Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o669. doi: 10.1107/S1600536811005654

5-Nitro-1-nonyl-1H-benzimidazol-2(3H)-one

Younes Ouzidan a, Youssef Kandri Rodi a,*, El Mokhtar Essassi b, Lahcen El Ammari c, Frank R Fronczek d, Ramaiyer Venkatraman e
PMCID: PMC3052022  PMID: 21522418

Abstract

In the title mol­ecule, C16H23N3O3, the dihedral angle between the benzimidazole and nitro group planes is 5.34 (9)° and the dihedral angle between the benzimidazole and aliphatic chain mean planes is 73.23 (5)°. The C—C—C—C torsion angles (about Inline graphic176°) of the nonyl group indicate an all-anti­periplanar conformation. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers. These mol­ecules are further connected through C—H⋯O inter­actions, building tapes parallel to (Inline graphic22).

Related literature

For background to the pharmacological and biochemical properties of benzimidazolo­nes, see: Gbadamassi et al. (1988); Singh et al. (2000); Derand et al. (2003); Badarau et al. (2009). For similar structures, see: Saber et al. (2010); Ouzidan et al. (2011).graphic file with name e-67-0o669-scheme1.jpg

Experimental

Crystal data

  • C16H23N3O3

  • M r = 305.37

  • Triclinic, Inline graphic

  • a = 5.483 (1) Å

  • b = 10.2092 (15) Å

  • c = 14.746 (3) Å

  • α = 74.275 (9)°

  • β = 79.727 (6)°

  • γ = 83.410 (8)°

  • V = 779.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.35 × 0.27 × 0.22 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 21087 measured reflections

  • 6349 independent reflections

  • 5183 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.03

  • 6349 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005654/gk2342sup1.cif

e-67-0o669-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005654/gk2342Isup2.hkl

e-67-0o669-Isup2.hkl (304.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.89 2.7651 (9) 170
C6—H6⋯O3ii 0.95 2.58 3.3139 (11) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Benzimidazoles are useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest (Gbadamassi et al., 1988). Benzimidazolone and its derivatives are also an important class of bioactive molecules in the field of drugs and pharmaceuticals (Derand et al., 2003). They found potential applications in diverse therapeutic areas including, anti-hypertensives and anti-virals (Badarau et al., 2009; Singh et al., 2000). The structural studies of benzimidazolone, linked to an isopropenyl and nonyl group respectively, have been published by Saber et al. (2010)and Ouzidan et al. (2011).

The 5-nitro-1-nonyl-1H-benzimidazol-2(3H)-one molecule structure is built up from two fused six-and five-membered rings linked to C9H19 chain as shown in Fig.1. The aliphatic chain has all-antiperiplanar (all-trans) conformation. Furthermore, the fused-ring system and the nitro group are almost planar, with a maximum deviation of 0.0414 (8) Å and 0.0250 (7) Å for C4 and N1 respectively. The dihedral angle between the two rings and nitro group planes is 5.34 (9)°. The torsion angles C1 N2 C8 C9 and C13 C14 C15 C16 are 113.66 (8)° and 177.26 (7)° respectively.

In the crystal, adjacent molecules are linked by pairs of N—H···O hydrogen bonds into inversion dimers. These molecules are further connected through C—H···O hydrogen bonds into a tape parallel to the (-1 2 2) plane, as schown in Fig. 2 and Table 1.

Experimental

To 5-nitro-1H-benzoimidazol-2(3H)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromononane (0.43 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless needle-shaped crystals were isolated when the solvent was allowed to evaporate [(m.p. 392–394 K (ethanol)].

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.99 Å, 0.98, Å, 0.95 Å, and 0.88 Å for –CH2–, –CH3, aromatic CH and NH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene, N) and Uiso(H) = 1.5 Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Partial packing view of the title compound, showing tapes in the (-1 2 2) plane, built up from molecules linked through N—H···O hydrogen bonds and intermolecular C–H···O contacts (dashed lines).

Crystal data

C16H23N3O3 Z = 2
Mr = 305.37 F(000) = 328
Triclinic, P1 Dx = 1.300 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.483 (1) Å Cell parameters from 5537 reflections
b = 10.2092 (15) Å θ = 2.5–34.9°
c = 14.746 (3) Å µ = 0.09 mm1
α = 74.275 (9)° T = 90 K
β = 79.727 (6)° Needle, colourless
γ = 83.410 (8)° 0.35 × 0.27 × 0.22 mm
V = 779.9 (2) Å3

Data collection

Nonius KappaCCD diffractometer 5183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 34.9°, θmin = 2.8°
ω and φ scans h = −8→8
21087 measured reflections k = −15→16
6349 independent reflections l = −23→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1462P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6349 reflections Δρmax = 0.45 e Å3
201 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (5)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.92795 (11) 1.07035 (6) 0.37556 (4) 0.01618 (12)
O2 0.40529 (12) 0.45052 (6) 0.71989 (4) 0.02109 (13)
O3 0.12666 (12) 0.41865 (6) 0.64166 (5) 0.02143 (13)
N1 0.78463 (12) 0.88673 (7) 0.50035 (5) 0.01369 (12)
H1 0.8751 0.8904 0.5431 0.016*
N2 0.61923 (12) 0.93607 (7) 0.36748 (4) 0.01292 (12)
N3 0.29292 (13) 0.48382 (7) 0.65097 (5) 0.01591 (13)
C1 0.79248 (13) 0.97452 (8) 0.41127 (5) 0.01294 (13)
C2 0.50448 (13) 0.82444 (7) 0.42883 (5) 0.01255 (13)
C3 0.61268 (13) 0.79137 (8) 0.51286 (5) 0.01240 (13)
C4 0.54726 (13) 0.68061 (8) 0.58770 (5) 0.01379 (13)
H4 0.6229 0.6565 0.6437 0.017*
C5 0.36219 (13) 0.60623 (7) 0.57568 (5) 0.01384 (13)
C6 0.24677 (14) 0.63920 (8) 0.49481 (6) 0.01500 (13)
H6 0.1193 0.5860 0.4912 0.018*
C7 0.31799 (14) 0.75013 (8) 0.41917 (5) 0.01431 (13)
H7 0.2421 0.7740 0.3632 0.017*
C8 0.56136 (14) 1.00911 (8) 0.27295 (5) 0.01453 (13)
H8A 0.6475 1.0948 0.2508 0.017*
H8B 0.3804 1.0338 0.2778 0.017*
C9 0.63787 (14) 0.92606 (8) 0.19926 (5) 0.01496 (13)
H9A 0.5714 0.9758 0.1402 0.018*
H9B 0.5589 0.8382 0.2237 0.018*
C10 0.91760 (14) 0.89612 (8) 0.17380 (5) 0.01536 (14)
H10A 0.9848 0.8397 0.2311 0.018*
H10B 1.0005 0.9829 0.1522 0.018*
C11 0.97314 (15) 0.82089 (8) 0.09493 (6) 0.01648 (14)
H11A 0.8959 0.7325 0.1186 0.020*
H11B 0.8936 0.8751 0.0400 0.020*
C12 1.24889 (15) 0.79376 (8) 0.06003 (6) 0.01714 (14)
H12A 1.3281 0.7349 0.1137 0.021*
H12B 1.3293 0.8813 0.0386 0.021*
C13 1.29159 (14) 0.72462 (8) −0.02204 (6) 0.01650 (14)
H13A 1.2188 0.6349 0.0010 0.020*
H13B 1.2018 0.7809 −0.0735 0.020*
C14 1.56428 (15) 0.70296 (8) −0.06374 (6) 0.01707 (14)
H14A 1.6346 0.7928 −0.0918 0.020*
H14B 1.6575 0.6522 −0.0118 0.020*
C15 1.59873 (15) 0.62433 (9) −0.14015 (6) 0.01812 (15)
H15A 1.5350 0.5330 −0.1111 0.022*
H15B 1.4981 0.6728 −0.1903 0.022*
C16 1.86819 (17) 0.60708 (10) −0.18635 (7) 0.02506 (18)
H16A 1.9271 0.6967 −0.2215 0.038*
H16B 1.8795 0.5492 −0.2304 0.038*
H16C 1.9712 0.5643 −0.1368 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0171 (2) 0.0163 (3) 0.0153 (2) −0.00631 (19) −0.00140 (19) −0.0029 (2)
O2 0.0265 (3) 0.0195 (3) 0.0162 (3) −0.0041 (2) −0.0049 (2) −0.0008 (2)
O3 0.0224 (3) 0.0188 (3) 0.0235 (3) −0.0096 (2) −0.0006 (2) −0.0048 (2)
N1 0.0147 (3) 0.0147 (3) 0.0125 (3) −0.0040 (2) −0.0026 (2) −0.0035 (2)
N2 0.0138 (3) 0.0137 (3) 0.0117 (3) −0.0029 (2) −0.0018 (2) −0.0032 (2)
N3 0.0177 (3) 0.0143 (3) 0.0153 (3) −0.0031 (2) 0.0006 (2) −0.0044 (2)
C1 0.0130 (3) 0.0138 (3) 0.0126 (3) −0.0014 (2) −0.0010 (2) −0.0048 (2)
C2 0.0120 (3) 0.0132 (3) 0.0126 (3) −0.0014 (2) −0.0005 (2) −0.0043 (2)
C3 0.0119 (3) 0.0133 (3) 0.0130 (3) −0.0020 (2) −0.0009 (2) −0.0052 (2)
C4 0.0143 (3) 0.0145 (3) 0.0128 (3) −0.0020 (2) −0.0011 (2) −0.0041 (2)
C5 0.0147 (3) 0.0123 (3) 0.0141 (3) −0.0024 (2) 0.0000 (2) −0.0034 (2)
C6 0.0140 (3) 0.0150 (3) 0.0168 (3) −0.0028 (2) −0.0017 (2) −0.0051 (3)
C7 0.0132 (3) 0.0159 (3) 0.0148 (3) −0.0020 (2) −0.0030 (2) −0.0046 (2)
C8 0.0158 (3) 0.0147 (3) 0.0125 (3) 0.0003 (2) −0.0026 (2) −0.0028 (2)
C9 0.0157 (3) 0.0172 (3) 0.0125 (3) −0.0017 (2) −0.0026 (2) −0.0043 (2)
C10 0.0163 (3) 0.0171 (3) 0.0135 (3) −0.0011 (2) −0.0024 (2) −0.0053 (3)
C11 0.0173 (3) 0.0189 (3) 0.0142 (3) −0.0006 (3) −0.0017 (2) −0.0065 (3)
C12 0.0179 (3) 0.0196 (4) 0.0153 (3) −0.0003 (3) −0.0029 (3) −0.0071 (3)
C13 0.0168 (3) 0.0184 (3) 0.0150 (3) −0.0001 (3) −0.0020 (2) −0.0063 (3)
C14 0.0173 (3) 0.0181 (3) 0.0157 (3) −0.0004 (3) −0.0015 (3) −0.0053 (3)
C15 0.0200 (3) 0.0183 (4) 0.0157 (3) 0.0012 (3) −0.0015 (3) −0.0056 (3)
C16 0.0217 (4) 0.0302 (5) 0.0221 (4) 0.0022 (3) 0.0013 (3) −0.0094 (3)

Geometric parameters (Å, °)

O1—C1 1.2387 (9) C9—H9A 0.9900
O2—N3 1.2313 (9) C9—H9B 0.9900
O3—N3 1.2352 (9) C10—C11 1.5297 (11)
N1—C1 1.3715 (10) C10—H10A 0.9900
N1—C3 1.3864 (9) C10—H10B 0.9900
N1—H1 0.8800 C11—C12 1.5268 (11)
N2—C1 1.3838 (10) C11—H11A 0.9900
N2—C2 1.3842 (10) C11—H11B 0.9900
N2—C8 1.4628 (10) C12—C13 1.5303 (11)
N3—C5 1.4646 (10) C12—H12A 0.9900
C2—C7 1.3893 (10) C12—H12B 0.9900
C2—C3 1.4109 (10) C13—C14 1.5272 (11)
C3—C4 1.3787 (11) C13—H13A 0.9900
C4—C5 1.3970 (11) C13—H13B 0.9900
C4—H4 0.9500 C14—C15 1.5263 (11)
C5—C6 1.3924 (11) C14—H14A 0.9900
C6—C7 1.3930 (11) C14—H14B 0.9900
C6—H6 0.9500 C15—C16 1.5246 (12)
C7—H7 0.9500 C15—H15A 0.9900
C8—C9 1.5266 (11) C15—H15B 0.9900
C8—H8A 0.9900 C16—H16A 0.9800
C8—H8B 0.9900 C16—H16B 0.9800
C9—C10 1.5284 (11) C16—H16C 0.9800
C1—N1—C3 109.78 (6) C9—C10—C11 110.76 (6)
C1—N1—H1 125.1 C9—C10—H10A 109.5
C3—N1—H1 125.1 C11—C10—H10A 109.5
C1—N2—C2 109.39 (6) C9—C10—H10B 109.5
C1—N2—C8 124.01 (6) C11—C10—H10B 109.5
C2—N2—C8 126.52 (6) H10A—C10—H10B 108.1
O2—N3—O3 123.41 (7) C12—C11—C10 114.85 (6)
O2—N3—C5 118.20 (7) C12—C11—H11A 108.6
O3—N3—C5 118.39 (7) C10—C11—H11A 108.6
O1—C1—N1 127.21 (7) C12—C11—H11B 108.6
O1—C1—N2 125.74 (7) C10—C11—H11B 108.6
N1—C1—N2 107.04 (6) H11A—C11—H11B 107.5
N2—C2—C7 131.59 (7) C11—C12—C13 112.22 (6)
N2—C2—C3 106.99 (6) C11—C12—H12A 109.2
C7—C2—C3 121.42 (7) C13—C12—H12A 109.2
C4—C3—N1 131.24 (7) C11—C12—H12B 109.2
C4—C3—C2 121.98 (7) C13—C12—H12B 109.2
N1—C3—C2 106.77 (6) H12A—C12—H12B 107.9
C3—C4—C5 115.49 (7) C14—C13—C12 114.38 (7)
C3—C4—H4 122.3 C14—C13—H13A 108.7
C5—C4—H4 122.3 C12—C13—H13A 108.7
C6—C5—C4 123.69 (7) C14—C13—H13B 108.7
C6—C5—N3 118.32 (7) C12—C13—H13B 108.7
C4—C5—N3 117.95 (7) H13A—C13—H13B 107.6
C5—C6—C7 120.08 (7) C15—C14—C13 112.45 (7)
C5—C6—H6 120.0 C15—C14—H14A 109.1
C7—C6—H6 120.0 C13—C14—H14A 109.1
C2—C7—C6 117.29 (7) C15—C14—H14B 109.1
C2—C7—H7 121.4 C13—C14—H14B 109.1
C6—C7—H7 121.4 H14A—C14—H14B 107.8
N2—C8—C9 113.04 (6) C16—C15—C14 113.56 (7)
N2—C8—H8A 109.0 C16—C15—H15A 108.9
C9—C8—H8A 109.0 C14—C15—H15A 108.9
N2—C8—H8B 109.0 C16—C15—H15B 108.9
C9—C8—H8B 109.0 C14—C15—H15B 108.9
H8A—C8—H8B 107.8 H15A—C15—H15B 107.7
C8—C9—C10 115.31 (6) C15—C16—H16A 109.5
C8—C9—H9A 108.4 C15—C16—H16B 109.5
C10—C9—H9A 108.4 H16A—C16—H16B 109.5
C8—C9—H9B 108.4 C15—C16—H16C 109.5
C10—C9—H9B 108.4 H16A—C16—H16C 109.5
H9A—C9—H9B 107.5 H16B—C16—H16C 109.5
C3—N1—C1—O1 −178.59 (7) C3—C4—C5—N3 177.28 (6)
C3—N1—C1—N2 1.29 (8) O2—N3—C5—C6 175.91 (7)
C2—N2—C1—O1 179.64 (7) O3—N3—C5—C6 −3.41 (11)
C8—N2—C1—O1 −3.45 (12) O2—N3—C5—C4 −1.82 (10)
C2—N2—C1—N1 −0.24 (8) O3—N3—C5—C4 178.86 (7)
C8—N2—C1—N1 176.67 (6) C4—C5—C6—C7 1.40 (12)
C1—N2—C2—C7 178.96 (8) N3—C5—C6—C7 −176.19 (7)
C8—N2—C2—C7 2.15 (13) N2—C2—C7—C6 178.47 (7)
C1—N2—C2—C3 −0.87 (8) C3—C2—C7—C6 −1.72 (11)
C8—N2—C2—C3 −177.68 (6) C5—C6—C7—C2 −0.33 (11)
C1—N1—C3—C4 176.91 (8) C1—N2—C8—C9 113.65 (8)
C1—N1—C3—C2 −1.82 (8) C2—N2—C8—C9 −69.97 (9)
N2—C2—C3—C4 −177.25 (7) N2—C8—C9—C10 −66.44 (9)
C7—C2—C3—C4 2.90 (11) C8—C9—C10—C11 −176.26 (6)
N2—C2—C3—N1 1.62 (8) C9—C10—C11—C12 176.47 (7)
C7—C2—C3—N1 −178.23 (7) C10—C11—C12—C13 −177.19 (7)
N1—C3—C4—C5 179.65 (7) C11—C12—C13—C14 176.46 (7)
C2—C3—C4—C5 −1.79 (11) C12—C13—C14—C15 175.71 (7)
C3—C4—C5—C6 −0.32 (11) C13—C14—C15—C16 177.26 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 1.89 2.7651 (9) 170
C6—H6···O3ii 0.95 2.58 3.3139 (11) 134

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2342).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.
  2. Badarau, E., Suzenet, F., Bojarski, A. J., Adriana-Luminiţa Fînaru, A. L. & Guillaumet, G. (2009). Bioorg. Med. Chem. Lett. 19, 1600–1603. [DOI] [PubMed]
  3. Derand, R., Bulteau-Pignoux, L. & Becq, F. (2003). J. Membr. Biol. 194, 109–117. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gbadamassi, M., Barascut, J. L., Imbach, J. L. & Gayral, P. (1988). Eur. J. Med. Chem. 23, 225–232.
  6. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
  9. Saber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1409. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, S., Syme, C. A., Singh, A. K., Devor, D. C. & Bridges, R. J. (2000). J. Pharmacol. Exp. Ther. 296, 600–611. [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005654/gk2342sup1.cif

e-67-0o669-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005654/gk2342Isup2.hkl

e-67-0o669-Isup2.hkl (304.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES