Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 23;67(Pt 3):o703. doi: 10.1107/S1600536811002066

3-Benzyl-5,7-dimeth­oxy­chroman-4-ol

Mahidansha M Shaikh a, Glenn EM Maguire b, Hendrik G Kruger b, Karen du Toit a,*
PMCID: PMC3052041  PMID: 21522447

Abstract

In the crystal structure of the title compound, C18H20O4, O—H⋯O hydrogen bonds connect the mol­ecules in parallel layers along the b axis.

Related literature

For analogous structures, see Koch et al. (1994); Porter et al. (1985). For the biological activity of naturally ocurring homoisoflavanones that possess a 3-benzyl-substituted chroman ring system, see: Zhang et al. (2008). For our work on the synthesis and characterization of natural products from this family of compounds in the search for new medical agents, see: Shaikh et al. (2011).graphic file with name e-67-0o703-scheme1.jpg

Experimental

Crystal data

  • C18H20O4

  • M r = 300.34

  • Monoclinic, Inline graphic

  • a = 9.870 (5) Å

  • b = 11.211 (6) Å

  • c = 14.603 (7) Å

  • β = 107.072 (7)°

  • V = 1544.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.37 × 0.24 × 0.20 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer

  • 12055 measured reflections

  • 3882 independent reflections

  • 3369 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.04

  • 3882 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002066/pb2047sup1.cif

e-67-0o703-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002066/pb2047Isup2.hkl

e-67-0o703-Isup2.hkl (190.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.95 (1) 1.93 (1) 2.8366 (15) 158 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement.

supplementary crystallographic information

Comment

Naturally ocurring homoisoflavanones that posses a 3-benzyl-substituted chroman ring system as a common framework have been isolated from a wide range of natural sources and exhibit a variety of biological activities (Zhang et al., 2008). We recently have been involved in the synthesis and characterization of natural products from this family of compounds in the search for new medical agents (Shaikh et al., 2011). The title compound is an intermediate step in the synthesis of 5,7 dimethoxy-3-benzyl-4-chroman-none.

There a few analogous structures of chroman alcohols bearing a benzyl ring found in the literature. The two closest have the 5,7 dimethoxy moieties, where one is a biphenyl derivative with an alkylated ketone at the 4 position (Koch et al.,1994) the other has a phenyl group at the 2 position but no alcohol functionality (Porter et al., 1985). Here we report the first example where a chroman-ol benzyl derivative (Fig. 1) that demonstrates hydrogen bonding in the solid state. This intermolecular hydrogen bond O2—H—O1 (2.8366 Å) holds the structure in two parallel plains (Fig. 2). The intermolecular distances between the ring centroids are all greater than 6 Å suggesting that there is no π -stacking.

Experimental

To a solution of 5,7-dimethoxy-3-(benzyl)-4-chromanone (1.0 g, 3.3 mmol) in anhydrous MeOH (15 ml), NaBH4 (0.38 g, 10.0 mmol) was added portionwise at a temperature of 0 °C under a nitrogen atmosphere. The mixture was then allowed to reach room temperature and stirred for 1 h. The reaction mixture was quenched with water and extracted with ethyl acetate (3 x 30 ml). The organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure to produce a viscous oil mixture. The residue obtained after evaporation of the solvent was chromatographed over a silica gel column using mixture of ethyl acetate/hexane (30:70) as eluent product to yield of 88% (0.88 g). Off-white solid; m.p. 118–121 °C. The title compound was recrystalized from a solution of ethyl acetate/hexane (30:70) at room temperature.

1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.33–7.26 (m, 5H), 6.02 (d, J=2.20 Hz, 1H), 6.00 (d, J=2.20 Hz, 1H), 4.70 (d, J=2.40 Hz, 1H), 4.02 (dd, J=3.68, 6.20 Hz, 2H), 3.77 (s, 3H), 3.73 (s, 3H), 2.95 (dd, J=8.08, 8.12 Hz, 1H), 2.66 (dd, J=7.44, 7.44 Hz, 1H).

13C NMR (100 MHz, CDCl3, δ, p.p.m.): 161.1, 159.2, 155.9, 139.6, 129.1, 128.4, 126.1, 106.7, 93.0, 91.4, 65.2, 59.6, 55.4, 55.3, 40.0, 32.9.

IR: 3501, 2946, 1592, 1453, 1304, 1200, 1052.

HRMS (EI): Calcd for C18H20O4Na 323.1254, found 323.1271.

Refinement

Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO diffractometer using graphite-monochromated Mo—Ka radiation (c = 0.71073 Å). Data collection was carried out at 100 (2) K. Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). Cell refinement and data reduction were performed using the program SAINT (Bruker, 2006). The data were scaled and empirical absorption corrections were performed using SADABS (Sheldrick, 1997). The structure was solved by direct methods using SHELXS97 (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using SHELXL97 (Sheldrick, 2008) and using the graphics interface program X-SEED (Barbour, 2001). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except the hydroxyl hydrogen, were positioned geometrically with C—H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms, with Uiso (H) = 1.2 - 1.5 Ueq (C).

Figures

Fig. 1.

Fig. 1.

Molecular structue of the title compound showing the numbering scheme.

Fig. 2.

Fig. 2.

Projection viewed along [100]. All hydrogen have been omitted for clarity. The hydrogen bonds are shown as dotted lines.

Crystal data

C18H20O4 1544.6(13)
Mr = 300.34 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.870 (5) Å Cell parameters from 12055 reflections
b = 11.211 (6) Å θ = 2.2–28.5°
c = 14.603 (7) Å µ = 0.09 mm1
β = 107.072 (7)° T = 100 K
V = 1544.6 (13) Å3 Needle, colourless
Z = 4 0.37 × 0.24 × 0.20 mm
F(000) = 640

Data collection

Bruker Kappa DUO APEXII diffractometer 3369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 28.5°, θmin = 2.2°
0.5° φ scans and ω scans h = −12→13
12055 measured reflections k = −15→14
3882 independent reflections l = −19→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.5109P] where P = (Fo2 + 2Fc2)/3
3882 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.38 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.00588 (8) −0.11619 (7) 0.23516 (5) 0.01815 (17)
O2 0.16950 (8) 0.17225 (7) 0.31067 (5) 0.01963 (17)
H2O 0.1135 (16) 0.2376 (12) 0.2790 (11) 0.046 (5)*
O3 −0.32946 (8) 0.01390 (7) −0.06048 (5) 0.02129 (18)
O4 0.08477 (8) 0.24224 (7) 0.08733 (5) 0.01719 (16)
C1 0.10969 (11) −0.08620 (10) 0.31876 (7) 0.0177 (2)
H1A 0.1427 −0.1592 0.3569 0.021*
H1B 0.0757 −0.0295 0.3591 0.021*
C2 0.23245 (10) −0.03074 (9) 0.29118 (7) 0.0150 (2)
H2 0.2580 −0.0855 0.2448 0.018*
C3 0.18241 (10) 0.08729 (9) 0.23985 (7) 0.01346 (19)
H3 0.2548 0.1163 0.2094 0.016*
C4 0.04340 (10) 0.06766 (9) 0.16310 (7) 0.01331 (19)
C5 −0.04198 (10) −0.03082 (9) 0.16389 (7) 0.0144 (2)
C6 −0.16888 (11) −0.05346 (9) 0.09140 (7) 0.0165 (2)
H6 −0.2252 −0.1213 0.0942 0.020*
C7 −0.20927 (10) 0.02633 (10) 0.01570 (7) 0.0162 (2)
C8 −0.12787 (11) 0.12749 (9) 0.01173 (7) 0.0163 (2)
H8 −0.1576 0.1821 −0.0400 0.020*
C9 −0.00293 (10) 0.14667 (9) 0.08470 (7) 0.01417 (19)
C10 0.36316 (11) −0.01853 (10) 0.37985 (7) 0.0185 (2)
H10A 0.3408 0.0374 0.4259 0.022*
H10B 0.3851 −0.0972 0.4116 0.022*
C11 0.49155 (11) 0.02629 (10) 0.35418 (7) 0.0177 (2)
C12 0.58336 (12) −0.05326 (11) 0.32883 (8) 0.0232 (2)
H12 0.5668 −0.1366 0.3300 0.028*
C13 0.69930 (12) −0.01154 (14) 0.30172 (9) 0.0313 (3)
H13 0.7614 −0.0666 0.2851 0.038*
C14 0.72403 (13) 0.11021 (14) 0.29902 (9) 0.0343 (3)
H14 0.8024 0.1387 0.2800 0.041*
C15 0.63369 (13) 0.18964 (13) 0.32419 (9) 0.0307 (3)
H15 0.6504 0.2730 0.3225 0.037*
C16 0.51859 (12) 0.14850 (11) 0.35193 (8) 0.0221 (2)
H16 0.4578 0.2040 0.3695 0.027*
C17 −0.40947 (12) −0.09390 (11) −0.06520 (8) 0.0237 (2)
H17A −0.4920 −0.0922 −0.1223 0.036*
H17B −0.4413 −0.1006 −0.0079 0.036*
H17C −0.3497 −0.1626 −0.0687 0.036*
C18 0.05036 (12) 0.31979 (10) 0.00542 (8) 0.0204 (2)
H18A 0.1204 0.3841 0.0158 0.031*
H18B −0.0441 0.3540 −0.0037 0.031*
H18C 0.0512 0.2742 −0.0516 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0173 (3) 0.0177 (4) 0.0169 (4) −0.0036 (3) 0.0012 (3) 0.0048 (3)
O2 0.0239 (4) 0.0178 (4) 0.0151 (3) 0.0049 (3) 0.0025 (3) −0.0040 (3)
O3 0.0182 (4) 0.0241 (4) 0.0173 (4) −0.0025 (3) −0.0014 (3) −0.0001 (3)
O4 0.0204 (4) 0.0153 (4) 0.0148 (3) −0.0021 (3) 0.0037 (3) 0.0037 (3)
C1 0.0165 (4) 0.0200 (5) 0.0151 (4) −0.0024 (4) 0.0022 (4) 0.0045 (4)
C2 0.0148 (4) 0.0150 (5) 0.0150 (4) 0.0008 (4) 0.0043 (4) 0.0013 (4)
C3 0.0149 (4) 0.0139 (5) 0.0116 (4) −0.0004 (3) 0.0039 (3) −0.0005 (3)
C4 0.0143 (4) 0.0144 (5) 0.0116 (4) 0.0012 (4) 0.0043 (3) −0.0006 (3)
C5 0.0158 (4) 0.0149 (5) 0.0132 (4) 0.0018 (4) 0.0056 (4) 0.0012 (4)
C6 0.0154 (4) 0.0171 (5) 0.0172 (5) −0.0016 (4) 0.0053 (4) −0.0005 (4)
C7 0.0146 (4) 0.0198 (5) 0.0132 (4) 0.0010 (4) 0.0028 (4) −0.0028 (4)
C8 0.0189 (5) 0.0169 (5) 0.0125 (4) 0.0023 (4) 0.0038 (4) 0.0016 (4)
C9 0.0169 (4) 0.0132 (4) 0.0136 (4) 0.0008 (4) 0.0062 (4) −0.0006 (4)
C10 0.0165 (5) 0.0206 (5) 0.0169 (5) 0.0002 (4) 0.0025 (4) 0.0045 (4)
C11 0.0146 (4) 0.0221 (5) 0.0133 (4) −0.0010 (4) −0.0009 (4) 0.0021 (4)
C12 0.0199 (5) 0.0253 (6) 0.0217 (5) 0.0031 (4) 0.0020 (4) 0.0013 (4)
C13 0.0180 (5) 0.0516 (8) 0.0235 (6) 0.0070 (5) 0.0047 (4) 0.0035 (5)
C14 0.0173 (5) 0.0596 (9) 0.0227 (6) −0.0095 (6) 0.0006 (4) 0.0103 (6)
C15 0.0269 (6) 0.0346 (7) 0.0238 (6) −0.0143 (5) −0.0033 (5) 0.0066 (5)
C16 0.0212 (5) 0.0226 (6) 0.0187 (5) −0.0031 (4) −0.0003 (4) 0.0004 (4)
C17 0.0187 (5) 0.0257 (6) 0.0234 (5) −0.0043 (4) 0.0011 (4) −0.0040 (4)
C18 0.0269 (5) 0.0175 (5) 0.0169 (5) −0.0009 (4) 0.0066 (4) 0.0051 (4)

Geometric parameters (Å, °)

O1—C5 1.3815 (13) C8—C9 1.3895 (14)
O1—C1 1.4445 (13) C8—H8 0.9500
O2—C3 1.4389 (13) C10—C11 1.5091 (15)
O2—H2O 0.952 (9) C10—H10A 0.9900
O3—C7 1.3746 (13) C10—H10B 0.9900
O3—C17 1.4342 (15) C11—C12 1.3966 (16)
O4—C9 1.3708 (13) C11—C16 1.3981 (17)
O4—C18 1.4365 (13) C12—C13 1.3967 (18)
C1—C2 1.5176 (15) C12—H12 0.9500
C1—H1A 0.9900 C13—C14 1.389 (2)
C1—H1B 0.9900 C13—H13 0.9500
C2—C3 1.5296 (15) C14—C15 1.384 (2)
C2—C10 1.5423 (15) C14—H14 0.9500
C2—H2 1.0000 C15—C16 1.3919 (17)
C3—C4 1.5113 (14) C15—H15 0.9500
C3—H3 1.0000 C16—H16 0.9500
C4—C5 1.3911 (15) C17—H17A 0.9800
C4—C9 1.4131 (14) C17—H17B 0.9800
C5—C6 1.4053 (15) C17—H17C 0.9800
C6—C7 1.3864 (15) C18—H18A 0.9800
C6—H6 0.9500 C18—H18B 0.9800
C7—C8 1.4009 (16) C18—H18C 0.9800
C5—O1—C1 116.13 (8) O4—C9—C4 114.56 (9)
C3—O2—H2O 108.8 (10) C8—C9—C4 121.84 (9)
C7—O3—C17 117.16 (9) C11—C10—C2 112.17 (9)
C9—O4—C18 117.17 (8) C11—C10—H10A 109.2
O1—C1—C2 111.41 (9) C2—C10—H10A 109.2
O1—C1—H1A 109.3 C11—C10—H10B 109.2
C2—C1—H1A 109.3 C2—C10—H10B 109.2
O1—C1—H1B 109.3 H10A—C10—H10B 107.9
C2—C1—H1B 109.3 C12—C11—C16 118.44 (11)
H1A—C1—H1B 108.0 C12—C11—C10 120.71 (10)
C1—C2—C3 108.44 (8) C16—C11—C10 120.81 (10)
C1—C2—C10 110.47 (9) C11—C12—C13 120.71 (12)
C3—C2—C10 113.88 (9) C11—C12—H12 119.6
C1—C2—H2 108.0 C13—C12—H12 119.6
C3—C2—H2 108.0 C14—C13—C12 120.16 (12)
C10—C2—H2 108.0 C14—C13—H13 119.9
O2—C3—C4 112.14 (8) C12—C13—H13 119.9
O2—C3—C2 107.73 (8) C15—C14—C13 119.50 (12)
C4—C3—C2 109.25 (8) C15—C14—H14 120.3
O2—C3—H3 109.2 C13—C14—H14 120.3
C4—C3—H3 109.2 C14—C15—C16 120.57 (13)
C2—C3—H3 109.2 C14—C15—H15 119.7
C5—C4—C9 116.84 (9) C16—C15—H15 119.7
C5—C4—C3 121.98 (9) C15—C16—C11 120.62 (12)
C9—C4—C3 121.13 (9) C15—C16—H16 119.7
O1—C5—C4 122.22 (9) C11—C16—H16 119.7
O1—C5—C6 114.71 (9) O3—C17—H17A 109.5
C4—C5—C6 123.04 (9) O3—C17—H17B 109.5
C7—C6—C5 117.91 (10) H17A—C17—H17B 109.5
C7—C6—H6 121.0 O3—C17—H17C 109.5
C5—C6—H6 121.0 H17A—C17—H17C 109.5
O3—C7—C6 123.90 (10) H17B—C17—H17C 109.5
O3—C7—C8 114.69 (9) O4—C18—H18A 109.5
C6—C7—C8 121.41 (9) O4—C18—H18B 109.5
C9—C8—C7 118.96 (9) H18A—C18—H18B 109.5
C9—C8—H8 120.5 O4—C18—H18C 109.5
C7—C8—H8 120.5 H18A—C18—H18C 109.5
O4—C9—C8 123.60 (9) H18B—C18—H18C 109.5
C5—O1—C1—C2 −44.61 (12) O3—C7—C8—C9 −178.85 (9)
O1—C1—C2—C3 63.83 (11) C6—C7—C8—C9 1.05 (15)
O1—C1—C2—C10 −170.72 (8) C18—O4—C9—C8 −5.74 (14)
C1—C2—C3—O2 73.15 (10) C18—O4—C9—C4 174.43 (8)
C10—C2—C3—O2 −50.27 (11) C7—C8—C9—O4 179.55 (9)
C1—C2—C3—C4 −48.90 (11) C7—C8—C9—C4 −0.63 (15)
C10—C2—C3—C4 −172.32 (8) C5—C4—C9—O4 179.95 (8)
O2—C3—C4—C5 −100.13 (11) C3—C4—C9—O4 −2.56 (13)
C2—C3—C4—C5 19.23 (12) C5—C4—C9—C8 0.11 (14)
O2—C3—C4—C9 82.51 (11) C3—C4—C9—C8 177.60 (9)
C2—C3—C4—C9 −158.13 (9) C1—C2—C10—C11 175.01 (9)
C1—O1—C5—C4 12.11 (13) C3—C2—C10—C11 −62.68 (12)
C1—O1—C5—C6 −169.70 (9) C2—C10—C11—C12 −88.26 (12)
C9—C4—C5—O1 178.06 (9) C2—C10—C11—C16 89.45 (12)
C3—C4—C5—O1 0.59 (14) C16—C11—C12—C13 −0.11 (16)
C9—C4—C5—C6 0.02 (14) C10—C11—C12—C13 177.66 (10)
C3—C4—C5—C6 −177.45 (9) C11—C12—C13—C14 −0.46 (17)
O1—C5—C6—C7 −177.79 (9) C12—C13—C14—C15 0.56 (18)
C4—C5—C6—C7 0.38 (15) C13—C14—C15—C16 −0.10 (18)
C17—O3—C7—C6 −5.93 (14) C14—C15—C16—C11 −0.48 (17)
C17—O3—C7—C8 173.97 (9) C12—C11—C16—C15 0.57 (16)
C5—C6—C7—O3 178.97 (9) C10—C11—C16—C15 −177.19 (10)
C5—C6—C7—C8 −0.92 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.95 (1) 1.93 (1) 2.8366 (15) 158.(2)

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2047).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Koch, K., Melvin, L. S., Reiter, L. A., Biggers, M. S., Showell, H. J., Griffiths, R. J., Pettipher, E. R., Chen, J. B., Milici, A. J., Breslow, R., Conklyn, M. J., Smith, M. A., Hackman, B. C., Doherty, N. S., Salter, E., Farell, C. A. & Schulte, G. (1994). J. Med. Chem. 37, 3197–3199. [DOI] [PubMed]
  4. Porter, L. J., Wong, R. Y. & Chan, B. G. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1413–1418.
  5. Shaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2011). Nat. Prod. Res. In the press. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909–913. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002066/pb2047sup1.cif

e-67-0o703-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002066/pb2047Isup2.hkl

e-67-0o703-Isup2.hkl (190.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES