Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 12;67(Pt 3):o597. doi: 10.1107/S1600536811004417

4-Bromo-2-[(E)-(4-chloro­phen­yl)imino­meth­yl]phenol

Amir Adabi Ardakani a, Reza Kia b,*, Hadi Kargar c, Muhammad Nawaz Tahir d,*
PMCID: PMC3052075  PMID: 21522356

Abstract

In the title compound, C13H9BrClNO, the dihedral angle between the substituted benzene rings is 43.90 (11)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The crystal structure features short intemolecular Br⋯Br [3.554 (2) Å] and Cl⋯Cl [3.412 (2) Å] contacts. The crystal packing is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).graphic file with name e-67-0o597-scheme1.jpg

Experimental

Crystal data

  • C13H9BrClNO

  • M r = 310.57

  • Monoclinic, Inline graphic

  • a = 27.652 (11) Å

  • b = 7.011 (3) Å

  • c = 6.219 (3) Å

  • β = 96.38 (2)°

  • V = 1198.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.363, T max = 0.502

  • 5719 measured reflections

  • 2170 independent reflections

  • 1718 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.078

  • S = 1.02

  • 2170 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004417/jh2265sup1.cif

e-67-0o597-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004417/jh2265Isup2.hkl

e-67-0o597-Isup2.hkl (106.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.594 (3) 147
C9—H9⋯O1i 0.93 2.60 3.459 (4) 154
C10—H10⋯Cg1ii 0.93 2.77 3.474 (3) 134
C13—H13⋯Cg1iii 0.03 2.80 3.501 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

AAA thanks the Islamic Azad University, Ardakan Branch, for the research facilities (this paper was extracted from a research project). HK thanks the PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities.

supplementary crystallographic information

Comment

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of Schiff bases, we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the substituted benzene rings is 43.90 (11)Å. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The remarkable features of the crystal structure is the intemolecular Br···Br [3.554 (2)Å] and Cl···Cl [3.412 (2)Å] contacts which are shorter than the sum of the van der Waals radii of these atoms (Bondi 1964). The crystal packing is further stabilized by the intermolecular C—H···O hydrogen bond (Table 1) and C—H···π interaction [C10—H10···Cg1ii = 3.474 (3)Å, (ii) X, 3/2 - Y, -1/2 + Z; C13—H13···Cg1iii = 3.501 (3)Å, (iii) X, 1/2 - Y, 1/2 + Z, Cg1 is the centroid of the C1–C6 benzene ring].

Experimental

The title compound was synthesized by adding 5-bromo-salicylaldehyde (2 mmol) to a solution of p-chloroaniline (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resulting light-yellow solution was filtered. Light-yellow single crystals suitable for X-ray diffraction were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

H atoms of the hydroxy groups were located by a rotating model and constrained to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, viewed down the b-axis forming sheets through the intermolecular Br···Br and C—H···O interactions. The intermolecular interactions are shown as dashed lines.

Crystal data

C13H9BrClNO F(000) = 616
Mr = 310.57 Dx = 1.722 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2520 reflections
a = 27.652 (11) Å θ = 2.5–27.5°
b = 7.011 (3) Å µ = 3.63 mm1
c = 6.219 (3) Å T = 296 K
β = 96.38 (2)° Prism, light-yellow
V = 1198.2 (8) Å3 0.35 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2170 independent reflections
Radiation source: fine-focus sealed tube 1718 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −28→33
Tmin = 0.363, Tmax = 0.502 k = −8→5
5719 measured reflections l = −7→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.3051P] where P = (Fo2 + 2Fc2)/3
2170 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.456428 (11) 0.43271 (5) 0.67549 (5) 0.05153 (14)
Cl1 0.03796 (3) 0.54095 (14) 0.23081 (16) 0.0684 (3)
O1 0.27742 (7) 0.5674 (3) 1.1170 (3) 0.0444 (5)
H1 0.2529 0.5423 1.0354 0.067*
N1 0.22712 (8) 0.4746 (3) 0.7551 (3) 0.0313 (5)
C1 0.31315 (10) 0.4668 (3) 0.7991 (4) 0.0289 (6)
C2 0.31691 (10) 0.5350 (3) 1.0152 (4) 0.0309 (6)
C3 0.36211 (11) 0.5707 (3) 1.1235 (4) 0.0361 (6)
H3 0.3647 0.6166 1.2646 0.043*
C4 0.40322 (11) 0.5392 (3) 1.0256 (4) 0.0363 (6)
H4 0.4336 0.5642 1.1000 0.044*
C5 0.39973 (10) 0.4695 (3) 0.8134 (4) 0.0331 (6)
C6 0.35529 (10) 0.4331 (3) 0.7031 (4) 0.0304 (6)
H6 0.3532 0.3855 0.5628 0.036*
C7 0.26674 (10) 0.4453 (3) 0.6737 (4) 0.0311 (6)
H7 0.2655 0.4091 0.5294 0.037*
C8 0.18255 (10) 0.4827 (3) 0.6229 (4) 0.0298 (6)
C9 0.17902 (10) 0.5621 (3) 0.4151 (4) 0.0332 (6)
H9 0.2069 0.6033 0.3578 0.040*
C10 0.13425 (11) 0.5790 (3) 0.2961 (4) 0.0365 (6)
H10 0.1315 0.6315 0.1579 0.044*
C11 0.09378 (11) 0.5175 (4) 0.3836 (5) 0.0390 (7)
C12 0.09647 (11) 0.4396 (3) 0.5890 (5) 0.0405 (7)
H12 0.0685 0.3987 0.6455 0.049*
C13 0.14112 (10) 0.4237 (3) 0.7077 (4) 0.0334 (6)
H13 0.1434 0.3727 0.8465 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0284 (2) 0.0679 (2) 0.0599 (2) −0.00058 (15) 0.01204 (13) −0.00234 (15)
Cl1 0.0355 (5) 0.0899 (7) 0.0749 (6) 0.0049 (5) −0.0157 (4) 0.0006 (5)
O1 0.0349 (12) 0.0649 (13) 0.0343 (10) 0.0008 (10) 0.0085 (8) −0.0095 (9)
N1 0.0270 (13) 0.0334 (11) 0.0336 (11) −0.0016 (10) 0.0041 (9) 0.0012 (9)
C1 0.0319 (16) 0.0250 (12) 0.0299 (13) 0.0014 (11) 0.0035 (10) 0.0002 (10)
C2 0.0323 (16) 0.0308 (13) 0.0305 (13) 0.0023 (12) 0.0080 (11) 0.0014 (11)
C3 0.0433 (18) 0.0353 (14) 0.0284 (13) −0.0017 (13) −0.0015 (11) −0.0030 (11)
C4 0.0323 (17) 0.0362 (14) 0.0386 (14) −0.0030 (12) −0.0045 (12) 0.0012 (11)
C5 0.0273 (16) 0.0307 (13) 0.0417 (14) 0.0010 (11) 0.0055 (11) 0.0044 (11)
C6 0.0331 (16) 0.0297 (13) 0.0285 (12) 0.0022 (12) 0.0034 (10) −0.0002 (10)
C7 0.0343 (16) 0.0293 (13) 0.0300 (12) −0.0008 (11) 0.0043 (11) −0.0025 (10)
C8 0.0314 (16) 0.0249 (12) 0.0336 (13) 0.0012 (11) 0.0057 (11) −0.0015 (10)
C9 0.0321 (16) 0.0346 (14) 0.0338 (13) −0.0017 (12) 0.0083 (11) 0.0022 (11)
C10 0.0381 (18) 0.0351 (14) 0.0358 (14) 0.0041 (12) 0.0014 (12) 0.0011 (11)
C11 0.0291 (17) 0.0362 (14) 0.0502 (16) 0.0038 (13) −0.0029 (13) −0.0057 (13)
C12 0.0298 (17) 0.0396 (15) 0.0531 (17) −0.0042 (13) 0.0095 (13) −0.0017 (13)
C13 0.0308 (16) 0.0348 (14) 0.0358 (13) −0.0013 (12) 0.0087 (11) 0.0036 (11)

Geometric parameters (Å, °)

Br1—C5 1.886 (3) C5—C6 1.363 (4)
Cl1—C11 1.728 (3) C6—H6 0.9300
O1—C2 1.341 (3) C7—H7 0.9300
O1—H1 0.8200 C8—C13 1.377 (4)
N1—C7 1.273 (3) C8—C9 1.400 (3)
N1—C8 1.405 (3) C9—C10 1.375 (4)
C1—C6 1.387 (4) C9—H9 0.9300
C1—C2 1.420 (3) C10—C11 1.367 (4)
C1—C7 1.434 (4) C10—H10 0.9300
C2—C3 1.375 (4) C11—C12 1.384 (4)
C3—C4 1.366 (4) C12—C13 1.371 (4)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.401 (4) C13—H13 0.9300
C4—H4 0.9300
C2—O1—H1 109.5 N1—C7—H7 119.2
C7—N1—C8 120.8 (2) C1—C7—H7 119.2
C6—C1—C2 119.2 (2) C13—C8—C9 119.8 (3)
C6—C1—C7 119.5 (2) C13—C8—N1 118.5 (2)
C2—C1—C7 121.1 (2) C9—C8—N1 121.5 (2)
O1—C2—C3 118.8 (2) C10—C9—C8 119.8 (3)
O1—C2—C1 121.7 (2) C10—C9—H9 120.1
C3—C2—C1 119.5 (3) C8—C9—H9 120.1
C4—C3—C2 120.6 (2) C11—C10—C9 119.1 (3)
C4—C3—H3 119.7 C11—C10—H10 120.4
C2—C3—H3 119.7 C9—C10—H10 120.4
C3—C4—C5 120.2 (3) C10—C11—C12 122.0 (3)
C3—C4—H4 119.9 C10—C11—Cl1 118.1 (2)
C5—C4—H4 119.9 C12—C11—Cl1 119.9 (2)
C6—C5—C4 120.2 (3) C13—C12—C11 118.8 (3)
C6—C5—Br1 119.6 (2) C13—C12—H12 120.6
C4—C5—Br1 120.2 (2) C11—C12—H12 120.6
C5—C6—C1 120.3 (2) C12—C13—C8 120.5 (2)
C5—C6—H6 119.8 C12—C13—H13 119.8
C1—C6—H6 119.8 C8—C13—H13 119.8
N1—C7—C1 121.7 (2)
C6—C1—C2—O1 −179.0 (2) C6—C1—C7—N1 180.0 (2)
C7—C1—C2—O1 5.5 (4) C2—C1—C7—N1 −4.6 (4)
C6—C1—C2—C3 1.5 (3) C7—N1—C8—C13 149.2 (2)
C7—C1—C2—C3 −173.9 (2) C7—N1—C8—C9 −35.6 (3)
O1—C2—C3—C4 179.9 (2) C13—C8—C9—C10 −0.6 (4)
C1—C2—C3—C4 −0.7 (4) N1—C8—C9—C10 −175.7 (2)
C2—C3—C4—C5 −0.2 (4) C8—C9—C10—C11 0.0 (4)
C3—C4—C5—C6 0.2 (4) C9—C10—C11—C12 0.3 (4)
C3—C4—C5—Br1 178.26 (19) C9—C10—C11—Cl1 179.82 (19)
C4—C5—C6—C1 0.7 (4) C10—C11—C12—C13 0.0 (4)
Br1—C5—C6—C1 −177.37 (17) Cl1—C11—C12—C13 −179.53 (19)
C2—C1—C6—C5 −1.6 (4) C11—C12—C13—C8 −0.6 (4)
C7—C1—C6—C5 174.0 (2) C9—C8—C13—C12 0.9 (4)
C8—N1—C7—C1 169.8 (2) N1—C8—C13—C12 176.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.87 2.594 (3) 147
C9—H9···O1i 0.93 2.60 3.459 (4) 154.
C10—H10···Cg1ii 0.93 2.77 3.474 (3) 134
C13—H13···Cg1iii 0.03 2.80 3.501 (3) 133

Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2265).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004417/jh2265sup1.cif

e-67-0o597-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004417/jh2265Isup2.hkl

e-67-0o597-Isup2.hkl (106.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES