8 |
| C6—C1—H1A | 119.5 | C6—C7—H7A | 108.8 |
| C2—C1—H1A | 119.5 | C8—C7—H7B | 108.8 |
| C3—C2—C1 | 118.95 (16) | C6—C7—H7B | 108.8 |
| C3—C2—H2A | 120.5 | H7A—C7—H7B | 107.7 |
| C1—C2—H2A | 120.5 | N1—C8—C7 | 179.0 (2) |
| C4—C3—C2 | 120.80 (16) | S1—C9—H9A | 109.5 |
| C4—C3—S1 | 119.91 (13) | S1—C9—H9B | 109.5 |
| C2—C3—S1 | 119.28 (13) | H9A—C9—H9B | 109.5 |
| C5—C4—C3 | 119.72 (16) | S1—C9—H9C | 109.5 |
| C5—C4—H4A | 120.1 | H9A—C9—H9C | 109.5 |
| C3—C4—H4A | 120.1 | H9B—C9—H9C | 109.5 |
| C4—C5—C6 | 120.45 (16) | ||
| C6—C1—C2—C3 | −0.3 (3) | C2—C3—C4—C5 | −0.1 (3) |
| C1—C2—C3—C4 | 0.3 (3) | S1—C3—C4—C5 | −179.93 (13) |
| C1—C2—C3—S1 | −179.94 (13) | C3—C4—C5—C6 | 0.0 (3) |
| O1—S1—C3—C4 | −145.12 (16) | C2—C1—C6—C5 | 0.1 (3) |
| O2—S1—C3—C4 | −15.97 (18) | C2—C1—C6—C7 | −179.65 (16) |
| C9—S1—C3—C4 | 99.29 (17) | C4—C5—C6—C1 | 0.0 (3) |
| O1—S1—C3—C2 | 35.06 (17) | C4—C5—C6—C7 | 179.80 (16) |
| O2—S1—C3—C2 | 164.22 (15) | C1—C6—C7—C8 | 1.1 (3) |
| C9—S1—C3—C2 | −80.53 (17) | C5—C6—C7—C8 | −178.67 (16) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5A···O1i | 0.93 | 2.47 | 3.384 (2) | 169 |
| C9—H9B···O2ii | 0.96 | 2.39 | 3.343 (3) | 175 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2671).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Arico, S., Pattirgre, S., Bauvy, C., Gane, P., Barbat, A., Codogno, P. & Ogier-Denis, E. (2002). J. Biol. Chem. 227, 27613–27621. [DOI] [PubMed]
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Charlier, C., Norberg, B., Goossens, L., Hénichart, J.-P. & Durant, F. (2004). Acta Cryst. C60, o648–o652. [DOI] [PubMed]
- Davies, G., Martin, L. A., Sacks, N. & Dowsett, M. (2002). Ann. Oncol. 13, 669–678. [DOI] [PubMed]
- Liu, H. X., Kirschenbaum, A., Yao, S., Lee, R., Holland, J. F. & Levine, A. C. (2000). J. Urol. 164, 820–825. [DOI] [PubMed]
- Norman, B. H., Lee, L. F., Masferrer, J. L. & Talley, J. J. (1995). US Patent No. 5380738
- Orjales, A., Mosquera, R., Lòpez, B., Olivera, R., Labeaga, L. & Núñez, M. T. (2008). Bioorg. Med. Chem. 16, 2183–2199. [DOI] [PubMed]
- Pasinetti, G. M. (2001). Arch. Gerontol. Geriatr. 33, 13–28. [DOI] [PubMed]
- Sawaoka, H., Kawano, S., Tsuji, S., Tsujii, M. & Gunawan, E. S. (1998). Am. J. Physiol. 274, 1061–1067. [DOI] [PubMed]
- Shah, U. A., Deokar, H. S., Kadam, S. S. & Kulkarni, V. M. (2010). Mol. Divers. 14, 559–568. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Zarghi, A., Tahghighi, A., Soleimani, Z., Daraie, B., Dadrass, O. G. & Hedayati, M. (2008). Sci. Pharm. 76, 361–376.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003837/is2671sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003837/is2671Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


