Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o728–o729. doi: 10.1107/S160053681100660X

5,11,17,23-Tetra­kis(chloro­meth­yl)-25,26,27,28-tetra­propoxycalix[4]arene

Felix Kutter a, Matthias H Düker a, Matthias Zeller b, Vladimir A Azov a,*
PMCID: PMC3052014  PMID: 21522470

Abstract

The title calix[4]arene, C44H52Cl4O4, displays the 1,3-alternate conformation with crystallographically imposed twofold symmetry. Four phenolic rings of the calixarene backbone are tilted into the calix cavity, making dihedral angles of 77.42 (2) and 77.71 (2)° with the plane of the four bridging methyl­ene C atoms. Pairs of opposite aromatic rings make dihedral angles of 25.16 (3) and 24.58 (4)° with each other. In the crystal, the calixarene mol­ecules pack with the formation of infinite columns along the b axis. The crystal packing shows a network of C—H⋯Cl contacts, which can be considered as non-classical hydrogen bonds.

Related literature

For calixarene derivatives and their applications, see: Gutsche (2008); Ikeda & Shinkai (1997). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007). For the previous synthesis of the title compound, see: Ikeda & Shinkai (1994a ). For its application in the formation of nanotubes, see: Ikeda & Shinkai (1994b ). For reviews on weak non-classical hydrogen bonding, see: Desiraju & Steiner (1999); Steiner (2002); Desiraju (2005).graphic file with name e-67-0o728-scheme1.jpg

Experimental

Crystal data

  • C44H52Cl4O4

  • M r = 786.66

  • Monoclinic, Inline graphic

  • a = 23.104 (3) Å

  • b = 11.5871 (15) Å

  • c = 17.618 (2) Å

  • β = 117.655 (2)°

  • V = 4177.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.49 × 0.31 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.658, T max = 0.746

  • 15796 measured reflections

  • 6176 independent reflections

  • 5280 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 0.97

  • 6176 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS, enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100660X/rk2266sup1.cif

e-67-0o728-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100660X/rk2266Isup2.hkl

e-67-0o728-Isup2.hkl (308.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H222⋯Cl25i 0.97 2.90 3.786 (1) 153
C23—H231⋯Cl26ii 0.97 2.90 3.557 (2) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to Dr C. M. L. Vande Velde (Karel de Grote University College, Antwerp, Belgium) and Dr D. Watkin (University of Oxford) for helpful discussions. MHD is grateful to BFK NaWi, University of Bremen, for financial support. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

supplementary crystallographic information

Comment

Calixarenes, a family of macrocyclic compounds, have shown to be superb molecular scaffolds for the construction of macromolecular and supramolecular architectures (Gutsche, 2008; Ikeda & Shinkai, 1997). Calix[4]arenes can adopt several conformations, of which the cone conformation is the most commonly employed one. Due to their bowl shape and ease of preparation, they are employed widely in supramolecular chemistry and crystal engineering (Dalgrano et al., 2007) for preparation of species and materials suitable for molecular encapsulation. The 1,3–alternate conformation of calix[4]arenes is much less commonly used. The title compound and its derivatives were previously synthesized (Ikeda & Shinkai, 1994a) to study binding of metal cations in solution, as well as for preparation of calixarene–based nanotubes (Ikeda & Shinkai, 1994b).

The molecule of the title compound is shown in Fig. 1. The calix[4]arene bowl adopts the 1,3–alternate conformation around a twofold symmetry axis; for that reason, the IUPAC numbering scheme for calix[4]arenes could not be applied. All bond lengths and angles may be considered normal. Four phenolic rings are pitched into the calix cavity, as defined by the angles, which the aromatic rings make with the plane of the four bridging methylenes (C1–C7–C1i–C7i): 77.42 (2)° (ring C2–6, C14) and 77.71 (2)° (ring C8–13), respectively (symmetry code: (i) -x+1, y, -z+3/2). Two pairs of opposite aromatic rings show interplanar angles of 25.16 (3)° (ring C2–6, C14) and 24.58 (4)° (ring C8–13), respectively. Four propyl chains point outside the cavity and adopt an anti conformation for all their bonds. Four chlorine atoms are also pointing outside from the calix cavity.

Several non–classical intermolecular weak hydrogen bonds are present in the structure (Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005). Details of the packing interactions are given in Table 1. Molecules pack into infinite columns along the b axis. Two short C23–H231···Cl26iii (symmetry code: (iii) x, y-1, z) contacts (2.90Å), parallel to the b axis, link molecules with each other (Fig. 2). Along the c axis, the molecules are interconnected side–to–side through pairs of C22–H222···Cl25ii (symmetry code: (ii) x, -y, z - 1/2) interactions (2.90Å, Fig. 3). In both cases, hydrogen atoms of the C22–24 propyl chains serve as H–bond donors. When viewed along the b axis, calixarene backbones form infinite channels with a shortest distance of 8.8090 (13)Å between the two neighboring channel centers (Fig. 2).

Experimental

A solution of 25,26,27,28–tetrapropoxycalix[4]arene (0.108 g, 0.169 mmol), paraformaldehyde (0.115 g, 3.83 mmol), glacial acetic acid (1.3 ml), and conc. H3PO4 (1.3 ml) in dioxane (5 ml) was stirred for 2 h at 353 K. After addition of conc. HCl (1.3 ml, 16.1 mmol) the solution was stirred for additional 16 h at 353 K. The mixture was concentrated under vacuum up to ca 3 ml, poured into ice/water (100 ml) and extracted with CH2Cl2 (3×20 ml). The combined organic phases were washed with water and brine, dried (Na2SO4), and evaporated to dryness. The resulting oil was dissolved in a small amount of CH2Cl2 and MeOH was slowly added. The precipitate was filtered off, washed with cold MeOH, dried under vacuum, and purified by column chromatography to yield 80 mg (0.102 mmol, 60%) of product as a white crystalline powder.

Rf = 0.41 (CH2Cl2/PE, 1:1). Mp: 562–565 K (CHCl3/heptane, decomp.); Lit: 556–558 K (Ikeda & Shinkai, 1994a). 1H NMR (200 MHz, CDCl3): δ 1.02 (t, J = 7.5 Hz, 12 H), 1.78 (tq, J = 7.2, 7.5 Hz, 8 H), 3.55 (s, 8 H), 3.63 (t, J = 7.2 Hz, 8 H), 4.43 (s, 8 H), 7.01 (s, 8 H). 13C NMR (50 MHz, CDCl3): δ 10.6, 23.8, 36.0, 46.7, 73.8, 129.8, 130.5, 133.3, 156.7. HR–MS (EI, 70 eV): m/z 784.25829 (M+, C44H52Cl4O4+, calcd. 784.26197).

X–ray quality crystals were grown by slow evaporation of a chloroform/heptane solution and appeared as large (up to 1–2 mm) transparent blocks.

Refinement

All non–hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were located in electron difference density maps and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93Å–0.98Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

ORTEP–3 plot of the title molecule with the atom numbering scheme. Displacement ellipsoids are represented at 50% probability levels. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, y, -z+3/2.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the b axis into the infinite channels formed by the calixarene backbones. Short C—H···Cl contacts, interconnecting pairs of molecules along the c axis, are shown as dotted lines.

Fig. 3.

Fig. 3.

Packing of the title compound viewed along the a axis. Short C—H···Cl contacts, interconnecting pairs of molecules along the b axis (vertical) and c axis (horizontal), are shown as dotted lines.

Crystal data

C44H52Cl4O4 F(000) = 1664
Mr = 786.66 Dx = 1.251 Mg m3
Monoclinic, C2/c Melting point = 562–565 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 23.104 (3) Å Cell parameters from 6719 reflections
b = 11.5871 (15) Å θ = 2.6–31.2°
c = 17.618 (2) Å µ = 0.32 mm1
β = 117.655 (2)° T = 100 K
V = 4177.7 (9) Å3 Plate, colourless
Z = 4 0.49 × 0.31 × 0.15 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 6176 independent reflections
Radiation source: fine–focus sealed tube 5280 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −32→21
Tmin = 0.658, Tmax = 0.746 k = −16→16
15796 measured reflections l = −25→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.119 Method: Modified Sheldrick w = 1/[σ2(F2) + (0.06P)2 + 6.5P], where P = (max(Fo2,0) + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
6176 reflections Δρmax = 0.84 e Å3
235 parameters Δρmin = −1.05 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.50019 (6) 0.26912 (11) 0.95475 (8) 0.0164
C2 0.54654 (6) 0.20061 (11) 0.93269 (8) 0.0149
C3 0.53732 (6) 0.08279 (11) 0.91462 (8) 0.0167
C4 0.57355 (6) 0.02376 (11) 0.88215 (8) 0.0170
C5 0.61874 (6) 0.08366 (11) 0.86547 (8) 0.0168
C6 0.62966 (6) 0.20102 (11) 0.88333 (8) 0.0148
C7 0.67218 (6) 0.27004 (11) 0.85493 (8) 0.0163
C8 0.62887 (6) 0.33794 (11) 0.77464 (8) 0.0143
C9 0.61781 (6) 0.45548 (11) 0.77855 (8) 0.0160
C10 0.57288 (6) 0.51528 (11) 0.70662 (8) 0.0164
C11 0.53667 (6) 0.45584 (11) 0.63009 (8) 0.0159
C12 0.54589 (6) 0.33795 (11) 0.62379 (8) 0.0144
C13 0.59403 (6) 0.28149 (10) 0.69587 (8) 0.0137
C14 0.59478 (6) 0.25714 (10) 0.91977 (8) 0.0145
C15 0.55982 (8) −0.10064 (12) 0.85763 (10) 0.0239
C16 0.56055 (8) 0.64034 (12) 0.71362 (10) 0.0231
O17 0.60538 (4) 0.37378 (8) 0.93772 (6) 0.0152
C18 0.65446 (7) 0.39656 (12) 1.02414 (8) 0.0203
C19 0.66500 (8) 0.52464 (13) 1.03584 (10) 0.0267
C20 0.71259 (8) 0.55535 (15) 1.12794 (11) 0.0327
O21 0.60378 (5) 0.16480 (8) 0.69063 (6) 0.0160
C22 0.65246 (7) 0.13892 (11) 0.66358 (9) 0.0186
C23 0.64766 (7) 0.01154 (13) 0.64361 (10) 0.0246
C24 0.69974 (8) −0.02954 (15) 0.61997 (11) 0.0314
Cl25 0.61811 (3) −0.19788 (3) 0.93509 (3) 0.0381
Cl26 0.62004 (3) 0.73262 (3) 0.70485 (3) 0.0407
H11 0.5243 0.3212 1.0025 0.0157*
H12 0.4747 0.2162 0.9728 0.0143*
H31 0.5042 0.0438 0.9235 0.0150*
H51 0.6414 0.0427 0.8393 0.0158*
H72 0.7020 0.3210 0.9014 0.0138*
H71 0.6988 0.2163 0.8411 0.0144*
H91 0.6406 0.4933 0.8305 0.0136*
H111 0.5048 0.4966 0.5830 0.0128*
H151 0.5183 −0.1218 0.8522 0.0232*
H152 0.5596 −0.1137 0.8038 0.0233*
H162 0.5642 0.6536 0.7693 0.0219*
H161 0.5193 0.6646 0.6685 0.0223*
H181 0.6947 0.3556 1.0335 0.0207*
H182 0.6413 0.3680 1.0656 0.0205*
H192 0.6830 0.5531 0.9985 0.0289*
H191 0.6222 0.5628 1.0206 0.0279*
H201 0.7230 0.6366 1.1318 0.0433*
H203 0.7532 0.5123 1.1473 0.0441*
H202 0.6935 0.5370 1.1652 0.0450*
H221 0.6956 0.1595 0.7082 0.0178*
H222 0.6420 0.1815 0.6115 0.0173*
H231 0.6530 −0.0287 0.6945 0.0258*
H232 0.6051 −0.0045 0.5971 0.0253*
H242 0.6953 −0.1109 0.6068 0.0429*
H241 0.7421 −0.0116 0.6648 0.0429*
H243 0.6957 0.0125 0.5702 0.0441*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0182 (6) 0.0177 (5) 0.0144 (5) 0.0010 (4) 0.0086 (5) 0.0009 (4)
C2 0.0162 (6) 0.0154 (5) 0.0129 (5) 0.0013 (4) 0.0066 (5) 0.0018 (4)
C3 0.0173 (6) 0.0153 (5) 0.0169 (6) −0.0003 (4) 0.0076 (5) 0.0026 (4)
C4 0.0192 (6) 0.0138 (5) 0.0165 (5) 0.0009 (4) 0.0070 (5) 0.0011 (4)
C5 0.0185 (6) 0.0150 (5) 0.0169 (6) 0.0029 (4) 0.0084 (5) 0.0017 (4)
C6 0.0135 (5) 0.0160 (5) 0.0134 (5) 0.0012 (4) 0.0051 (4) 0.0027 (4)
C7 0.0144 (5) 0.0181 (5) 0.0160 (5) 0.0007 (4) 0.0066 (5) 0.0021 (4)
C8 0.0133 (5) 0.0147 (5) 0.0167 (5) −0.0002 (4) 0.0085 (5) 0.0012 (4)
C9 0.0172 (6) 0.0152 (5) 0.0170 (6) −0.0020 (4) 0.0092 (5) −0.0009 (4)
C10 0.0194 (6) 0.0130 (5) 0.0200 (6) −0.0006 (4) 0.0119 (5) 0.0006 (4)
C11 0.0166 (6) 0.0147 (5) 0.0172 (6) 0.0008 (4) 0.0086 (5) 0.0026 (4)
C12 0.0160 (6) 0.0151 (5) 0.0147 (5) −0.0010 (4) 0.0092 (5) 0.0003 (4)
C13 0.0148 (5) 0.0125 (5) 0.0167 (5) −0.0002 (4) 0.0098 (5) 0.0008 (4)
C14 0.0155 (6) 0.0131 (5) 0.0128 (5) 0.0004 (4) 0.0047 (4) 0.0012 (4)
C15 0.0292 (7) 0.0166 (6) 0.0248 (7) −0.0011 (5) 0.0117 (6) −0.0009 (5)
C16 0.0308 (7) 0.0146 (6) 0.0267 (7) 0.0017 (5) 0.0156 (6) 0.0007 (5)
O17 0.0169 (4) 0.0129 (4) 0.0131 (4) −0.0005 (3) 0.0046 (3) 0.0000 (3)
C18 0.0218 (6) 0.0190 (6) 0.0142 (6) 0.0007 (5) 0.0035 (5) −0.0003 (4)
C19 0.0296 (8) 0.0202 (6) 0.0237 (7) −0.0023 (5) 0.0068 (6) −0.0047 (5)
C20 0.0261 (8) 0.0328 (8) 0.0306 (8) −0.0005 (6) 0.0059 (6) −0.0149 (6)
O21 0.0188 (4) 0.0126 (4) 0.0208 (4) 0.0013 (3) 0.0127 (4) −0.0002 (3)
C22 0.0197 (6) 0.0185 (6) 0.0220 (6) 0.0025 (5) 0.0134 (5) −0.0003 (5)
C23 0.0223 (7) 0.0215 (6) 0.0300 (7) 0.0024 (5) 0.0122 (6) −0.0073 (5)
C24 0.0253 (7) 0.0352 (8) 0.0327 (8) 0.0104 (6) 0.0126 (6) −0.0073 (6)
Cl25 0.0615 (3) 0.01859 (16) 0.02742 (19) 0.01114 (16) 0.01501 (19) 0.00475 (13)
Cl26 0.0690 (3) 0.02000 (17) 0.0518 (3) −0.01600 (18) 0.0438 (3) −0.00762 (16)

Geometric parameters (Å, °)

C1—C12i 1.5220 (17) C14—O17 1.3837 (15)
C1—C2 1.5214 (18) C15—Cl25 1.7998 (15)
C1—H11 0.973 C15—H151 0.950
C1—H12 0.998 C15—H152 0.958
C2—C3 1.3956 (17) C16—Cl26 1.8037 (15)
C2—C14 1.3994 (17) C16—H162 0.958
C3—C4 1.3927 (18) C16—H161 0.957
C3—H31 0.962 O17—C18 1.4392 (15)
C4—C5 1.3940 (18) C18—C19 1.503 (2)
C4—C15 1.4959 (19) C18—H181 0.988
C5—C6 1.3922 (17) C18—H182 0.970
C5—H51 0.967 C19—C20 1.521 (2)
C6—C7 1.5203 (18) C19—H192 0.984
C6—C14 1.4018 (18) C19—H191 1.000
C7—C8 1.5190 (17) C20—H201 0.967
C7—H72 0.985 C20—H203 0.974
C7—H71 0.982 C20—H202 0.969
C8—C9 1.3933 (17) O21—C22 1.4420 (16)
C8—C13 1.4016 (17) C22—C23 1.5094 (19)
C9—C10 1.3938 (18) C22—H221 0.971
C9—H91 0.927 C22—H222 0.969
C10—C11 1.3946 (18) C23—C24 1.521 (2)
C10—C16 1.4929 (18) C23—H231 0.966
C11—C12 1.3950 (17) C23—H232 0.961
C11—H111 0.941 C24—H242 0.965
C12—C13 1.4024 (17) C24—H241 0.952
C13—O21 1.3810 (14) C24—H243 0.968
C12i—C1—C2 108.63 (10) C4—C15—H151 110.3
C12i—C1—H11 109.8 Cl25—C15—H151 106.3
C2—C1—H11 110.8 C4—C15—H152 109.9
C12i—C1—H12 110.2 Cl25—C15—H152 108.1
C2—C1—H12 110.4 H151—C15—H152 108.5
H11—C1—H12 107.0 C10—C16—Cl26 112.72 (10)
C1—C2—C3 121.19 (11) C10—C16—H162 108.1
C1—C2—C14 120.36 (11) Cl26—C16—H162 106.6
C3—C2—C14 118.00 (12) C10—C16—H161 111.8
C2—C3—C4 121.13 (12) Cl26—C16—H161 105.1
C2—C3—H31 118.1 H162—C16—H161 112.5
C4—C3—H31 120.7 C14—O17—C18 112.95 (9)
C3—C4—C5 119.59 (12) O17—C18—C19 108.92 (11)
C3—C4—C15 120.30 (12) O17—C18—H181 107.9
C5—C4—C15 119.87 (12) C19—C18—H181 111.8
C4—C5—C6 120.90 (12) O17—C18—H182 111.4
C4—C5—H51 118.7 C19—C18—H182 108.7
C6—C5—H51 120.3 H181—C18—H182 108.1
C5—C6—C7 121.09 (12) C18—C19—C20 111.62 (13)
C5—C6—C14 118.31 (12) C18—C19—H192 109.3
C7—C6—C14 120.23 (11) C20—C19—H192 108.3
C6—C7—C8 109.38 (10) C18—C19—H191 108.8
C6—C7—H72 110.6 C20—C19—H191 108.6
C8—C7—H72 111.6 H192—C19—H191 110.1
C6—C7—H71 108.8 C19—C20—H201 109.7
C8—C7—H71 108.4 C19—C20—H203 110.9
H72—C7—H71 108.0 H201—C20—H203 107.8
C7—C8—C9 121.12 (11) C19—C20—H202 109.9
C7—C8—C13 120.51 (11) H201—C20—H202 110.0
C9—C8—C13 118.09 (11) H203—C20—H202 108.5
C8—C9—C10 121.15 (12) C13—O21—C22 113.71 (10)
C8—C9—H91 118.5 O21—C22—C23 107.23 (11)
C10—C9—H91 120.3 O21—C22—H221 110.3
C9—C10—C11 119.54 (11) C23—C22—H221 111.5
C9—C10—C16 119.84 (12) O21—C22—H222 108.5
C11—C10—C16 120.49 (12) C23—C22—H222 108.5
C10—C11—C12 121.02 (12) H221—C22—H222 110.7
C10—C11—H111 118.6 C22—C23—C24 112.83 (13)
C12—C11—H111 120.4 C22—C23—H231 106.9
C1i—C12—C11 121.15 (11) C24—C23—H231 109.0
C1i—C12—C13 120.33 (11) C22—C23—H232 108.9
C11—C12—C13 118.09 (11) C24—C23—H232 109.3
C12—C13—C8 121.91 (11) H231—C23—H232 109.8
C12—C13—O21 118.79 (11) C23—C24—H242 111.2
C8—C13—O21 119.11 (11) C23—C24—H241 110.1
C6—C14—C2 121.86 (11) H242—C24—H241 111.5
C6—C14—O17 118.64 (11) C23—C24—H243 109.5
C2—C14—O17 119.34 (11) H242—C24—H243 108.6
C4—C15—Cl25 113.61 (10) H241—C24—H243 105.7

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C22—H222···Cl25ii 0.97 2.90 3.786 (1) 153
C23—H231···Cl26iii 0.97 2.90 3.557 (2) 127

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2266).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dalgrano, S. J., Thallapally, P. K., Barbour L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236–245. [DOI] [PubMed]
  6. Desiraju, G. R. (2005). Chem. Commun. pp. 2995–3001. [DOI] [PubMed]
  7. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, Cambridge: The Royal Society of Chemistry.
  10. Ikeda, A. & Shinkai, S. (1994a). J. Am. Chem. Soc. 116, 3102–3110.
  11. Ikeda, A. & Shinkai, S. (1994b). Chem. Commun. pp. 2375–2376.
  12. Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734. [DOI] [PubMed]
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100660X/rk2266sup1.cif

e-67-0o728-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100660X/rk2266Isup2.hkl

e-67-0o728-Isup2.hkl (308.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES