Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 2;67(Pt 3):o552–o553. doi: 10.1107/S1600536811003667

Pyrimidin-2-amine–1-phenyl­cyclo­pentane-1-carb­oxy­lic acid (1/1)

Guangwen He a,*, Srinivasulu Aitipamula a, Pui Shan Chow a, Reginald B H Tan a,b,*
PMCID: PMC3052005  PMID: 21522318

Abstract

In the crystal structure of the title co-crystal, C4H5N3·C12H14O2, the components are linked by N—H⋯O and O—H⋯N hydrogen bonds. Self-assembly of these dimeric units results in a four-component supra­molecular unit featuring a homosynthon between two mol­ecules of the pyrimidin-2-amine involving two N—H⋯O hydrogen bonds, and two heterosynthons between each one mol­ecule of pyrimidin-2-amine and 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid involving N—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the structure of pyrimidin-2-amine, see: Scheinbeim & Schempp (1976) and for the structure of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: Margulis (1975). For mol­ecular co-crystals of pyrimidin-2-amine, see: Serafin & Wheeler (2007); Shan et al. (2002); Goswami et al. (1999a ,b , 2000); Chinnakali et al. (1999); Lynch et al. (1997). For a salt of 2-amino­pyridine and 1-phenyl-1-cyclo­propane­carb­oxy­lic acid, see: He et al. (2010). For a recent screening study for co-crystal and salt formation using pulse-gradient spin–echo nuclear magnetic resonance, see: He et al. (2009).graphic file with name e-67-0o552-scheme1.jpg

Experimental

Crystal data

  • C4H5N3·C12H14O2

  • M r = 285.34

  • Monoclinic, Inline graphic

  • a = 9.1461 (18) Å

  • b = 10.490 (2) Å

  • c = 15.474 (3) Å

  • β = 98.14 (3)°

  • V = 1469.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.44 × 0.44 × 0.22 mm

Data collection

  • Rigaku Saturn 70 CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.963, T max = 0.981

  • 20335 measured reflections

  • 3641 independent reflections

  • 3516 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.178

  • S = 1.21

  • 3641 reflections

  • 202 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003667/ng5101sup1.cif

e-67-0o552-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003667/ng5101Isup2.hkl

e-67-0o552-Isup2.hkl (178.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H6⋯N1 0.87 (2) 1.79 (2) 2.653 (2) 173 (3)
N3—H5⋯O1 0.90 (3) 2.08 (3) 2.966 (2) 168 (2)
N3—H1⋯N2i 0.88 (3) 2.13 (3) 3.006 (2) 173 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

supplementary crystallographic information

Comment

An analysis of the crystal structure of pyrimidin-2-amine reveals that it forms a homosynthon (I) involving two N–H···N hydrogen bonds (Scheinbeim and Schempp, 1976). However, when it is cocrystallized with the molecules possessing at least one carboxylic acid group in the structure, it forms a pyrimidin-2-amine–carboxylic acid supramolecular heterosynthon (II) (Fig. 1) involving two hydrogen bonds, namely N–H···O and O–H···N. These strong hydrogen bonds are preferred over potential alternative arrangements and play a significant role in structure-directing (Shan et al., 2002). We have chosen pyrimidin-2-amine and 1-phenylcyclopentane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He et al., 2009).

The crystal structure of the title cocrystal contains one molecule of pyrimidin-2-amine and one molecule of 1-phenylcyclopentane-1-carboxylic acid in the crystallographic asymmetric unit (Fig. 2). The identity of the cocrystal was confirmed by Fourier Transform Infrared (FT—IR) spectrum which showed carboxylic acid O—H stretching band at 3167 cm-1 and carbonyl stretching band at 1685 cm-1 (Fig. 3). Two pyrimidin-2-amine molecules that are related by an inversion center form the synthon I involving N–H···O (N···O = 3.006 (2) Å) hydrogen bonds. Two 1-phenylcyclopentane-1-carboxylic acid molecules hydrogen bond to either side of the dimeric motif involving synthon II which is sustained by N–H···O (N···O = 2.966 (2) Å) and O–H···O (O···O = 2.653 (2) Å) hydrogen bonds and forms a four-component supramolecular unit (Fig. 4). These four-component supramolecular units self assemble in the crystal structure via several weak C–H···O interactions (Fig. 5).

Experimental

0.0957 g (1 mmol) of pyrimidin-2-amine (Alfa Aesar, 99%) and 0.1909 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7.6 ml of ethyl acetate (Fisher Scientific, HPLC). Solution was then filtered through a 0.22µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The block-shaped crystal (0.44 × 0.44 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo Kα radiation = 0.71073 Å at 50 kV and 40 mA) was collected after one day. Fourier Transform Infrared (FT—IR) experiments were performed using Bio-Rad spectrometer (FTS3000MX) to confirm whether the resulting molecular complex is a cocrystal or a salt.

Refinement

H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O2—H6 bond distance which was found to be long in the normal refinement cycles was fixed using DFIX command in SHELX. Other H atoms were positioned geometrically and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

pyrimidin-2-amine–pyrimidin-2-amine supramolecular homosynthon (I) and pyrimidin-2-amine–carboxylic acid supramolecular heterosynthon (II).

Fig. 2.

Fig. 2.

The molecular structures of pyrimidin-2-amine and 1-phenyl-1-cyclopropentanecarboxylic acid, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 3.

Fig. 3.

F T—IR spectra for pyrimidin-2-amine, 1-phenylcyclopentane-1-carboxylic acid and the 1/1 cocrystal of them, respectively.

Fig. 4.

Fig. 4.

A four-component supramolecular unit that features N–H···O and O–H···N heterosynthon interactions, and O–H···O homosynthon interaction in the crystal structure of the title cocrystal.

Fig. 5.

Fig. 5.

Part of the crystal structure of the title cocrystal, showing the arrangement of the four-component supramolecular units.

Crystal data

C4H5N3·C12H14O2 F(000) = 608
Mr = 285.34 Dx = 1.290 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.1461 (18) Å Cell parameters from 4896 reflections
b = 10.490 (2) Å θ = 1.9–31.1°
c = 15.474 (3) Å µ = 0.09 mm1
β = 98.14 (3)° T = 110 K
V = 1469.7 (5) Å3 Block, colorless
Z = 4 0.44 × 0.44 × 0.22 mm

Data collection

Rigaku Saturn 70 CCD area-detector diffractometer 3641 independent reflections
Radiation source: fine-focus sealed tube 3516 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (Blessing, 1995) h = −12→12
Tmin = 0.963, Tmax = 0.981 k = −13→13
20335 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.5855P] where P = (Fo2 + 2Fc2)/3
3641 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.04632 (14) 0.55094 (13) 0.70052 (8) 0.0344 (3)
O1 0.22224 (15) 0.40633 (14) 0.73866 (9) 0.0397 (3)
C16 0.12059 (18) 0.47154 (16) 0.75641 (11) 0.0281 (3)
C6 −0.09084 (18) 0.42117 (16) 0.83708 (10) 0.0273 (3)
C5 0.06701 (18) 0.47220 (17) 0.84621 (11) 0.0289 (4)
C8 −0.35533 (19) 0.45531 (18) 0.80273 (12) 0.0337 (4)
H8 −0.4356 0.5110 0.7842 0.040*
C12 0.17880 (19) 0.3999 (2) 0.91211 (12) 0.0396 (4)
H12A 0.2180 0.3247 0.8843 0.047*
H12B 0.1319 0.3709 0.9625 0.047*
C7 −0.21065 (18) 0.50062 (17) 0.81043 (11) 0.0305 (4)
H7 −0.1936 0.5873 0.7972 0.037*
C10 −0.2643 (2) 0.24866 (18) 0.84809 (12) 0.0362 (4)
H10 −0.2821 0.1620 0.8610 0.043*
C11 −0.1195 (2) 0.29396 (17) 0.85543 (12) 0.0332 (4)
H11 −0.0395 0.2376 0.8731 0.040*
C15 0.0807 (2) 0.6105 (2) 0.88196 (13) 0.0380 (4)
H15A 0.0410 0.6727 0.8365 0.046*
H15B 0.0279 0.6204 0.9332 0.046*
C9 −0.3820 (2) 0.32934 (19) 0.82208 (12) 0.0354 (4)
H9 −0.4805 0.2985 0.8175 0.042*
C13 0.3039 (2) 0.4964 (3) 0.94177 (14) 0.0523 (6)
H13A 0.3269 0.4975 1.0062 0.063*
H13B 0.3945 0.4731 0.9172 0.063*
C14 0.2473 (2) 0.6273 (2) 0.90771 (16) 0.0517 (6)
H14A 0.2684 0.6930 0.9537 0.062*
H14B 0.2944 0.6530 0.8566 0.062*
H6 0.082 (3) 0.557 (3) 0.6516 (13) 0.066 (8)*
C2 0.24306 (19) 0.66091 (17) 0.39920 (12) 0.0318 (4)
H2 0.2760 0.6860 0.3462 0.038*
N3 0.36606 (18) 0.47957 (17) 0.58582 (11) 0.0391 (4)
N1 0.14713 (15) 0.58831 (14) 0.54997 (9) 0.0299 (3)
N2 0.33123 (16) 0.58740 (14) 0.45437 (10) 0.0314 (3)
C3 0.1056 (2) 0.70251 (18) 0.41554 (12) 0.0345 (4)
H3 0.0445 0.7554 0.3757 0.041*
C4 0.06304 (19) 0.66250 (18) 0.49318 (12) 0.0346 (4)
H4 −0.0304 0.6890 0.5068 0.041*
H5 0.331 (3) 0.447 (2) 0.6325 (17) 0.051 (7)*
C1 0.27973 (18) 0.55295 (16) 0.52886 (11) 0.0285 (3)
H1 0.451 (3) 0.454 (2) 0.5716 (16) 0.051 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0317 (6) 0.0434 (7) 0.0300 (6) 0.0106 (5) 0.0113 (5) 0.0085 (5)
O1 0.0385 (7) 0.0472 (8) 0.0361 (7) 0.0150 (6) 0.0146 (6) 0.0093 (6)
C16 0.0247 (7) 0.0303 (8) 0.0297 (8) −0.0005 (6) 0.0056 (6) 0.0009 (6)
C6 0.0259 (7) 0.0322 (8) 0.0249 (8) −0.0013 (6) 0.0071 (6) −0.0011 (6)
C5 0.0226 (7) 0.0380 (9) 0.0268 (8) −0.0023 (6) 0.0055 (6) −0.0003 (6)
C8 0.0249 (8) 0.0410 (9) 0.0361 (9) 0.0003 (7) 0.0070 (7) −0.0050 (7)
C12 0.0264 (8) 0.0626 (13) 0.0297 (9) 0.0001 (8) 0.0039 (7) 0.0093 (8)
C7 0.0279 (8) 0.0307 (8) 0.0336 (9) −0.0016 (6) 0.0074 (6) −0.0031 (7)
C10 0.0408 (10) 0.0329 (9) 0.0364 (9) −0.0097 (7) 0.0102 (7) −0.0021 (7)
C11 0.0331 (9) 0.0333 (9) 0.0336 (9) 0.0005 (7) 0.0058 (7) 0.0018 (7)
C15 0.0305 (9) 0.0449 (10) 0.0402 (10) −0.0110 (7) 0.0106 (7) −0.0113 (8)
C9 0.0303 (8) 0.0436 (10) 0.0339 (9) −0.0108 (7) 0.0104 (7) −0.0084 (7)
C13 0.0274 (9) 0.0954 (18) 0.0335 (10) −0.0092 (10) 0.0018 (8) −0.0042 (11)
C14 0.0357 (10) 0.0700 (15) 0.0500 (12) −0.0211 (10) 0.0082 (9) −0.0156 (11)
C2 0.0328 (8) 0.0344 (9) 0.0292 (8) 0.0018 (7) 0.0077 (6) 0.0018 (7)
N3 0.0306 (8) 0.0513 (10) 0.0383 (9) 0.0149 (7) 0.0150 (7) 0.0168 (7)
N1 0.0238 (6) 0.0371 (8) 0.0294 (7) 0.0027 (5) 0.0065 (5) 0.0024 (6)
N2 0.0294 (7) 0.0340 (7) 0.0320 (8) 0.0035 (6) 0.0087 (6) 0.0040 (6)
C3 0.0304 (8) 0.0403 (10) 0.0326 (9) 0.0052 (7) 0.0045 (7) 0.0057 (7)
C4 0.0257 (8) 0.0437 (10) 0.0348 (9) 0.0070 (7) 0.0060 (6) 0.0041 (7)
C1 0.0256 (8) 0.0291 (8) 0.0316 (8) 0.0016 (6) 0.0066 (6) 0.0010 (6)

Geometric parameters (Å, °)

O2—C16 1.318 (2) C15—H15A 0.9900
O2—H6 0.869 (17) C15—H15B 0.9900
O1—C16 1.217 (2) C9—H9 0.9500
C16—C5 1.537 (2) C13—C14 1.535 (4)
C6—C7 1.392 (2) C13—H13A 0.9900
C6—C11 1.397 (2) C13—H13B 0.9900
C6—C5 1.527 (2) C14—H14A 0.9900
C5—C12 1.538 (2) C14—H14B 0.9900
C5—C15 1.551 (3) C2—N2 1.334 (2)
C8—C9 1.384 (3) C2—C3 1.387 (2)
C8—C7 1.395 (2) C2—H2 0.9500
C8—H8 0.9500 N3—C1 1.340 (2)
C12—C13 1.548 (3) N3—H5 0.90 (3)
C12—H12A 0.9900 N3—H1 0.88 (3)
C12—H12B 0.9900 N1—C4 1.334 (2)
C7—H7 0.9500 N1—C1 1.352 (2)
C10—C9 1.384 (3) N2—C1 1.355 (2)
C10—C11 1.397 (2) C3—C4 1.380 (3)
C10—H10 0.9500 C3—H3 0.9500
C11—H11 0.9500 C4—H4 0.9500
C15—C14 1.530 (3)
C16—O2—H6 113.4 (19) C5—C15—H15B 111.1
O1—C16—O2 123.13 (16) H15A—C15—H15B 109.1
O1—C16—C5 123.93 (16) C10—C9—C8 119.54 (16)
O2—C16—C5 112.93 (14) C10—C9—H9 120.2
C7—C6—C11 118.03 (15) C8—C9—H9 120.2
C7—C6—C5 120.77 (15) C14—C13—C12 106.50 (16)
C11—C6—C5 121.20 (15) C14—C13—H13A 110.4
C6—C5—C16 109.44 (13) C12—C13—H13A 110.4
C6—C5—C12 114.81 (15) C14—C13—H13B 110.4
C16—C5—C12 109.27 (14) C12—C13—H13B 110.4
C6—C5—C15 112.84 (14) H13A—C13—H13B 108.6
C16—C5—C15 107.86 (14) C15—C14—C13 105.13 (18)
C12—C5—C15 102.24 (15) C15—C14—H14A 110.7
C9—C8—C7 120.06 (17) C13—C14—H14A 110.7
C9—C8—H8 120.0 C15—C14—H14B 110.7
C7—C8—H8 120.0 C13—C14—H14B 110.7
C5—C12—C13 105.58 (17) H14A—C14—H14B 108.8
C5—C12—H12A 110.6 N2—C2—C3 123.13 (16)
C13—C12—H12A 110.6 N2—C2—H2 118.4
C5—C12—H12B 110.6 C3—C2—H2 118.4
C13—C12—H12B 110.6 C1—N3—H5 120.2 (16)
H12A—C12—H12B 108.8 C1—N3—H1 118.2 (16)
C6—C7—C8 121.24 (16) H5—N3—H1 121 (2)
C6—C7—H7 119.4 C4—N1—C1 117.03 (15)
C8—C7—H7 119.4 C2—N2—C1 116.58 (15)
C9—C10—C11 120.36 (17) C4—C3—C2 115.97 (16)
C9—C10—H10 119.8 C4—C3—H3 122.0
C11—C10—H10 119.8 C2—C3—H3 122.0
C10—C11—C6 120.76 (17) N1—C4—C3 122.94 (16)
C10—C11—H11 119.6 N1—C4—H4 118.5
C6—C11—H11 119.6 C3—C4—H4 118.5
C14—C15—C5 103.19 (17) N3—C1—N1 117.64 (16)
C14—C15—H15A 111.1 N3—C1—N2 118.00 (15)
C5—C15—H15A 111.1 N1—C1—N2 124.36 (16)
C14—C15—H15B 111.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H6···N1 0.87 (2) 1.79 (2) 2.653 (2) 173 (3)
N3—H5···O1 0.90 (3) 2.08 (3) 2.966 (2) 168 (2)
N3—H1···N2i 0.88 (3) 2.13 (3) 3.006 (2) 173 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5101).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
  4. Goswami, S., Mahapatra, A. K., Ghosh, K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1999a). Acta Cryst. C55, 87–89.
  5. Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1999b). Acta Cryst. C55, 583–585.
  6. Goswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 477–478. [DOI] [PubMed]
  7. He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339–o3340. [DOI] [PMC free article] [PubMed]
  8. He, G., Chow, P. S. & Tan, R. B. H. (2009). Cryst Growth Des. 9, 4529–4532.
  9. Lynch, D. E., Latif, T., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 567–575.
  10. Margulis, T. N. (1975). Acta Cryst. B31, 1049–1052.
  11. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  12. Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.
  13. Serafin, M. F. & Wheeler, K. A. (2007). Acta Cryst. C63, o620–o621. [DOI] [PubMed]
  14. Shan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101–3104.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003667/ng5101sup1.cif

e-67-0o552-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003667/ng5101Isup2.hkl

e-67-0o552-Isup2.hkl (178.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES