Abstract
The title compound, C11H11NO3, was synthesized by the reaction of maleic andydride and phenylmethanamine. The molecular conformation is stabilized by by an intramolecular O—H⋯O hydrogen bond. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming a chain along the b axis.
Related literature
For related structures, see Gowda et al. (2009a
▶,b
▶,c
▶); Prasad et al. (2002 ▶).
Experimental
Crystal data
C11H11NO3
M r = 205.21
Monoclinic,
a = 10.651 (2) Å
b = 12.601 (3) Å
c = 8.3130 (17) Å
β = 108.44 (3)°
V = 1058.4 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.10 mm−1
T = 298 K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.972, T max = 0.991
2018 measured reflections
1913 independent reflections
1013 reflections with I > 2σ(I)
R int = 0.022
3 standard reflections every 200 reflections intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.057
wR(F 2) = 0.175
S = 1.00
1913 reflections
137 parameters
H-atom parameters constrained
Δρmax = 0.17 e Å−3
Δρmin = −0.16 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100609X/kj2163sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053681100609X/kj2163Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3B⋯O1 | 0.85 | 1.61 | 2.461 (3) | 178 |
| N—H0A⋯O2i | 0.86 | 2.00 | 2.855 (3) | 171 |
| C9—H9A⋯O3i | 0.93 | 2.48 | 3.413 (4) | 177 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for support. They also thank the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045).
supplementary crystallographic information
Comment
The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitution on the crystal structures of this class compounds (Gowda et al., 2009a, 2009b, 2009c; Prasad et al., 2002), the crystal structure of (Z)-4-(benzylamino)-4-oxobut-2-enoic acid has been determined. The molecular conformation (Fig. 1) is stabilized by intramolecular O–H···O bonds. As can be seen from the packing diagram (Fig.2), molecules are linked by intermolecular N–H···O and C–H···O hydrogen bonds to form a chain along the b axis in which they may be effective in the stabilization of structure (Table 1).
Experimental
A solution of maleic andydride (10 g, 0.1 mol) in dichloromethane (50 ml) was added dropwise to an ice-cold solution of phenylmethanamine (10.7 g,0.1 mol) in dichloromethane (50 ml). After the addition was complete (1.5 h), the resulting suspension was stirred at ambient temperature for 20 h. A white solid was collected and washed twice with ether to give the crude product. This crude soild was partitioned between a saturated NaHCO3 solution and ether. The aqueous fraction was brought to pH = 1–2 with 5 N HCl in an ice bath then extracted with a (1:l) EtOAc-THF mixture. The combined organic layers were dried with Na2SO4, filtered and concentrated to give (Z)-4-(benzylamino)-4-oxobut-2-enoic acid as a white solid. The product was purified by repeated crystallization from methanol. Crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in methanol.
Refinement
H atoms were positioned geometrically and H-atom parameters were constrained, with O—H = 0.85 Å(for OH), N—H = 0.86 Å(for NH) and C—H = 0.93,0.93 and 0.97Å for aromatic, methylene and doublebond H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH, and x = 1.2 for all other H atoms.
Figures
Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
Crystal data
| C11H11NO3 | F(000) = 432 |
| Mr = 205.21 | Dx = 1.288 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
| a = 10.651 (2) Å | θ = 9–12° |
| b = 12.601 (3) Å | µ = 0.10 mm−1 |
| c = 8.3130 (17) Å | T = 298 K |
| β = 108.44 (3)° | Block, colorless |
| V = 1058.4 (4) Å3 | 0.30 × 0.20 × 0.10 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1013 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.022 |
| graphite | θmax = 25.3°, θmin = 2.0° |
| ω/2θ scans | h = −12→0 |
| Absorption correction: ψ scan (North et al., 1968) | k = 0→15 |
| Tmin = 0.972, Tmax = 0.991 | l = −9→9 |
| 2018 measured reflections | 3 standard reflections every 200 reflections |
| 1913 independent reflections | intensity decay: 1% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
| wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.078P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.00 | (Δ/σ)max < 0.001 |
| 1913 reflections | Δρmax = 0.17 e Å−3 |
| 137 parameters | Δρmin = −0.16 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.030 (5) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N | 0.6963 (2) | 0.4593 (2) | 0.1087 (3) | 0.0537 (7) | |
| H0A | 0.6678 | 0.5211 | 0.1242 | 0.064* | |
| O1 | 0.6741 (2) | 0.28274 (17) | 0.1283 (3) | 0.0636 (7) | |
| C1 | 1.0039 (4) | 0.3602 (3) | 0.2253 (6) | 0.0904 (14) | |
| H1A | 0.9678 | 0.2962 | 0.1767 | 0.108* | |
| O2 | 0.3695 (2) | 0.17148 (18) | 0.3280 (3) | 0.0750 (8) | |
| C2 | 1.1254 (4) | 0.3611 (4) | 0.3536 (7) | 0.1015 (16) | |
| H2A | 1.1693 | 0.2975 | 0.3903 | 0.122* | |
| O3 | 0.5270 (2) | 0.15868 (18) | 0.2112 (3) | 0.0669 (7) | |
| H3B | 0.5786 | 0.2005 | 0.1821 | 0.100* | |
| C3 | 1.1799 (4) | 0.4531 (4) | 0.4250 (6) | 0.0853 (13) | |
| H3A | 1.2611 | 0.4532 | 0.5106 | 0.102* | |
| C4 | 1.1149 (4) | 0.5457 (4) | 0.3707 (6) | 0.0871 (13) | |
| H4A | 1.1519 | 0.6097 | 0.4188 | 0.104* | |
| C5 | 0.9942 (4) | 0.5450 (3) | 0.2443 (5) | 0.0754 (11) | |
| H5A | 0.9505 | 0.6088 | 0.2085 | 0.090* | |
| C6 | 0.9377 (3) | 0.4525 (3) | 0.1707 (4) | 0.0547 (9) | |
| C7 | 0.8043 (3) | 0.4522 (3) | 0.0365 (4) | 0.0621 (10) | |
| H7A | 0.7989 | 0.5117 | −0.0394 | 0.074* | |
| H7B | 0.7946 | 0.3876 | −0.0296 | 0.074* | |
| C8 | 0.6403 (3) | 0.3750 (2) | 0.1514 (4) | 0.0491 (8) | |
| C9 | 0.5356 (3) | 0.3986 (3) | 0.2282 (4) | 0.0500 (8) | |
| H9A | 0.5219 | 0.4702 | 0.2440 | 0.060* | |
| C10 | 0.4586 (3) | 0.3320 (3) | 0.2777 (4) | 0.0522 (8) | |
| H10A | 0.3995 | 0.3648 | 0.3235 | 0.063* | |
| C11 | 0.4498 (4) | 0.2143 (3) | 0.2731 (4) | 0.0556 (9) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N | 0.0488 (16) | 0.0458 (15) | 0.0658 (18) | 0.0025 (13) | 0.0169 (14) | 0.0026 (13) |
| O1 | 0.0654 (15) | 0.0463 (13) | 0.0842 (17) | 0.0078 (12) | 0.0306 (13) | −0.0028 (12) |
| C1 | 0.064 (2) | 0.062 (3) | 0.134 (4) | 0.000 (2) | 0.016 (3) | −0.001 (2) |
| O2 | 0.0792 (17) | 0.0585 (15) | 0.094 (2) | −0.0142 (14) | 0.0373 (16) | 0.0101 (14) |
| C2 | 0.068 (3) | 0.083 (3) | 0.141 (4) | 0.014 (2) | 0.014 (3) | 0.025 (3) |
| O3 | 0.0856 (18) | 0.0436 (13) | 0.0764 (16) | −0.0009 (12) | 0.0326 (15) | 0.0007 (12) |
| C3 | 0.066 (3) | 0.109 (4) | 0.078 (3) | 0.001 (3) | 0.020 (2) | −0.001 (3) |
| C4 | 0.077 (3) | 0.086 (3) | 0.097 (3) | −0.011 (3) | 0.025 (3) | −0.027 (3) |
| C5 | 0.070 (2) | 0.061 (3) | 0.088 (3) | 0.002 (2) | 0.014 (2) | −0.003 (2) |
| C6 | 0.0485 (19) | 0.055 (2) | 0.065 (2) | −0.0001 (17) | 0.0250 (17) | 0.0034 (18) |
| C7 | 0.059 (2) | 0.066 (2) | 0.067 (2) | −0.0028 (18) | 0.0293 (19) | 0.0036 (18) |
| C8 | 0.0486 (19) | 0.0436 (18) | 0.0496 (19) | 0.0012 (16) | 0.0075 (15) | −0.0011 (15) |
| C9 | 0.055 (2) | 0.0375 (17) | 0.057 (2) | 0.0008 (15) | 0.0162 (17) | −0.0012 (15) |
| C10 | 0.058 (2) | 0.0462 (18) | 0.054 (2) | 0.0006 (17) | 0.0205 (17) | 0.0011 (16) |
| C11 | 0.061 (2) | 0.0463 (19) | 0.053 (2) | −0.0039 (19) | 0.0084 (17) | 0.0024 (17) |
Geometric parameters (Å, °)
| N—C8 | 1.320 (4) | C3—H3A | 0.9300 |
| N—C7 | 1.459 (4) | C4—C5 | 1.379 (5) |
| N—H0A | 0.8600 | C4—H4A | 0.9300 |
| O1—C8 | 1.250 (3) | C5—C6 | 1.365 (5) |
| C1—C6 | 1.361 (5) | C5—H5A | 0.9300 |
| C1—C2 | 1.392 (6) | C6—C7 | 1.503 (4) |
| C1—H1A | 0.9300 | C7—H7A | 0.9700 |
| O2—C11 | 1.216 (4) | C7—H7B | 0.9700 |
| C2—C3 | 1.347 (6) | C8—C9 | 1.480 (4) |
| C2—H2A | 0.9300 | C9—C10 | 1.327 (4) |
| O3—C11 | 1.304 (4) | C9—H9A | 0.9300 |
| O3—H3B | 0.8501 | C10—C11 | 1.485 (4) |
| C3—C4 | 1.360 (6) | C10—H10A | 0.9300 |
| C8—N—C7 | 122.9 (3) | C1—C6—C7 | 121.0 (3) |
| C8—N—H0A | 118.5 | C5—C6—C7 | 120.9 (3) |
| C7—N—H0A | 118.5 | N—C7—C6 | 112.2 (3) |
| C6—C1—C2 | 120.5 (4) | N—C7—H7A | 109.2 |
| C6—C1—H1A | 119.8 | C6—C7—H7A | 109.2 |
| C2—C1—H1A | 119.8 | N—C7—H7B | 109.2 |
| C3—C2—C1 | 120.7 (4) | C6—C7—H7B | 109.2 |
| C3—C2—H2A | 119.6 | H7A—C7—H7B | 107.9 |
| C1—C2—H2A | 119.6 | O1—C8—N | 122.1 (3) |
| C11—O3—H3B | 108.9 | O1—C8—C9 | 123.1 (3) |
| C2—C3—C4 | 119.3 (4) | N—C8—C9 | 114.8 (3) |
| C2—C3—H3A | 120.4 | C10—C9—C8 | 129.1 (3) |
| C4—C3—H3A | 120.4 | C10—C9—H9A | 115.5 |
| C3—C4—C5 | 120.1 (4) | C8—C9—H9A | 115.5 |
| C3—C4—H4A | 120.0 | C9—C10—C11 | 131.6 (3) |
| C5—C4—H4A | 120.0 | C9—C10—H10A | 114.2 |
| C6—C5—C4 | 121.3 (4) | C11—C10—H10A | 114.2 |
| C6—C5—H5A | 119.3 | O2—C11—O3 | 121.0 (3) |
| C4—C5—H5A | 119.3 | O2—C11—C10 | 118.7 (3) |
| C1—C6—C5 | 118.1 (4) | O3—C11—C10 | 120.3 (3) |
| C6—C1—C2—C3 | −0.4 (7) | C1—C6—C7—N | 98.2 (4) |
| C1—C2—C3—C4 | 0.1 (7) | C5—C6—C7—N | −80.0 (4) |
| C2—C3—C4—C5 | 0.3 (7) | C7—N—C8—O1 | −1.9 (5) |
| C3—C4—C5—C6 | −0.3 (6) | C7—N—C8—C9 | 177.9 (3) |
| C2—C1—C6—C5 | 0.4 (6) | O1—C8—C9—C10 | −3.0 (5) |
| C2—C1—C6—C7 | −177.9 (4) | N—C8—C9—C10 | 177.2 (3) |
| C4—C5—C6—C1 | −0.1 (6) | C8—C9—C10—C11 | −0.3 (5) |
| C4—C5—C6—C7 | 178.2 (4) | C9—C10—C11—O2 | 179.7 (3) |
| C8—N—C7—C6 | −89.9 (4) | C9—C10—C11—O3 | −0.3 (5) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3B···O1 | 0.85 | 1.61 | 2.461 (3) | 178 |
| N—H0A···O2i | 0.86 | 2.00 | 2.855 (3) | 171 |
| C9—H9A···O3i | 0.93 | 2.48 | 3.413 (4) | 177 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2163).
References
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009c). Acta Cryst. E65, o2945. [DOI] [PMC free article] [PubMed]
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100609X/kj2163sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053681100609X/kj2163Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


