Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o653. doi: 10.1107/S1600536811005241

Methidathion: S-(5-meth­oxy-2-oxo-2,3-dihydro-1,3,4-thia­diazol-3-yl)methyl O,O-dimethyl phospho­rodithio­ate

Hyunjee Kim a, Yong Woon Shin b, Ki-Min Park a,*, Jineun Kim a, Tae Ho Kim a,*
PMCID: PMC3052021  PMID: 21522405

Abstract

The title compound, C6H11N2O4PS3, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the thia­diazole ring planes and the PS2 planes of the phospho­rodithio­ate group are 86.51 (5) and 56.33 (5)° in the two mol­ecules. In the crystal, weak inter­molecular S⋯S [3.570 (8) Å] inter­actions and C—H⋯O and C—H⋯N hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the toxicity and insecticidal activity of the title compound, see: Altuntas et al. (2002). For related structures, see: Rohrbaugh et al. (1976).graphic file with name e-67-0o653-scheme1.jpg

Experimental

Crystal data

  • C6H11N2O4PS3

  • M r = 302.32

  • Monoclinic, Inline graphic

  • a = 12.3944 (2) Å

  • b = 10.8056 (1) Å

  • c = 19.3631 (3) Å

  • β = 102.815 (1)°

  • V = 2528.68 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 173 K

  • 0.30 × 0.27 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.815, T max = 0.877

  • 20918 measured reflections

  • 5513 independent reflections

  • 4682 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.07

  • 5513 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005241/jh2268sup1.cif

e-67-0o653-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005241/jh2268Isup2.hkl

e-67-0o653-Isup2.hkl (269.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O7i 0.98 2.53 3.464 (3) 159
C1—H1B⋯O5ii 0.98 2.53 3.484 (3) 164
C2—H2B⋯O6iii 0.98 2.59 3.373 (3) 138
C3—H3A⋯N2i 0.99 2.56 3.506 (3) 161
C9—H9B⋯O3 0.99 2.42 3.246 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0009089).

supplementary crystallographic information

Comment

Methidathion (systematic name: S-2,3-dihydro-5-methoxy-2-oxo-1,3,4- thiadiazol-3-ylmethyl O,O-dimethyl phosphorodithioate), is one of the most widely used organophosphate insecticides in agriculture and public health programmes (Altuntas et al. 2002). However it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig. 1), crystallizes with two independent molecules in the asymmetric unit. The dihedral angles between the thiadiazol ring planes and the PS2 planes of the phosphorodithioate group are 86.51 (5)° and 56.33 (5)° in the two molecules. All bond lengths and bond angles are normal and comparable to those observed in similar structures (Rohrbaugh et al. 1976).

In the crystal structure, as shown in Fig. 2, weak intermolecular C—H···O, C—H···N hydrogen bonds (Table 1) and S···S interactions with 3.3372 (8) Å are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing.

Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with intermolecular C—H···O, C—H···N hydrogen bonds and S···S interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z; (ii) x + 1, y, z; (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 1, -z.]

Crystal data

C6H11N2O4PS3 F(000) = 1248
Mr = 302.32 Dx = 1.588 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9930 reflections
a = 12.3944 (2) Å θ = 2.5–28.2°
b = 10.8056 (1) Å µ = 0.71 mm1
c = 19.3631 (3) Å T = 173 K
β = 102.815 (1)° Block, colourless
V = 2528.68 (6) Å3 0.30 × 0.27 × 0.19 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 5513 independent reflections
Radiation source: fine-focus sealed tube 4682 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→11
Tmin = 0.815, Tmax = 0.877 k = −11→13
20918 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.2139P] where P = (Fo2 + 2Fc2)/3
5513 reflections (Δ/σ)max = 0.001
289 parameters Δρmax = 0.98 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.02509 (4) 0.14885 (4) 0.16800 (3) 0.02754 (12)
P2 0.60901 (4) −0.02370 (5) 0.25072 (3) 0.02917 (13)
S1 0.01168 (5) 0.17732 (6) 0.26343 (3) 0.04165 (15)
S2 0.15513 (4) 0.02823 (5) 0.16946 (3) 0.03550 (14)
S3 0.16030 (4) −0.35504 (4) 0.03186 (3) 0.03270 (13)
S4 0.57301 (6) −0.06480 (7) 0.33906 (3) 0.05122 (17)
S5 0.46376 (4) 0.01769 (5) 0.17901 (3) 0.03259 (13)
S6 0.48755 (4) 0.34626 (5) −0.00393 (3) 0.03301 (13)
O1 −0.07804 (11) 0.09769 (14) 0.11286 (7) 0.0355 (3)
O2 0.04167 (15) 0.26370 (13) 0.12160 (8) 0.0459 (4)
O3 0.31042 (11) −0.17257 (13) 0.05006 (8) 0.0363 (3)
O4 −0.05059 (11) −0.37521 (12) 0.03211 (8) 0.0338 (3)
O5 0.69519 (11) 0.08288 (13) 0.25149 (7) 0.0326 (3)
O6 0.67189 (12) −0.12180 (13) 0.21387 (8) 0.0347 (3)
O7 0.35232 (12) 0.15068 (14) −0.01300 (8) 0.0412 (4)
O8 0.67746 (11) 0.41371 (13) 0.07718 (8) 0.0351 (3)
N1 0.13193 (12) −0.12835 (14) 0.05709 (8) 0.0243 (3)
N2 0.02836 (13) −0.18037 (14) 0.05340 (9) 0.0263 (3)
N3 0.51734 (13) 0.14990 (15) 0.06949 (9) 0.0283 (4)
N4 0.60999 (13) 0.22068 (15) 0.09789 (8) 0.0269 (3)
C1 −0.14361 (19) −0.0019 (2) 0.13290 (14) 0.0459 (6)
H1A −0.2042 −0.0227 0.0927 0.069*
H1B −0.1742 0.0246 0.1730 0.069*
H1C −0.0967 −0.0748 0.1465 0.069*
C2 0.1050 (3) 0.3680 (3) 0.14990 (15) 0.0700 (9)
H2A 0.1047 0.4285 0.1122 0.105*
H2B 0.1813 0.3423 0.1703 0.105*
H2C 0.0731 0.4055 0.1869 0.105*
C3 0.14752 (16) 0.00052 (17) 0.07483 (10) 0.0273 (4)
H3A 0.0853 0.0487 0.0464 0.033*
H3B 0.2167 0.0298 0.0626 0.033*
C4 0.21602 (15) −0.20269 (17) 0.04761 (10) 0.0259 (4)
C5 0.03364 (15) −0.29610 (17) 0.04052 (10) 0.0263 (4)
C6 −0.15623 (17) −0.31980 (19) 0.03375 (14) 0.0383 (5)
H6A −0.2133 −0.3842 0.0272 0.057*
H6B −0.1755 −0.2586 −0.0043 0.057*
H6C −0.1515 −0.2791 0.0795 0.057*
C7 0.6764 (2) 0.2031 (2) 0.27938 (12) 0.0426 (5)
H7A 0.7376 0.2585 0.2760 0.064*
H7B 0.6721 0.1949 0.3291 0.064*
H7C 0.6069 0.2375 0.2520 0.064*
C8 0.6314 (2) −0.2470 (2) 0.20117 (15) 0.0536 (7)
H8A 0.6811 −0.2940 0.1780 0.080*
H8B 0.5570 −0.2456 0.1705 0.080*
H8C 0.6287 −0.2864 0.2464 0.080*
C9 0.50949 (17) 0.02671 (18) 0.09544 (10) 0.0291 (4)
H9A 0.5829 −0.0133 0.1020 0.035*
H9B 0.4572 −0.0210 0.0591 0.035*
C10 0.43898 (16) 0.19916 (19) 0.01633 (11) 0.0305 (4)
C11 0.60347 (16) 0.32287 (18) 0.06415 (10) 0.0275 (4)
C12 0.7657 (2) 0.3958 (2) 0.13932 (13) 0.0494 (6)
H12A 0.8163 0.4666 0.1448 0.074*
H12B 0.8063 0.3199 0.1339 0.074*
H12C 0.7342 0.3887 0.1813 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0317 (3) 0.0231 (2) 0.0290 (3) 0.00059 (19) 0.0094 (2) −0.0009 (2)
P2 0.0291 (3) 0.0324 (3) 0.0282 (3) −0.0032 (2) 0.0112 (2) 0.0027 (2)
S1 0.0511 (4) 0.0445 (3) 0.0318 (3) −0.0008 (3) 0.0143 (3) −0.0075 (2)
S2 0.0322 (3) 0.0394 (3) 0.0307 (3) 0.0102 (2) −0.0021 (2) −0.0081 (2)
S3 0.0272 (3) 0.0230 (2) 0.0480 (3) 0.00344 (19) 0.0086 (2) −0.0059 (2)
S4 0.0610 (4) 0.0630 (4) 0.0361 (3) −0.0113 (3) 0.0247 (3) 0.0075 (3)
S5 0.0229 (2) 0.0389 (3) 0.0378 (3) −0.0022 (2) 0.0106 (2) −0.0046 (2)
S6 0.0327 (3) 0.0342 (3) 0.0299 (3) 0.0100 (2) 0.0021 (2) 0.0020 (2)
O1 0.0268 (7) 0.0473 (9) 0.0317 (8) 0.0021 (6) 0.0051 (6) 0.0004 (7)
O2 0.0710 (11) 0.0257 (7) 0.0442 (9) −0.0051 (7) 0.0200 (8) 0.0005 (7)
O3 0.0253 (7) 0.0347 (8) 0.0505 (9) −0.0015 (6) 0.0119 (7) −0.0092 (7)
O4 0.0269 (7) 0.0220 (6) 0.0529 (9) −0.0008 (5) 0.0098 (7) −0.0015 (6)
O5 0.0290 (7) 0.0361 (8) 0.0335 (8) −0.0074 (6) 0.0089 (6) −0.0008 (6)
O6 0.0360 (8) 0.0310 (7) 0.0394 (8) 0.0035 (6) 0.0131 (7) 0.0057 (6)
O7 0.0283 (8) 0.0419 (9) 0.0463 (9) 0.0062 (7) −0.0068 (7) −0.0131 (7)
O8 0.0297 (7) 0.0351 (8) 0.0396 (8) −0.0035 (6) 0.0054 (6) 0.0071 (7)
N1 0.0219 (8) 0.0211 (7) 0.0304 (8) −0.0001 (6) 0.0067 (7) −0.0015 (6)
N2 0.0240 (8) 0.0231 (8) 0.0321 (9) −0.0004 (6) 0.0071 (7) −0.0003 (7)
N3 0.0264 (8) 0.0274 (8) 0.0283 (9) 0.0007 (6) 0.0002 (7) −0.0022 (7)
N4 0.0238 (8) 0.0301 (8) 0.0262 (8) 0.0000 (6) 0.0041 (7) −0.0002 (7)
C1 0.0336 (12) 0.0538 (14) 0.0530 (15) −0.0132 (10) 0.0157 (11) −0.0132 (12)
C2 0.098 (2) 0.0519 (16) 0.0517 (16) −0.0435 (16) −0.0026 (16) 0.0031 (13)
C3 0.0284 (10) 0.0230 (9) 0.0306 (10) −0.0004 (8) 0.0069 (8) −0.0014 (8)
C4 0.0275 (10) 0.0241 (9) 0.0261 (9) 0.0023 (7) 0.0057 (8) −0.0020 (8)
C5 0.0256 (10) 0.0239 (9) 0.0292 (10) 0.0028 (7) 0.0056 (8) 0.0007 (8)
C6 0.0264 (11) 0.0295 (10) 0.0604 (15) −0.0019 (8) 0.0127 (10) −0.0041 (10)
C7 0.0519 (14) 0.0384 (12) 0.0360 (12) −0.0105 (10) 0.0069 (11) −0.0075 (10)
C8 0.0713 (18) 0.0287 (12) 0.0661 (17) −0.0002 (11) 0.0269 (15) 0.0012 (11)
C9 0.0292 (10) 0.0279 (10) 0.0300 (10) 0.0007 (8) 0.0065 (8) −0.0053 (8)
C10 0.0274 (10) 0.0327 (10) 0.0299 (10) 0.0088 (8) 0.0031 (9) −0.0074 (8)
C11 0.0240 (9) 0.0324 (10) 0.0263 (10) 0.0050 (8) 0.0063 (8) 0.0003 (8)
C12 0.0428 (14) 0.0520 (14) 0.0460 (14) −0.0172 (11) −0.0056 (11) 0.0082 (12)

Geometric parameters (Å, °)

P1—O2 1.5720 (15) N2—C5 1.280 (2)
P1—O1 1.5730 (15) N3—C10 1.357 (3)
P1—S1 1.9166 (7) N3—N4 1.388 (2)
P1—S2 2.0681 (7) N3—C9 1.434 (2)
P2—O5 1.5685 (14) N4—C11 1.277 (2)
P2—O6 1.5770 (15) C1—H1A 0.9800
P2—S4 1.9135 (7) C1—H1B 0.9800
P2—S5 2.0640 (8) C1—H1C 0.9800
S2—C3 1.838 (2) C2—H2A 0.9800
S3—C5 1.7363 (19) C2—H2B 0.9800
S3—C4 1.7852 (19) C2—H2C 0.9800
S5—C9 1.832 (2) C3—H3A 0.9900
S6—C11 1.739 (2) C3—H3B 0.9900
S6—C10 1.774 (2) C6—H6A 0.9800
O1—C1 1.452 (3) C6—H6B 0.9800
O2—C2 1.413 (3) C6—H6C 0.9800
O3—C4 1.205 (2) C7—H7A 0.9800
O4—C5 1.331 (2) C7—H7B 0.9800
O4—C6 1.446 (2) C7—H7C 0.9800
O5—C7 1.446 (3) C8—H8A 0.9800
O6—C8 1.445 (3) C8—H8B 0.9800
O7—C10 1.217 (2) C8—H8C 0.9800
O8—C11 1.329 (2) C9—H9A 0.9900
O8—C12 1.448 (3) C9—H9B 0.9900
N1—C4 1.360 (2) C12—H12A 0.9800
N1—N2 1.389 (2) C12—H12B 0.9800
N1—C3 1.437 (2) C12—H12C 0.9800
O2—P1—O1 94.54 (9) N1—C3—H3B 109.3
O2—P1—S1 118.33 (6) S2—C3—H3B 109.3
O1—P1—S1 118.66 (6) H3A—C3—H3B 107.9
O2—P1—S2 107.77 (7) O3—C4—N1 126.98 (18)
O1—P1—S2 107.54 (6) O3—C4—S3 126.24 (15)
S1—P1—S2 108.78 (3) N1—C4—S3 106.78 (13)
O5—P2—O6 95.40 (8) N2—C5—O4 125.36 (17)
O5—P2—S4 117.08 (6) N2—C5—S3 117.62 (15)
O6—P2—S4 119.02 (6) O4—C5—S3 117.00 (13)
O5—P2—S5 109.75 (6) O4—C6—H6A 109.5
O6—P2—S5 106.63 (6) O4—C6—H6B 109.5
S4—P2—S5 108.07 (3) H6A—C6—H6B 109.5
C3—S2—P1 102.80 (7) O4—C6—H6C 109.5
C5—S3—C4 88.23 (9) H6A—C6—H6C 109.5
C9—S5—P2 102.19 (7) H6B—C6—H6C 109.5
C11—S6—C10 88.05 (9) O5—C7—H7A 109.5
C1—O1—P1 119.85 (14) O5—C7—H7B 109.5
C2—O2—P1 122.67 (16) H7A—C7—H7B 109.5
C5—O4—C6 114.88 (15) O5—C7—H7C 109.5
C7—O5—P2 119.87 (13) H7A—C7—H7C 109.5
C8—O6—P2 121.24 (14) H7B—C7—H7C 109.5
C11—O8—C12 114.92 (16) O6—C8—H8A 109.5
C4—N1—N2 118.77 (15) O6—C8—H8B 109.5
C4—N1—C3 122.56 (16) H8A—C8—H8B 109.5
N2—N1—C3 118.57 (14) O6—C8—H8C 109.5
C5—N2—N1 108.60 (15) H8A—C8—H8C 109.5
C10—N3—N4 118.32 (16) H8B—C8—H8C 109.5
C10—N3—C9 122.48 (17) N3—C9—S5 114.67 (13)
N4—N3—C9 119.16 (16) N3—C9—H9A 108.6
C11—N4—N3 108.72 (16) S5—C9—H9A 108.6
O1—C1—H1A 109.5 N3—C9—H9B 108.6
O1—C1—H1B 109.5 S5—C9—H9B 108.6
H1A—C1—H1B 109.5 H9A—C9—H9B 107.6
O1—C1—H1C 109.5 O7—C10—N3 126.5 (2)
H1A—C1—H1C 109.5 O7—C10—S6 126.18 (16)
H1B—C1—H1C 109.5 N3—C10—S6 107.35 (14)
O2—C2—H2A 109.5 N4—C11—O8 125.39 (18)
O2—C2—H2B 109.5 N4—C11—S6 117.48 (15)
H2A—C2—H2B 109.5 O8—C11—S6 117.12 (14)
O2—C2—H2C 109.5 O8—C12—H12A 109.5
H2A—C2—H2C 109.5 O8—C12—H12B 109.5
H2B—C2—H2C 109.5 H12A—C12—H12B 109.5
N1—C3—S2 111.76 (13) O8—C12—H12C 109.5
N1—C3—H3A 109.3 H12A—C12—H12C 109.5
S2—C3—H3A 109.3 H12B—C12—H12C 109.5
O2—P1—S2—C3 −55.63 (9) C3—N1—C4—O3 −2.7 (3)
O1—P1—S2—C3 45.23 (9) N2—N1—C4—S3 0.3 (2)
S1—P1—S2—C3 174.93 (7) C3—N1—C4—S3 176.58 (14)
O5—P2—S5—C9 61.04 (9) C5—S3—C4—O3 179.15 (19)
O6—P2—S5—C9 −41.17 (9) C5—S3—C4—N1 −0.10 (14)
S4—P2—S5—C9 −170.21 (7) N1—N2—C5—O4 −178.69 (17)
O2—P1—O1—C1 −169.51 (15) N1—N2—C5—S3 0.2 (2)
S1—P1—O1—C1 −43.64 (17) C6—O4—C5—N2 4.0 (3)
S2—P1—O1—C1 80.24 (15) C6—O4—C5—S3 −174.91 (15)
O1—P1—O2—C2 162.2 (2) C4—S3—C5—N2 −0.09 (17)
S1—P1—O2—C2 36.1 (2) C4—S3—C5—O4 178.94 (16)
S2—P1—O2—C2 −87.7 (2) C10—N3—C9—S5 −101.82 (19)
O6—P2—O5—C7 178.26 (15) N4—N3—C9—S5 80.34 (19)
S4—P2—O5—C7 −55.19 (16) P2—S5—C9—N3 −105.14 (14)
S5—P2—O5—C7 68.42 (15) N4—N3—C10—O7 −178.22 (18)
O5—P2—O6—C8 177.37 (18) C9—N3—C10—O7 3.9 (3)
S4—P2—O6—C8 52.25 (19) N4—N3—C10—S6 3.0 (2)
S5—P2—O6—C8 −70.14 (18) C9—N3—C10—S6 −174.84 (14)
C4—N1—N2—C5 −0.3 (2) C11—S6—C10—O7 179.08 (19)
C3—N1—N2—C5 −176.80 (17) C11—S6—C10—N3 −2.15 (14)
C10—N3—N4—C11 −2.3 (2) N3—N4—C11—O8 179.59 (17)
C9—N3—N4—C11 175.65 (16) N3—N4—C11—S6 0.3 (2)
C4—N1—C3—S2 −101.78 (18) C12—O8—C11—N4 −6.0 (3)
N2—N1—C3—S2 74.52 (18) C12—O8—C11—S6 173.21 (16)
P1—S2—C3—N1 −120.69 (12) C10—S6—C11—N4 1.10 (16)
N2—N1—C4—O3 −178.97 (19) C10—S6—C11—O8 −178.22 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O7i 0.98 2.53 3.464 (3) 159
C1—H1B···O5ii 0.98 2.53 3.484 (3) 164
C2—H2B···O6iii 0.98 2.59 3.373 (3) 138
C3—H3A···N2i 0.99 2.56 3.506 (3) 161
C6—H6B···O7i 0.98 2.57 2.996 (2) 106
C9—H9B···O3 0.99 2.42 3.246 (2) 140

Symmetry codes: (i) −x, −y, −z; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2268).

References

  1. Altuntas, I., Delibas, N., Demirci, M., Kilinc, I. & Tamer, N. (2002). Arch. Toxicol. 76, 470–473. [DOI] [PubMed]
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Rohrbaugh, W. J., Meyers, E. K. & Jacobson, R. A. (1976). J. Agric. Food Chem. 24, 713–717.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005241/jh2268sup1.cif

e-67-0o653-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005241/jh2268Isup2.hkl

e-67-0o653-Isup2.hkl (269.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES