Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o614. doi: 10.1107/S1600536811004776

4,4′-Dimeth­oxy-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphenol

Hadi Kargar a, Reza Kia b,*, Elham Pahlavani a, Muhammad Nawaz Tahir c,*
PMCID: PMC3052006  PMID: 21522371

Abstract

In the title compound, C21H26N2O4, the dihedral angle between the substituted benzene rings is 30.47 (15) °. Two strong intra­molecular O—H⋯N hydrogen bonds generate two S(6) ring motifs.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2009, 2010).graphic file with name e-67-0o614-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O4

  • M r = 370.44

  • Monoclinic, Inline graphic

  • a = 10.660 (2) Å

  • b = 21.742 (4) Å

  • c = 9.2767 (19) Å

  • β = 108.03 (3)°

  • V = 2044.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.23 × 0.15 × 0.08 mm

Data collection

  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995) T min = 0.965, T max = 1.000

  • 7094 measured reflections

  • 3375 independent reflections

  • 967 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.058

  • S = 0.57

  • 3375 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004776/tk2716sup1.cif

e-67-0o614-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004776/tk2716Isup2.hkl

e-67-0o614-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 1.88 2.593 (3) 147
O2—H2⋯N2 0.83 1.90 2.604 (3) 143

Acknowledgments

HK and EP thank PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities. RK thanks the Chemistry Departmet, University of Isfahan, for the the use of Stoe IPDS 2T diffractometer facility

supplementary crystallographic information

Comment

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradenate Schiff bases (Kargar et al., 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths are comparable to previously reported structures (Kargar et al., 2009, Kargar et al., 2010). The dihedral angle between the two benzene rings is 30.47 (15) °. Strong intramolecular O—H···N hydrogen bonds (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995).

Experimental

The title compound was synthesized by adding 5-methoxy-salicylaldehyde (4 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for 30 min. The resultant yellow solution was filtered. Yellow crystals were obtained by slow evaporation of its ethanol solution at room temperature over several days.

Refinement

H atoms of the hydroxy groups were located in a difference Fourier map and constrained at those positions with Uiso(H) = 1.5 Ueq(O), see Table 1 for distances. The remaining H atoms were positioned geometrically with C—H = 0.93–0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used only for the methyl groups of the methoxy substituents.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.

Crystal data

C21H26N2O4 F(000) = 792
Mr = 370.44 Dx = 1.204 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3220 reflections
a = 10.660 (2) Å θ = 2.0–24.2°
b = 21.742 (4) Å µ = 0.08 mm1
c = 9.2767 (19) Å T = 296 K
β = 108.03 (3)° Plate, yellow
V = 2044.5 (7) Å3 0.23 × 0.15 × 0.08 mm
Z = 4

Data collection

Stoe IPDS 2T Image Plate diffractometer 3375 independent reflections
Radiation source: fine-focus sealed tube 967 reflections with I > 2σ(I)
graphite Rint = 0.054
Detector resolution: 0.15 mm pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −12→12
Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995) k = −22→25
Tmin = 0.965, Tmax = 1.000 l = −11→10
7094 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 0.57 w = 1/[σ2(Fo2) + (0.0172P)2] where P = (Fo2 + 2Fc2)/3
3375 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 0.08 e Å3
0 restraints Δρmin = −0.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.05846 (17) 0.01529 (7) 0.75824 (19) 0.0807 (6)
H1 −0.0997 0.0250 0.6727 0.121*
O2 −0.1706 (2) 0.31943 (8) 0.4769 (2) 0.0874 (6)
H2 −0.2189 0.2892 0.4703 0.131*
O3 0.4634 (2) 0.07957 (10) 0.8988 (2) 0.1064 (8)
O4 0.3081 (2) 0.30533 (10) 0.9255 (3) 0.0936 (7)
N1 −0.1073 (3) 0.07562 (9) 0.5057 (3) 0.0629 (7)
N2 −0.2263 (3) 0.21006 (10) 0.5539 (3) 0.0662 (7)
C1 0.0688 (3) 0.03241 (12) 0.7858 (4) 0.0601 (8)
C2 0.1605 (3) 0.01492 (12) 0.9224 (3) 0.0685 (8)
H2A 0.1336 −0.0083 0.9917 0.082*
C3 0.2893 (3) 0.03161 (12) 0.9549 (3) 0.0750 (9)
H3A 0.3502 0.0195 1.0460 0.090*
C4 0.3300 (3) 0.06678 (14) 0.8524 (4) 0.0720 (9)
C5 0.2413 (3) 0.08523 (12) 0.7179 (3) 0.0705 (9)
H5A 0.2691 0.1088 0.6498 0.085*
C6 0.1091 (3) 0.06829 (11) 0.6844 (3) 0.0557 (8)
C7 0.0141 (3) 0.08981 (11) 0.5447 (3) 0.0621 (8)
H7A 0.0435 0.1151 0.4811 0.075*
C8 −0.1960 (3) 0.10405 (11) 0.3705 (3) 0.0689 (8)
H8A −0.2106 0.0760 0.2856 0.083*
H8B −0.1554 0.1410 0.3468 0.083*
C9 −0.3286 (3) 0.12057 (12) 0.3915 (3) 0.0647 (8)
C10 −0.3096 (2) 0.15556 (12) 0.5410 (3) 0.0686 (8)
H10A −0.3951 0.1680 0.5473 0.082*
H10B −0.2698 0.1282 0.6255 0.082*
C11 −0.1179 (3) 0.21062 (13) 0.6614 (3) 0.0647 (9)
H11A −0.0969 0.1777 0.7287 0.078*
C12 −0.0261 (3) 0.26170 (13) 0.6810 (3) 0.0550 (8)
C13 −0.0544 (3) 0.31384 (15) 0.5877 (3) 0.0673 (9)
C14 0.0387 (4) 0.36057 (13) 0.6113 (4) 0.0794 (11)
H14A 0.0205 0.3954 0.5500 0.095*
C15 0.1556 (4) 0.35591 (14) 0.7224 (4) 0.0804 (10)
H15A 0.2167 0.3876 0.7359 0.096*
C16 0.1861 (4) 0.30500 (14) 0.8166 (4) 0.0677 (9)
C17 0.0946 (3) 0.25820 (12) 0.7948 (3) 0.0628 (8)
H17A 0.1140 0.2238 0.8573 0.075*
C18 −0.4084 (2) 0.06177 (12) 0.3967 (3) 0.0982 (10)
H18A −0.3598 0.0366 0.4803 0.147*
H18B −0.4234 0.0393 0.3038 0.147*
H18C −0.4916 0.0729 0.4092 0.147*
C19 −0.4063 (3) 0.16042 (12) 0.2556 (3) 0.0975 (10)
H19A −0.3572 0.1971 0.2522 0.146*
H19B −0.4901 0.1713 0.2666 0.146*
H19C −0.4199 0.1376 0.1634 0.146*
C20 0.5161 (3) 0.11165 (14) 0.7998 (4) 0.1184 (13)
H20A 0.6098 0.1155 0.8448 0.178*
H20B 0.4771 0.1518 0.7810 0.178*
H20C 0.4974 0.0896 0.7059 0.178*
C21 0.3454 (3) 0.25225 (13) 1.0160 (3) 0.1204 (13)
H21A 0.4318 0.2581 1.0868 0.181*
H21B 0.3463 0.2175 0.9525 0.181*
H21C 0.2834 0.2450 1.0703 0.181*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0710 (15) 0.0916 (13) 0.0825 (14) −0.0025 (12) 0.0279 (14) 0.0249 (11)
O2 0.1028 (17) 0.0767 (14) 0.0822 (16) 0.0121 (13) 0.0279 (14) 0.0188 (12)
O3 0.0738 (17) 0.154 (2) 0.0852 (18) −0.0283 (16) 0.0154 (16) 0.0102 (14)
O4 0.0945 (18) 0.0784 (16) 0.0994 (19) −0.0159 (14) 0.0174 (16) 0.0104 (14)
N1 0.0633 (17) 0.0646 (15) 0.0623 (18) 0.0079 (15) 0.0216 (16) 0.0016 (13)
N2 0.078 (2) 0.0597 (16) 0.0666 (19) 0.0014 (16) 0.0305 (16) −0.0021 (14)
C1 0.060 (2) 0.0550 (19) 0.070 (2) 0.0004 (17) 0.027 (2) −0.0008 (17)
C2 0.081 (2) 0.070 (2) 0.062 (2) 0.006 (2) 0.034 (2) 0.0144 (17)
C3 0.076 (3) 0.085 (2) 0.063 (2) 0.003 (2) 0.021 (2) 0.0031 (18)
C4 0.061 (2) 0.084 (2) 0.073 (3) −0.015 (2) 0.024 (2) −0.007 (2)
C5 0.069 (2) 0.082 (2) 0.064 (2) −0.0074 (19) 0.025 (2) 0.0053 (18)
C6 0.062 (2) 0.0521 (18) 0.059 (2) 0.0031 (17) 0.027 (2) 0.0024 (16)
C7 0.079 (2) 0.0551 (19) 0.063 (2) −0.0008 (19) 0.036 (2) 0.0015 (16)
C8 0.072 (2) 0.077 (2) 0.060 (2) 0.0013 (18) 0.025 (2) −0.0030 (17)
C9 0.058 (2) 0.0713 (19) 0.061 (2) −0.0044 (18) 0.0138 (19) −0.0057 (17)
C10 0.058 (2) 0.082 (2) 0.071 (2) 0.0058 (18) 0.0274 (18) −0.0003 (17)
C11 0.086 (3) 0.058 (2) 0.062 (2) 0.003 (2) 0.039 (2) −0.0006 (17)
C12 0.071 (2) 0.0477 (18) 0.053 (2) 0.0033 (18) 0.0293 (19) −0.0010 (17)
C13 0.080 (3) 0.067 (2) 0.061 (2) 0.012 (2) 0.031 (2) 0.001 (2)
C14 0.112 (3) 0.051 (2) 0.089 (3) 0.004 (2) 0.050 (3) 0.017 (2)
C15 0.105 (3) 0.057 (2) 0.092 (3) −0.007 (2) 0.048 (3) 0.002 (2)
C16 0.086 (3) 0.057 (2) 0.066 (2) 0.007 (2) 0.032 (2) 0.0060 (19)
C17 0.082 (2) 0.0454 (19) 0.065 (2) −0.0025 (19) 0.029 (2) 0.0042 (16)
C18 0.085 (2) 0.099 (2) 0.102 (3) −0.023 (2) 0.017 (2) −0.015 (2)
C19 0.093 (2) 0.108 (2) 0.078 (2) 0.017 (2) 0.006 (2) 0.012 (2)
C20 0.082 (3) 0.161 (3) 0.113 (3) −0.043 (2) 0.032 (2) 0.014 (2)
C21 0.114 (3) 0.098 (3) 0.119 (3) −0.014 (2) −0.008 (2) 0.028 (2)

Geometric parameters (Å, °)

O1—C1 1.353 (3) C9—C19 1.543 (3)
O1—H1 0.8074 C9—C18 1.544 (3)
O2—C13 1.348 (3) C10—H10A 0.9700
O2—H2 0.8251 C10—H10B 0.9700
O3—C4 1.381 (3) C11—C12 1.454 (3)
O3—C20 1.402 (3) C11—H11A 0.9300
O4—C16 1.377 (3) C12—C17 1.391 (3)
O4—C21 1.410 (3) C12—C13 1.401 (3)
N1—C7 1.269 (3) C13—C14 1.390 (3)
N1—C8 1.455 (3) C14—C15 1.353 (4)
N2—C11 1.272 (3) C14—H14A 0.9300
N2—C10 1.463 (3) C15—C16 1.385 (3)
C1—C6 1.389 (3) C15—H15A 0.9300
C1—C2 1.392 (3) C16—C17 1.380 (3)
C2—C3 1.360 (3) C17—H17A 0.9300
C2—H2A 0.9300 C18—H18A 0.9600
C3—C4 1.390 (3) C18—H18B 0.9600
C3—H3A 0.9300 C18—H18C 0.9600
C4—C5 1.371 (3) C19—H19A 0.9600
C5—C6 1.395 (3) C19—H19B 0.9600
C5—H5A 0.9300 C19—H19C 0.9600
C6—C7 1.453 (3) C20—H20A 0.9600
C7—H7A 0.9300 C20—H20B 0.9600
C8—C9 1.528 (3) C20—H20C 0.9600
C8—H8A 0.9700 C21—H21A 0.9600
C8—H8B 0.9700 C21—H21B 0.9600
C9—C10 1.539 (3) C21—H21C 0.9600
C1—O1—H1 108.8 N2—C11—C12 121.2 (3)
C13—O2—H2 112.9 N2—C11—H11A 119.4
C4—O3—C20 118.6 (3) C12—C11—H11A 119.4
C16—O4—C21 117.4 (2) C17—C12—C13 119.0 (3)
C7—N1—C8 118.4 (2) C17—C12—C11 118.8 (3)
C11—N2—C10 116.9 (3) C13—C12—C11 122.2 (3)
O1—C1—C6 121.9 (3) O2—C13—C14 119.8 (3)
O1—C1—C2 118.5 (3) O2—C13—C12 121.0 (3)
C6—C1—C2 119.5 (3) C14—C13—C12 119.2 (3)
C3—C2—C1 120.3 (3) C15—C14—C13 120.6 (3)
C3—C2—H2A 119.8 C15—C14—H14A 119.7
C1—C2—H2A 119.8 C13—C14—H14A 119.7
C2—C3—C4 120.1 (3) C14—C15—C16 121.5 (3)
C2—C3—H3A 119.9 C14—C15—H15A 119.3
C4—C3—H3A 119.9 C16—C15—H15A 119.3
C5—C4—O3 125.3 (3) O4—C16—C17 125.1 (3)
C5—C4—C3 120.7 (3) O4—C16—C15 116.3 (3)
O3—C4—C3 114.0 (3) C17—C16—C15 118.6 (3)
C4—C5—C6 119.3 (3) C16—C17—C12 121.1 (3)
C4—C5—H5A 120.3 C16—C17—H17A 119.4
C6—C5—H5A 120.3 C12—C17—H17A 119.4
C1—C6—C5 120.0 (3) C9—C18—H18A 109.5
C1—C6—C7 120.5 (3) C9—C18—H18B 109.5
C5—C6—C7 119.4 (3) H18A—C18—H18B 109.5
N1—C7—C6 123.0 (3) C9—C18—H18C 109.5
N1—C7—H7A 118.5 H18A—C18—H18C 109.5
C6—C7—H7A 118.5 H18B—C18—H18C 109.5
N1—C8—C9 111.7 (2) C9—C19—H19A 109.5
N1—C8—H8A 109.3 C9—C19—H19B 109.5
C9—C8—H8A 109.3 H19A—C19—H19B 109.5
N1—C8—H8B 109.3 C9—C19—H19C 109.5
C9—C8—H8B 109.3 H19A—C19—H19C 109.5
H8A—C8—H8B 107.9 H19B—C19—H19C 109.5
C8—C9—C10 111.2 (2) O3—C20—H20A 109.5
C8—C9—C19 108.1 (2) O3—C20—H20B 109.5
C10—C9—C19 110.3 (2) H20A—C20—H20B 109.5
C8—C9—C18 110.4 (2) O3—C20—H20C 109.5
C10—C9—C18 107.6 (2) H20A—C20—H20C 109.5
C19—C9—C18 109.2 (2) H20B—C20—H20C 109.5
N2—C10—C9 112.4 (2) O4—C21—H21A 109.5
N2—C10—H10A 109.1 O4—C21—H21B 109.5
C9—C10—H10A 109.1 H21A—C21—H21B 109.5
N2—C10—H10B 109.1 O4—C21—H21C 109.5
C9—C10—H10B 109.1 H21A—C21—H21C 109.5
H10A—C10—H10B 107.9 H21B—C21—H21C 109.5
O1—C1—C2—C3 −179.5 (2) C11—N2—C10—C9 −116.9 (3)
C6—C1—C2—C3 −1.5 (4) C8—C9—C10—N2 54.6 (3)
C1—C2—C3—C4 0.6 (4) C19—C9—C10—N2 −65.3 (3)
C20—O3—C4—C5 −2.9 (4) C18—C9—C10—N2 175.7 (2)
C20—O3—C4—C3 176.3 (3) C10—N2—C11—C12 177.96 (19)
C2—C3—C4—C5 0.2 (4) N2—C11—C12—C17 −176.1 (3)
C2—C3—C4—O3 −179.0 (3) N2—C11—C12—C13 3.0 (4)
O3—C4—C5—C6 179.1 (3) C17—C12—C13—O2 −179.4 (2)
C3—C4—C5—C6 −0.1 (4) C11—C12—C13—O2 1.5 (4)
O1—C1—C6—C5 179.6 (2) C17—C12—C13—C14 0.1 (3)
C2—C1—C6—C5 1.7 (4) C11—C12—C13—C14 −179.0 (2)
O1—C1—C6—C7 1.1 (4) O2—C13—C14—C15 179.7 (3)
C2—C1—C6—C7 −176.8 (2) C12—C13—C14—C15 0.2 (4)
C4—C5—C6—C1 −0.9 (4) C13—C14—C15—C16 −0.4 (5)
C4—C5—C6—C7 177.6 (3) C21—O4—C16—C17 3.8 (4)
C8—N1—C7—C6 174.6 (2) C21—O4—C16—C15 −175.7 (2)
C1—C6—C7—N1 −2.5 (4) C14—C15—C16—O4 179.9 (3)
C5—C6—C7—N1 179.0 (3) C14—C15—C16—C17 0.3 (4)
C7—N1—C8—C9 −140.7 (2) O4—C16—C17—C12 −179.6 (2)
N1—C8—C9—C10 48.8 (3) C15—C16—C17—C12 −0.1 (4)
N1—C8—C9—C19 170.1 (2) C13—C12—C17—C16 −0.1 (4)
N1—C8—C9—C18 −70.5 (3) C11—C12—C17—C16 179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.81 1.88 2.593 (3) 147
O2—H2···N2 0.83 1.90 2.604 (3) 143

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2716).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777. [DOI] [PMC free article] [PubMed]
  4. Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004776/tk2716sup1.cif

e-67-0o614-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004776/tk2716Isup2.hkl

e-67-0o614-Isup2.hkl (165.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES