Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):o573. doi: 10.1107/S1600536811003928

2-Methyl-6-(trifluoro­meth­yl)imidazo[1,2-a]pyridine-3-carbonitrile

Hoong-Kun Fun a,*,, Mohd Mustaqim Rosli a, D J Madhu Kumar b, D Jagadeesh Prasad b, G K Nagaraja b
PMCID: PMC3052008  PMID: 21522335

Abstract

In the title compound, C10H6F3N3, the imidazo[1,2-a]pyridine group is essentially planar with a maximum deviation of 0.021 (1) Å. The F atoms in the trifluoro­methyl group and the methyl H atoms are each disordered over two sets of sites with refined site occupancies of 0.68 (1):0.32 (1). In the crystal, mol­ecules are linked into infinite chains through two C—H⋯N inter­actions forming R 2 2(12) and R 2 2(8) hydrogen-bond ring motifs. These chains are stacked along the a axis.

Related literature

For the biological activity of imidazole derivatives, see: Biftu et al. (2006); Elhakmoui et al. (1994); Fisher & Lusi (1972); Gudmundsson & Johns (2003, 2007); Kaminski et al. (1989); Rewankar et al. (1975); Rupert et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995).graphic file with name e-67-0o573-scheme1.jpg

Experimental

Crystal data

  • C10H6F3N3

  • M r = 225.18

  • Monoclinic, Inline graphic

  • a = 5.6871 (3) Å

  • b = 8.5437 (5) Å

  • c = 20.5403 (13) Å

  • β = 96.653 (4)°

  • V = 991.31 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 297 K

  • 0.43 × 0.22 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.945, T max = 0.991

  • 10175 measured reflections

  • 2820 independent reflections

  • 1720 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.130

  • S = 1.03

  • 2820 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003928/fl2329sup1.cif

e-67-0o573-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003928/fl2329Isup2.hkl

e-67-0o573-Isup2.hkl (138.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N3i 0.93 2.45 3.384 (2) 176
C4—H4A⋯N2ii 0.93 2.53 3.428 (2) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/ 811160).

supplementary crystallographic information

Comment

The imidazole nucleus is a widely used pharmacophore in medicinal compounds due to its broad spectrum of biological activities. Moreover imidazole derivatives are isosteres of naturally-occurring nucleotides which allow them to interact easily with the biopolymers of the living systems. It has been known that imidazo[1,2-a]pyridine derivatives exhibit diverse biological activities (Gudmundsson & Johns, 2003) and were used as antiviral (Elhakmoui et al., 1994), antiulcer (Kaminski et al., 1989), antibacterial (Rewankar et al., 1975), antifungal (Fisher & Lusi, 1972), antiprotozoal (Biftu et al., 2006), antiherpes (Gudmundsson & Johns, 2007) and anti-inflammatory (Rupert et al., 2003) compounds.

All bond lengths and angles in the compound are within normal range. The imidazo[1,2-a] pyridine group is planar with maximum deviation of -0.021 (1)Å for atom N1 (Fig. 1). The F atoms in the trifluoromethyl group and the methyl H atoms are disordered over two positions with refined site occupancies of 0.68 (1):0.32 (1).

In the crystal structure, the molecules form infinite chains through C1—H1A···N3i and C4—H4A···N2ii (Table 1) interactions. These interactions also form R22(12) and R22(8) hydrogen ring motifs, respectively (Bernstein et al., 1995). The chains are stacked along the a-axis (Fig. 2).

Experimental

A mixture of 5-(trifluoromethyl) pyridin-2-amine (0.01mol) and dimethylacetamide dimethyl acetal (0.03mol) was refluxed for 24 hr at 900 C. The resultant product was recrystallized from ethanol. The product so obtained (0.01mol) was refluxed with bromoacetonitrile (0.01mol) in toluene at 600 C. The product was then removed by evaporation of toluene under reduced pressure and it was isolated by column chromatography using ethyl acetate as an eluent. It was then recrystallized by slow evaporation from ethanol to give crystals suitable for x-ray analysis.

Refinement

H atoms were placed in calculated positions [C–H = 0.93–0.96 Å] and refined as riding with Uiso(H) = 1.2eq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. The F atoms in trifluoromethyl group and the H atoms in methyl group are disordered over two position with refined site occupancies of 0.68 (1):0.32 (1).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show minor components.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the a axis showing molecular chains stacked down the a-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity. Only major components are shown.

Crystal data

C10H6F3N3 F(000) = 456
Mr = 225.18 Dx = 1.509 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2837 reflections
a = 5.6871 (3) Å θ = 2.6–25.3°
b = 8.5437 (5) Å µ = 0.13 mm1
c = 20.5403 (13) Å T = 297 K
β = 96.653 (4)° Plate, colourless
V = 991.31 (10) Å3 0.43 × 0.22 × 0.07 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 2820 independent reflections
Radiation source: fine-focus sealed tube 1720 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 29.8°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→7
Tmin = 0.945, Tmax = 0.991 k = −11→11
10175 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0655P] where P = (Fo2 + 2Fc2)/3
2820 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C10 0.2247 (4) 0.2282 (2) 0.30231 (9) 0.0633 (5)
F1 0.1174 (15) 0.0950 (4) 0.2794 (3) 0.1138 (18) 0.675 (13)
F2 0.3304 (7) 0.2905 (11) 0.2575 (3) 0.134 (2) 0.675 (13)
F3 0.0427 (9) 0.3205 (5) 0.3079 (2) 0.0858 (13) 0.675 (13)
F1A 0.246 (3) 0.1157 (11) 0.2609 (4) 0.097 (3) 0.325 (13)
F2A 0.329 (2) 0.3390 (12) 0.2678 (6) 0.131 (4) 0.325 (13)
F3A 0.0178 (17) 0.271 (2) 0.3077 (6) 0.141 (5) 0.325 (13)
N1 0.46963 (19) 0.24647 (12) 0.47742 (6) 0.0410 (3)
N2 0.7873 (2) 0.15187 (14) 0.54049 (6) 0.0528 (3)
N3 0.1553 (2) 0.49667 (17) 0.57317 (7) 0.0660 (4)
C1 0.3230 (3) 0.27046 (16) 0.42094 (8) 0.0447 (4)
H1A 0.1888 0.3328 0.4206 0.054*
C2 0.3776 (3) 0.20129 (17) 0.36531 (7) 0.0478 (4)
C3 0.5809 (3) 0.10468 (18) 0.36599 (8) 0.0541 (4)
H3A 0.6161 0.0581 0.3274 0.065*
C4 0.7237 (3) 0.07997 (17) 0.42235 (8) 0.0530 (4)
H4A 0.8554 0.0153 0.4228 0.064*
C5 0.6712 (2) 0.15294 (16) 0.48021 (8) 0.0455 (4)
C6 0.6634 (3) 0.24616 (17) 0.57735 (8) 0.0486 (4)
C7 0.4662 (2) 0.30593 (16) 0.54019 (7) 0.0432 (3)
C8 0.2918 (3) 0.40991 (17) 0.55779 (7) 0.0468 (4)
C9 0.7402 (3) 0.2770 (2) 0.64782 (8) 0.0654 (5)
H9A 0.7533 0.1797 0.6713 0.098* 0.675 (13)
H9B 0.6256 0.3425 0.6654 0.098* 0.675 (13)
H9C 0.8910 0.3287 0.6523 0.098* 0.675 (13)
H9D 0.8904 0.2278 0.6603 0.098* 0.325 (13)
H9E 0.6250 0.2353 0.6738 0.098* 0.325 (13)
H9F 0.7547 0.3878 0.6549 0.098* 0.325 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C10 0.0701 (12) 0.0666 (11) 0.0522 (10) 0.0091 (10) 0.0024 (9) −0.0014 (8)
F1 0.131 (3) 0.0749 (15) 0.117 (3) 0.001 (2) −0.065 (3) −0.0194 (17)
F2 0.085 (2) 0.255 (7) 0.0643 (18) 0.003 (3) 0.0218 (15) 0.049 (3)
F3 0.093 (3) 0.095 (2) 0.0627 (18) 0.0467 (16) −0.0183 (18) −0.0041 (12)
F1A 0.116 (6) 0.093 (4) 0.071 (3) 0.011 (4) −0.032 (4) −0.018 (3)
F2A 0.213 (10) 0.090 (5) 0.082 (5) −0.027 (4) −0.018 (5) 0.050 (3)
F3A 0.039 (3) 0.302 (15) 0.081 (5) 0.003 (6) 0.002 (3) 0.042 (8)
N1 0.0356 (6) 0.0390 (6) 0.0485 (7) 0.0048 (5) 0.0053 (5) 0.0016 (5)
N2 0.0445 (7) 0.0524 (7) 0.0604 (8) 0.0094 (6) 0.0009 (6) 0.0029 (6)
N3 0.0590 (8) 0.0662 (9) 0.0748 (10) 0.0127 (7) 0.0158 (7) −0.0053 (7)
C1 0.0389 (7) 0.0421 (7) 0.0524 (9) 0.0057 (6) 0.0024 (7) 0.0051 (6)
C2 0.0468 (8) 0.0463 (8) 0.0498 (9) 0.0012 (6) 0.0043 (7) 0.0004 (6)
C3 0.0525 (9) 0.0530 (9) 0.0580 (10) 0.0038 (7) 0.0117 (8) −0.0084 (7)
C4 0.0432 (8) 0.0486 (8) 0.0680 (10) 0.0103 (7) 0.0096 (8) −0.0042 (7)
C5 0.0371 (7) 0.0400 (7) 0.0593 (9) 0.0067 (6) 0.0046 (7) 0.0022 (6)
C6 0.0451 (8) 0.0471 (8) 0.0532 (9) 0.0008 (6) 0.0045 (7) 0.0036 (6)
C7 0.0403 (7) 0.0434 (7) 0.0462 (8) 0.0040 (6) 0.0064 (6) 0.0027 (6)
C8 0.0435 (8) 0.0466 (8) 0.0509 (8) 0.0023 (6) 0.0078 (7) 0.0010 (6)
C9 0.0651 (11) 0.0746 (12) 0.0540 (10) 0.0025 (9) −0.0037 (9) 0.0045 (8)

Geometric parameters (Å, °)

C10—F3A 1.249 (10) C2—C3 1.420 (2)
C10—F2 1.273 (4) C3—C4 1.351 (2)
C10—F1A 1.298 (7) C3—H3A 0.9300
C10—F3 1.316 (4) C4—C5 1.405 (2)
C10—F1 1.350 (5) C4—H4A 0.9300
C10—F2A 1.359 (9) C6—C7 1.379 (2)
C10—C2 1.491 (2) C6—C9 1.486 (2)
N1—C1 1.3635 (19) C7—C8 1.4095 (19)
N1—C7 1.3880 (18) C9—H9A 0.9600
N1—C5 1.3931 (17) C9—H9B 0.9600
N2—C5 1.3340 (19) C9—H9C 0.9600
N2—C6 1.3571 (19) C9—H9D 0.9600
N3—C8 1.1442 (17) C9—H9E 0.9600
C1—C2 1.354 (2) C9—H9F 0.9600
C1—H1A 0.9300
F3A—C10—F1A 115.7 (7) C2—C3—H3A 119.8
F2—C10—F3 104.8 (4) C3—C4—C5 119.33 (13)
F2—C10—F1 109.4 (4) C3—C4—H4A 120.3
F3—C10—F1 102.0 (4) C5—C4—H4A 120.3
F3A—C10—F2A 108.3 (9) N2—C5—N1 111.00 (12)
F1A—C10—F2A 95.5 (7) N2—C5—C4 130.66 (13)
F3A—C10—C2 115.4 (6) N1—C5—C4 118.32 (14)
F2—C10—C2 114.5 (3) N2—C6—C7 110.63 (14)
F1A—C10—C2 111.4 (4) N2—C6—C9 122.40 (14)
F3—C10—C2 113.7 (3) C7—C6—C9 126.97 (14)
F1—C10—C2 111.5 (2) C6—C7—N1 106.29 (12)
F2A—C10—C2 108.4 (5) C6—C7—C8 129.98 (14)
C1—N1—C7 131.48 (12) N1—C7—C8 123.71 (13)
C1—N1—C5 122.71 (12) N3—C8—C7 178.02 (17)
C7—N1—C5 105.77 (12) C6—C9—H9A 109.5
C5—N2—C6 106.31 (12) C6—C9—H9B 109.5
C2—C1—N1 118.37 (13) C6—C9—H9C 109.5
C2—C1—H1A 120.8 C6—C9—H9D 109.5
N1—C1—H1A 120.8 C6—C9—H9E 109.5
C1—C2—C3 120.76 (15) H9D—C9—H9E 109.5
C1—C2—C10 119.84 (14) C6—C9—H9F 109.5
C3—C2—C10 119.40 (14) H9D—C9—H9F 109.5
C4—C3—C2 120.49 (14) H9E—C9—H9F 109.5
C4—C3—H3A 119.8
C7—N1—C1—C2 176.78 (13) C6—N2—C5—N1 −0.64 (16)
C5—N1—C1—C2 −0.6 (2) C6—N2—C5—C4 177.88 (15)
N1—C1—C2—C3 0.7 (2) C1—N1—C5—N2 178.33 (12)
N1—C1—C2—C10 −178.43 (14) C7—N1—C5—N2 0.40 (16)
F3A—C10—C2—C1 −22.2 (11) C1—N1—C5—C4 −0.4 (2)
F2—C10—C2—C1 120.0 (5) C7—N1—C5—C4 −178.32 (13)
F1A—C10—C2—C1 −156.7 (8) C3—C4—C5—N2 −177.24 (15)
F3—C10—C2—C1 −0.4 (4) C3—C4—C5—N1 1.2 (2)
F1—C10—C2—C1 −115.0 (5) C5—N2—C6—C7 0.64 (17)
F2A—C10—C2—C1 99.5 (6) C5—N2—C6—C9 −178.97 (14)
F3A—C10—C2—C3 158.6 (11) N2—C6—C7—N1 −0.40 (16)
F2—C10—C2—C3 −59.1 (5) C9—C6—C7—N1 179.19 (14)
F1A—C10—C2—C3 24.1 (8) N2—C6—C7—C8 −178.74 (14)
F3—C10—C2—C3 −179.6 (3) C9—C6—C7—C8 0.8 (3)
F1—C10—C2—C3 65.8 (5) C1—N1—C7—C6 −177.68 (14)
F2A—C10—C2—C3 −79.7 (6) C5—N1—C7—C6 0.00 (15)
C1—C2—C3—C4 0.1 (2) C1—N1—C7—C8 0.8 (2)
C10—C2—C3—C4 179.24 (15) C5—N1—C7—C8 178.48 (13)
C2—C3—C4—C5 −1.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···N3i 0.93 2.45 3.384 (2) 176
C4—H4A···N2ii 0.93 2.53 3.428 (2) 163

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2329).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Biftu, T., Feng, D., Liang, G.-B., Qian, X., Scribner, A., Dennis, R., Lee, S., Liberator, P. A., Brown, C., Gurnett, A., Leavitt, P. S., Thompson, D., Mathew, J., Misura, A., Samaras, S., Tamas, T., Sina, J. F., McNulty, K. A., McKnight, C. G., Schmatz, D. M. & Wyvratt, M. (2006). Bioorg. Med. Chem. Lett. 16, 2479–2483. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Elhakmoui, A., Gueiffier, A., Milhavet, J. C., Blache, Y., Chapat, J. P., Chavignon, O., Teulade, J.-C., Snoeck, R., Andrei, G. & Clercq, E. D. (1994). Bioorg. Med. Chem. Lett. 4, 1937–1940.
  5. Fisher, M. H. & Lusi, A. (1972). J. Med. Chem. 15, 982–985. [DOI] [PubMed]
  6. Gudmundsson, K. S. & Johns, B. A. (2003). Org. Lett. 5, 1369–1372. [DOI] [PubMed]
  7. Gudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735–2739. [DOI] [PubMed]
  8. Kaminski, J. J., Puchalski, C., Solomon, D. M., Rizvi, R. K., Conn, D. J., Elliot, A. J., Lovey, R. G., Guzik, H., Chiu, P. J. S., Long, J. F. & McPhail, A. T. (1989). J. Med. Chem. 32, 1686–1700. [DOI] [PubMed]
  9. Rewankar, G. R., Matthews, J. R. & Robins, R. K. (1975). J. Med. Chem. 18, 1253–1255. [DOI] [PubMed]
  10. Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003928/fl2329sup1.cif

e-67-0o573-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003928/fl2329Isup2.hkl

e-67-0o573-Isup2.hkl (138.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES