Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o665. doi: 10.1107/S1600536811005435

N-(2-Chloro-2,2-difluoro­acet­yl)-N′,N′′-diisopropyl­phospho­ric triamide

Mehrdad Pourayoubi a,*, Anahid Saneei a
PMCID: PMC3052045  PMID: 21522415

Abstract

In the title compound, C8H17ClF2N3O2P, the phosphoryl group and the NH unit of the C(O)NHP(O) moiety adopt a syn conformation with respect to each other. The P atom is in a tetra­hedral coordination environment and the environment of the N atom of the C(O)NHP(O) moiety is essentially planar. In the crystal, adjacent mol­ecules are linked via N—H⋯O =P and N—H⋯O =C hydrogen bonds, building R 2 2(8) and R 2 2(12) rings in a linear arrangement parallel to [110].

Related literature

For metal complexes of phosphoryl donor ligands, see: Gholivand et al. (2010). For a phospho­ric triamide compound having a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the starting material, CClF2C(O)NHP(O)Cl2, see: Iriarte et al. (2008).graphic file with name e-67-0o665-scheme1.jpg

Experimental

Crystal data

  • C8H17ClF2N3O2P

  • M r = 291.67

  • Triclinic, Inline graphic

  • a = 8.1993 (7) Å

  • b = 9.6735 (9) Å

  • c = 9.8331 (9) Å

  • α = 99.784 (2)°

  • β = 105.999 (2)°

  • γ = 110.770 (2)°

  • V = 669.18 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100 K

  • 0.26 × 0.19 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.602, T max = 0.750

  • 9089 measured reflections

  • 4218 independent reflections

  • 3337 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.095

  • S = 1.04

  • 4218 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005435/dn2655sup1.cif

e-67-0o665-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005435/dn2655Isup2.hkl

e-67-0o665-Isup2.hkl (206.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 1.87 2.7295 (13) 164
N3—H3⋯O1ii 0.85 2.14 2.9645 (14) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

Carbacylamidophosphates with a –C(O)NHP(O)- skeleton have attracted attention because of their roles as the O,O'-donor ligands for metal complexation (Gholivand et al., 2010). Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as P(O)[NHC(O)C6H3(2,6-F2)][NHC(CH3)3]2 (Pourayoubi et al., 2010), we report here on the synthesis and crystal structure of P(O)[NHC(O)CClF2][NH(C3H7)]2. Single crystals of title compound were obtained from a solution of CH3OH and CH3CN after a slow evaporation at room temperature.

The phosphoryl group and NH unit are syn to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 103.30 (6)° to 119.69 (6)°. The P—N2 and P—N3 bonds (with bond lengths of 1.6262 (12) Å and 1.6190 (11) Å) are shorter than the P—N1 bond (1.7039 (11) Å). The environment of nitrogen N1 atom is essentially planar. The P═O bond length of 1.4768 (9) Å is standard for phosphoramidate compounds.

In the crystal structure, adjacent molecules are linked via N—H···O ═P and N—H···O ═C hydrogen bonds, building R22(8) and R22(12) rings (Etter et al., 1990; Bernstein et al., 1995) in a linear arrangement parallel to the ab plane in the direction of [110] axis (Table 1, Fig. 2).

Experimental

Synthesis of CClF2C(O)NHP(O)Cl2 CClF2C(O)NHP(O)Cl2 was prepared according to procedure reported by Iriarte et al. (2008) from a reaction between phosphorus pentachloride (16.91 mmol) and CClF2C(O)NH2 (16.91 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature; then removing of solvent in vacuum to yield CClF2C(O)NHP(O)Cl2.

Synthesis of title compound To a solution of CClF2C(O)NHP(O)Cl2 (2.09 mmol) in dry CHCl3, a solution of N-iso-propylamine (8.36 mmol) in dry CHCl3 was added dropwise and stirred at 273 K. After 4 h, the solvent was evaporated at room temperature. The solid was washed with H2O. The product was obtained after recrystallization from a methanol/acetonitrile mixture (4:1) after a slow evaporation at room temperature. IR (KBr, cm-1): 3400, 3057, 2910, 2890, 2730, 1740 (C═O), 1500, 1260, 1218, 1165, 1118, 1095, 978, 920, 840, 738, 720.

Refinement

All H atoms attached to C atoms and the planar N1 atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 1.0 Å (methine) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Cmethine or N) or Uiso(H) = 1.5Ueq(CH3). H atoms for N2 and N3 were located in difference Fourier maps and included in the subsequent refinement using restraints (N-H= 0.86 (1)Å with Uiso(H) = 1.5Ueq(N). In the last cycles of refinement they were treated as riding on their parent N atoms.

Figures

Fig. 1.

Fig. 1.

An ORTEP-style plot of title compound with the atom labeling scheme. Ellipsoids are shown at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the formation of the chain through N-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. [Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z]

Crystal data

C8H17ClF2N3O2P Z = 2
Mr = 291.67 F(000) = 304
Triclinic, P1 Dx = 1.448 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1993 (7) Å Cell parameters from 2867 reflections
b = 9.6735 (9) Å θ = 2.3–30.9°
c = 9.8331 (9) Å µ = 0.42 mm1
α = 99.784 (2)° T = 100 K
β = 105.999 (2)° Prizm, colorless
γ = 110.770 (2)° 0.26 × 0.19 × 0.16 mm
V = 669.18 (10) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4218 independent reflections
Radiation source: fine-focus sealed tube 3337 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 31.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→11
Tmin = 0.602, Tmax = 0.750 k = −14→14
9089 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.0127P] where P = (Fo2 + 2Fc2)/3
4218 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.23257 (4) 0.86972 (4) 0.03714 (4) 0.01390 (8)
Cl1 0.30477 (6) 0.56630 (4) −0.36890 (4) 0.03081 (10)
F1 0.54717 (11) 0.63181 (10) −0.11562 (10) 0.0284 (2)
F2 0.31465 (14) 0.40675 (9) −0.19141 (11) 0.0322 (2)
O1 0.10801 (14) 0.52987 (10) −0.10574 (11) 0.0238 (2)
O2 0.37834 (13) 1.03015 (10) 0.10823 (10) 0.0196 (2)
N1 0.33089 (14) 0.77459 (12) −0.05183 (12) 0.0146 (2)
H1 0.4368 0.8292 −0.0609 0.018*
N2 0.03816 (15) 0.83557 (13) −0.09290 (12) 0.0182 (2)
H2 −0.0483 0.8420 −0.0661 0.022*
N3 0.16459 (15) 0.79008 (12) 0.15566 (12) 0.0155 (2)
H3 0.0753 0.6993 0.1225 0.019*
C1 0.25344 (17) 0.61960 (14) −0.10878 (14) 0.0153 (2)
C2 0.36184 (19) 0.55503 (15) −0.18656 (15) 0.0192 (3)
C3 0.02381 (19) 0.84469 (16) −0.24394 (15) 0.0201 (3)
H3A 0.0704 0.7721 −0.2874 0.024*
C4 −0.1816 (2) 0.78961 (18) −0.33779 (16) 0.0259 (3)
H4A −0.2525 0.6837 −0.3386 0.039*
H4B −0.1939 0.7916 −0.4394 0.039*
H4C −0.2309 0.8581 −0.2959 0.039*
C5 0.1427 (2) 1.00657 (18) −0.24315 (16) 0.0262 (3)
H5A 0.2750 1.0341 −0.1889 0.039*
H5B 0.1051 1.0809 −0.1947 0.039*
H5C 0.1246 1.0090 −0.3453 0.039*
C6 0.29579 (18) 0.82087 (16) 0.30596 (15) 0.0208 (3)
H6A 0.3976 0.9277 0.3361 0.025*
C7 0.1941 (2) 0.81568 (18) 0.41385 (16) 0.0268 (3)
H7A 0.1366 0.8888 0.4081 0.040*
H7B 0.2834 0.8442 0.5148 0.040*
H7C 0.0965 0.7108 0.3884 0.040*
C8 0.3848 (3) 0.7080 (2) 0.3090 (2) 0.0390 (4)
H8A 0.4568 0.7195 0.2437 0.058*
H8B 0.2867 0.6020 0.2749 0.058*
H8C 0.4685 0.7294 0.4105 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01625 (15) 0.00992 (14) 0.01683 (16) 0.00349 (11) 0.01039 (12) 0.00433 (11)
Cl1 0.0425 (2) 0.0345 (2) 0.02119 (18) 0.01780 (18) 0.01803 (16) 0.00824 (15)
F1 0.0208 (4) 0.0305 (5) 0.0358 (5) 0.0133 (4) 0.0117 (4) 0.0065 (4)
F2 0.0469 (6) 0.0162 (4) 0.0489 (6) 0.0186 (4) 0.0300 (5) 0.0147 (4)
O1 0.0247 (5) 0.0128 (4) 0.0318 (5) 0.0005 (4) 0.0187 (4) 0.0040 (4)
O2 0.0237 (5) 0.0115 (4) 0.0233 (5) 0.0026 (4) 0.0158 (4) 0.0030 (4)
N1 0.0148 (5) 0.0108 (5) 0.0195 (5) 0.0034 (4) 0.0109 (4) 0.0043 (4)
N2 0.0203 (5) 0.0223 (5) 0.0191 (5) 0.0112 (5) 0.0126 (4) 0.0091 (4)
N3 0.0153 (5) 0.0125 (5) 0.0161 (5) 0.0012 (4) 0.0081 (4) 0.0042 (4)
C1 0.0178 (6) 0.0119 (5) 0.0171 (6) 0.0054 (5) 0.0089 (5) 0.0047 (4)
C2 0.0243 (7) 0.0134 (6) 0.0246 (7) 0.0089 (5) 0.0131 (5) 0.0076 (5)
C3 0.0255 (7) 0.0244 (7) 0.0177 (6) 0.0151 (6) 0.0118 (5) 0.0076 (5)
C4 0.0262 (7) 0.0281 (7) 0.0222 (7) 0.0131 (6) 0.0066 (6) 0.0045 (6)
C5 0.0276 (7) 0.0329 (8) 0.0226 (7) 0.0121 (6) 0.0129 (6) 0.0148 (6)
C6 0.0176 (6) 0.0220 (6) 0.0180 (6) 0.0032 (5) 0.0057 (5) 0.0069 (5)
C7 0.0352 (8) 0.0334 (8) 0.0180 (6) 0.0181 (7) 0.0124 (6) 0.0099 (6)
C8 0.0395 (9) 0.0669 (12) 0.0355 (9) 0.0384 (9) 0.0212 (8) 0.0278 (9)

Geometric parameters (Å, °)

P1—O2 1.4768 (9) C3—H3A 1.0000
P1—N3 1.6190 (11) C4—H4A 0.9800
P1—N2 1.6262 (12) C4—H4B 0.9800
P1—N1 1.7039 (11) C4—H4C 0.9800
Cl1—C2 1.7566 (14) C5—H5A 0.9800
F1—C2 1.3366 (16) C5—H5B 0.9800
F2—C2 1.3351 (15) C5—H5C 0.9800
O1—C1 1.2127 (15) C6—C8 1.513 (2)
N1—C1 1.3447 (15) C6—C7 1.5164 (19)
N1—H1 0.8800 C6—H6A 1.0000
N2—C3 1.4775 (17) C7—H7A 0.9800
N2—H2 0.8390 C7—H7B 0.9800
N3—C6 1.4754 (17) C7—H7C 0.9800
N3—H3 0.8536 C8—H8A 0.9800
C1—C2 1.5399 (17) C8—H8B 0.9800
C3—C5 1.520 (2) C8—H8C 0.9800
C3—C4 1.5207 (19)
O2—P1—N3 112.27 (5) C3—C4—H4A 109.5
O2—P1—N2 119.69 (6) C3—C4—H4B 109.5
N3—P1—N2 103.94 (6) H4A—C4—H4B 109.5
O2—P1—N1 105.13 (5) C3—C4—H4C 109.5
N3—P1—N1 112.31 (5) H4A—C4—H4C 109.5
N2—P1—N1 103.30 (6) H4B—C4—H4C 109.5
C1—N1—P1 122.76 (9) C3—C5—H5A 109.5
C1—N1—H1 118.6 C3—C5—H5B 109.5
P1—N1—H1 118.6 H5A—C5—H5B 109.5
C3—N2—P1 123.77 (9) C3—C5—H5C 109.5
C3—N2—H2 116.2 H5A—C5—H5C 109.5
P1—N2—H2 117.0 H5B—C5—H5C 109.5
C6—N3—P1 121.89 (8) N3—C6—C8 111.29 (12)
C6—N3—H3 112.7 N3—C6—C7 109.51 (11)
P1—N3—H3 117.9 C8—C6—C7 111.49 (12)
O1—C1—N1 126.01 (12) N3—C6—H6A 108.1
O1—C1—C2 118.79 (11) C8—C6—H6A 108.1
N1—C1—C2 115.19 (10) C7—C6—H6A 108.1
F2—C2—F1 107.66 (11) C6—C7—H7A 109.5
F2—C2—C1 109.72 (10) C6—C7—H7B 109.5
F1—C2—C1 112.14 (11) H7A—C7—H7B 109.5
F2—C2—Cl1 108.56 (10) C6—C7—H7C 109.5
F1—C2—Cl1 108.94 (9) H7A—C7—H7C 109.5
C1—C2—Cl1 109.74 (9) H7B—C7—H7C 109.5
N2—C3—C5 111.99 (11) C6—C8—H8A 109.5
N2—C3—C4 108.48 (11) C6—C8—H8B 109.5
C5—C3—C4 112.00 (12) H8A—C8—H8B 109.5
N2—C3—H3A 108.1 C6—C8—H8C 109.5
C5—C3—H3A 108.1 H8A—C8—H8C 109.5
C4—C3—H3A 108.1 H8B—C8—H8C 109.5
O2—P1—N1—C1 168.43 (10) O1—C1—C2—F2 −22.92 (17)
N3—P1—N1—C1 46.05 (12) N1—C1—C2—F2 158.19 (11)
N2—P1—N1—C1 −65.33 (11) O1—C1—C2—F1 −142.50 (13)
O2—P1—N2—C3 72.29 (12) N1—C1—C2—F1 38.60 (15)
N3—P1—N2—C3 −161.47 (10) O1—C1—C2—Cl1 96.28 (13)
N1—P1—N2—C3 −44.04 (11) N1—C1—C2—Cl1 −82.62 (12)
O2—P1—N3—C6 −36.29 (12) P1—N2—C3—C5 −61.53 (14)
N2—P1—N3—C6 −167.07 (10) P1—N2—C3—C4 174.35 (9)
N1—P1—N3—C6 81.94 (11) P1—N3—C6—C8 −89.23 (13)
P1—N1—C1—O1 0.56 (19) P1—N3—C6—C7 147.05 (10)
P1—N1—C1—C2 179.37 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.88 1.87 2.7295 (13) 164
N3—H3···O1ii 0.85 2.14 2.9645 (14) 163

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2655).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.
  5. Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66–71.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005435/dn2655sup1.cif

e-67-0o665-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005435/dn2655Isup2.hkl

e-67-0o665-Isup2.hkl (206.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES