Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):o574. doi: 10.1107/S1600536811003837

2-[4-(Methyl­sulfon­yl)phen­yl]acetonitrile

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, V Sumangala b, D Jagadeesh Prasad b, Boja Poojary b
PMCID: PMC3052001  PMID: 21522336

Abstract

In the title compound, C9H9NO2S, the benzene ring and the acetonitrile group are approximately coplanar, with a C—C—C—C torsion angle of 1.1 (3)° between them. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into layers parallel to (001).

Related literature

For general background to and the biological activity of COX-2 inhibitors, see: Orjales et al. (2008); Zarghi et al. (2008); Shah et al. (2010); Arico et al. (2002); Davies et al. (2002); Sawaoka et al. (1998); Liu et al. (2000); Pasinetti (2001); Norman et al. (1995). For a related structure, see: Charlier et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o574-scheme1.jpg

Experimental

Crystal data

  • C9H9NO2S

  • M r = 195.23

  • Triclinic, Inline graphic

  • a = 5.5599 (2) Å

  • b = 8.0942 (3) Å

  • c = 10.9006 (4) Å

  • α = 81.162 (2)°

  • β = 85.347 (2)°

  • γ = 74.458 (2)°

  • V = 466.60 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.51 × 0.28 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.810, T max = 0.957

  • 5970 measured reflections

  • 1826 independent reflections

  • 1673 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.09

  • 1826 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003837/is2671sup1.cif

e-67-0o574-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003837/is2671Isup2.hkl

e-67-0o574-Isup2.hkl (89.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.47 3.384 (2) 169
C9—H9B⋯O2ii 0.96 2.39 3.343 (3) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Compounds bearing the 4-methylsulfonylphenyl moiety are found to possess diverse biological properties. They are found to be highly potent and specific COX-2 inhibitors (Orjales et al., 2008; Zarghi et al., 2008; Shah et al., 2010). Recent studies have shown that selective COX-2 inhibitors can induce apoptosis in colon, stomach, prostate, and breast cancer cell lines (Arico et al., 2002; Davies et al., 2002; Sawaoka et al., 1998; Liu et al., 2000). Selective COX-2 inhibitors offer potential treatment for the prophylactic prevention of inflammatory neurodegerative disorders such as Alzheimer's disease (Pasinetti, 2001). They are also found to be anti-inflammatory agents (Norman et al., 1995). The crystal structure of a methylsulfonylphenyl derivative has been reported (Charlier et al., 2004).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C1–C6) and the acetonitrile group (C7/C8/N1) are approximately coplanar [torsion angles C1—C6—C7—C8 = 1.1 (3) and C5—C6—C7—C8 = -178.67 (16) °]. In the crystal packing (Fig. 2), the molecules are linked via intermolecular C5–H5A···O1 and C9–H9B···O2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (001).

Experimental

4-Methylthiophenylacetonitrile (0.1 mol) was taken in 3 mL of acetic anhydride and cooled to 5°C. To the reaction mixture sodium tungstate (0.02 mol) was added followed by 30% hydrogen peroxide (0.2 mol) in 1.2 mL of acetic acid and water mixture (in 2:1 ratio). The temperature of the reaction mixture was slowly brought to room temperature. The completion of reaction was monitored by TLC. The solid precipitate was filtered and washed with water until the pH became neutral. The product was dried at 65 °C for 10-12 h. The product was then recrystallized in methanol (m. p.: 120–124 °C).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.88 Å from C3 and the deepest hole is located at 0.74 Å from S1. A rotating-group model was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C9H9NO2S Z = 2
Mr = 195.23 F(000) = 204
Triclinic, P1 Dx = 1.390 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5599 (2) Å Cell parameters from 4240 reflections
b = 8.0942 (3) Å θ = 2.6–33.0°
c = 10.9006 (4) Å µ = 0.31 mm1
α = 81.162 (2)° T = 296 K
β = 85.347 (2)° Block, colourless
γ = 74.458 (2)° 0.51 × 0.28 × 0.14 mm
V = 466.60 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1826 independent reflections
Radiation source: fine-focus sealed tube 1673 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.810, Tmax = 0.957 k = −9→9
5970 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1771P] where P = (Fo2 + 2Fc2)/3
1826 reflections (Δ/σ)max = 0.001
119 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.64766 (8) 0.30347 (6) 0.36428 (4) 0.04502 (19)
O1 0.6714 (4) 0.45775 (18) 0.28743 (16) 0.0728 (5)
O2 0.4011 (3) 0.2889 (2) 0.40261 (19) 0.0773 (5)
N1 1.5750 (4) −0.2897 (2) −0.02043 (19) 0.0638 (5)
C1 1.1353 (3) −0.0135 (2) 0.15700 (17) 0.0427 (4)
H1A 1.2799 −0.0114 0.1081 0.051*
C2 1.0162 (3) 0.1282 (2) 0.21644 (17) 0.0429 (4)
H2A 1.0801 0.2246 0.2080 0.051*
C3 0.8008 (3) 0.1237 (2) 0.28841 (15) 0.0365 (4)
C4 0.7055 (3) −0.0194 (2) 0.30170 (17) 0.0439 (4)
H4A 0.5607 −0.0212 0.3505 0.053*
C5 0.8260 (3) −0.1598 (2) 0.24231 (18) 0.0445 (4)
H5A 0.7620 −0.2561 0.2512 0.053*
C6 1.0422 (3) −0.1580 (2) 0.16938 (15) 0.0370 (4)
C7 1.1679 (4) −0.3160 (2) 0.10645 (18) 0.0464 (4)
H7A 1.2073 −0.4167 0.1694 0.056*
H7B 1.0511 −0.3343 0.0517 0.056*
C8 1.3966 (4) −0.3021 (2) 0.03441 (18) 0.0468 (4)
C9 0.8180 (4) 0.2777 (3) 0.4977 (2) 0.0586 (5)
H9A 0.7482 0.3732 0.5433 0.088*
H9B 0.9891 0.2744 0.4738 0.088*
H9C 0.8100 0.1716 0.5490 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0405 (3) 0.0414 (3) 0.0506 (3) −0.00199 (19) −0.00442 (19) −0.0129 (2)
O1 0.1054 (14) 0.0367 (8) 0.0691 (10) −0.0059 (8) −0.0101 (9) −0.0042 (7)
O2 0.0381 (8) 0.0876 (12) 0.1116 (14) −0.0088 (7) 0.0091 (8) −0.0496 (11)
N1 0.0653 (12) 0.0591 (11) 0.0703 (12) −0.0208 (9) 0.0182 (10) −0.0217 (9)
C1 0.0428 (9) 0.0427 (10) 0.0458 (10) −0.0169 (7) 0.0069 (7) −0.0099 (7)
C2 0.0466 (10) 0.0382 (9) 0.0479 (10) −0.0185 (7) 0.0028 (8) −0.0079 (7)
C3 0.0367 (8) 0.0361 (8) 0.0354 (8) −0.0072 (7) −0.0024 (6) −0.0042 (6)
C4 0.0390 (9) 0.0468 (10) 0.0474 (10) −0.0153 (8) 0.0042 (7) −0.0070 (8)
C5 0.0471 (10) 0.0393 (9) 0.0519 (10) −0.0200 (8) −0.0002 (8) −0.0062 (8)
C6 0.0395 (9) 0.0366 (8) 0.0351 (8) −0.0094 (7) −0.0051 (7) −0.0050 (7)
C7 0.0500 (10) 0.0394 (9) 0.0516 (11) −0.0119 (8) −0.0004 (8) −0.0123 (8)
C8 0.0567 (12) 0.0381 (9) 0.0463 (10) −0.0094 (8) −0.0016 (9) −0.0138 (8)
C9 0.0550 (12) 0.0689 (14) 0.0505 (11) −0.0037 (10) −0.0073 (9) −0.0231 (10)

Geometric parameters (Å, °)

S1—O1 1.4239 (16) C4—C5 1.381 (3)
S1—O2 1.4306 (16) C4—H4A 0.9300
S1—C9 1.755 (2) C5—C6 1.388 (2)
S1—C3 1.7657 (17) C5—H5A 0.9300
N1—C8 1.136 (3) C6—C7 1.519 (2)
C1—C6 1.385 (2) C7—C8 1.461 (3)
C1—C2 1.387 (2) C7—H7A 0.9700
C1—H1A 0.9300 C7—H7B 0.9700
C2—C3 1.383 (2) C9—H9A 0.9600
C2—H2A 0.9300 C9—H9B 0.9600
C3—C4 1.382 (3) C9—H9C 0.9600
O1—S1—O2 117.73 (12) C4—C5—H5A 119.8
O1—S1—C9 108.35 (11) C6—C5—H5A 119.8
O2—S1—C9 108.32 (12) C1—C6—C5 119.12 (16)
O1—S1—C3 108.95 (9) C1—C6—C7 122.56 (16)
O2—S1—C3 108.26 (9) C5—C6—C7 118.32 (15)
C9—S1—C3 104.42 (9) C8—C7—C6 113.81 (15)
C6—C1—C2 120.95 (16) C8—C7—H7A 108.8
C6—C1—H1A 119.5 C6—C7—H7A 108.8
C2—C1—H1A 119.5 C8—C7—H7B 108.8
C3—C2—C1 118.95 (16) C6—C7—H7B 108.8
C3—C2—H2A 120.5 H7A—C7—H7B 107.7
C1—C2—H2A 120.5 N1—C8—C7 179.0 (2)
C4—C3—C2 120.80 (16) S1—C9—H9A 109.5
C4—C3—S1 119.91 (13) S1—C9—H9B 109.5
C2—C3—S1 119.28 (13) H9A—C9—H9B 109.5
C5—C4—C3 119.72 (16) S1—C9—H9C 109.5
C5—C4—H4A 120.1 H9A—C9—H9C 109.5
C3—C4—H4A 120.1 H9B—C9—H9C 109.5
C4—C5—C6 120.45 (16)
C6—C1—C2—C3 −0.3 (3) C2—C3—C4—C5 −0.1 (3)
C1—C2—C3—C4 0.3 (3) S1—C3—C4—C5 −179.93 (13)
C1—C2—C3—S1 −179.94 (13) C3—C4—C5—C6 0.0 (3)
O1—S1—C3—C4 −145.12 (16) C2—C1—C6—C5 0.1 (3)
O2—S1—C3—C4 −15.97 (18) C2—C1—C6—C7 −179.65 (16)
C9—S1—C3—C4 99.29 (17) C4—C5—C6—C1 0.0 (3)
O1—S1—C3—C2 35.06 (17) C4—C5—C6—C7 179.80 (16)
O2—S1—C3—C2 164.22 (15) C1—C6—C7—C8 1.1 (3)
C9—S1—C3—C2 −80.53 (17) C5—C6—C7—C8 −178.67 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O1i 0.93 2.47 3.384 (2) 169
C9—H9B···O2ii 0.96 2.39 3.343 (3) 175

Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2671).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arico, S., Pattirgre, S., Bauvy, C., Gane, P., Barbat, A., Codogno, P. & Ogier-Denis, E. (2002). J. Biol. Chem. 227, 27613–27621. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Charlier, C., Norberg, B., Goossens, L., Hénichart, J.-P. & Durant, F. (2004). Acta Cryst. C60, o648–o652. [DOI] [PubMed]
  5. Davies, G., Martin, L. A., Sacks, N. & Dowsett, M. (2002). Ann. Oncol. 13, 669–678. [DOI] [PubMed]
  6. Liu, H. X., Kirschenbaum, A., Yao, S., Lee, R., Holland, J. F. & Levine, A. C. (2000). J. Urol. 164, 820–825. [DOI] [PubMed]
  7. Norman, B. H., Lee, L. F., Masferrer, J. L. & Talley, J. J. (1995). US Patent No. 5380738
  8. Orjales, A., Mosquera, R., Lòpez, B., Olivera, R., Labeaga, L. & Núñez, M. T. (2008). Bioorg. Med. Chem. 16, 2183–2199. [DOI] [PubMed]
  9. Pasinetti, G. M. (2001). Arch. Gerontol. Geriatr. 33, 13–28. [DOI] [PubMed]
  10. Sawaoka, H., Kawano, S., Tsuji, S., Tsujii, M. & Gunawan, E. S. (1998). Am. J. Physiol. 274, 1061–1067. [DOI] [PubMed]
  11. Shah, U. A., Deokar, H. S., Kadam, S. S. & Kulkarni, V. M. (2010). Mol. Divers. 14, 559–568. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Zarghi, A., Tahghighi, A., Soleimani, Z., Daraie, B., Dadrass, O. G. & Hedayati, M. (2008). Sci. Pharm. 76, 361–376.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003837/is2671sup1.cif

e-67-0o574-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003837/is2671Isup2.hkl

e-67-0o574-Isup2.hkl (89.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES