Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o735. doi: 10.1107/S160053681100612X

(2Z,3E)-2-{[1-(4-Chloro­benz­yl)-1H-indol-3-yl]methyl­idene}quinuclidin-3-one oxime

Narsimha Reddy Penthala a, Thirupathi Reddy Yerram Reddy a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC3052080  PMID: 21522474

Abstract

In the title compound, C23H22ClN3O, the benzene ring of the 4-chorobenzyl group makes a dihedral angle of 78.56 (6)° with the best plane of the indole ring. The double bond connecting the aza­bicyclic and indole groups adopts a Z geometry. The geometry adopted by the C=N bond with respect to the N—OH bond is trans. The absolute configuration of the compound was determined from refinement of the Flack parameter.

Related literature

For 2-indol-3-yl-methyl­enequinuclidin-3-ols and NADPH oxidase activity, see: Sekhar et al. (2003) and for novel substituted (Z)-2-(N-benzyl­indol-3-yl­methyl­ene)quinuclidin-3-one and (Z)-(±)-2-(N-benzyl­indol-3-yl­methyl­ene)quinuc­lidin-3-ol derivatives as potent thermal sensitizing agents, see: Sonar et al. (2007). For di- and triindolyl­methanes: mol­ecular structures, see: Mason et al. (2003) and for structures of 1H-indole-3-ethyl­ene-3′-meth­oxy­salicylaldimine and 3-[3′-aza­pentyl-3′-en-4′-(2′′-hy­droxy­phen­yl)]indole, see: Zarza et al. (1988). For the radio-sensitization activity associated with N-benzyl­indolyl-1-aza­bicyclo­[2.2.2]octan-3-ones, see: Sonar et al. (2003).graphic file with name e-67-0o735-scheme1.jpg

Experimental

Crystal data

  • C23H22ClN3O

  • M r = 391.89

  • Orthorhombic, Inline graphic

  • a = 5.8382 (1) Å

  • b = 10.7005 (2) Å

  • c = 30.9451 (6) Å

  • V = 1933.19 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 90 K

  • 0.40 × 0.12 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.918, T max = 0.983

  • 37270 measured reflections

  • 4433 independent reflections

  • 3150 reflections with I > 2σ(I)

  • R int = 0.103

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.137

  • S = 1.06

  • 4433 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1853 Friedel pairs

  • Flack parameter: −0.03 (4)

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100612X/fj2375sup1.cif

e-67-0o735-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100612X/fj2375Isup2.hkl

e-67-0o735-Isup2.hkl (217.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the NCI/NIH for their financial support under grant No. CA 140409.

supplementary crystallographic information

Comment

In view of the radio-sensitization activity associated with N-benzylindolyl-1-azabicyclo[2.2.2]octan-3-ones (Sonar et al., 2007), we have undertaken the synthesis and structural analysis of a series of (2Z,3E)-2-((1-benzyl-1H-indol-3-yl)methylene) quinuclidin-3-one oximes. Systematic structural modification of the active molecule (Z)-2-(1-benzyl-1H-indol-3-ylmethylene)1- azabicyclo[2.2.2]octan-3-ol, was carried out, and the title compound was synthesized as its structural analogue. The X-ray analysis of the title compound was carried out to confirm the double-bond geometry of the molecule, and to determine the molecular conformation in the crystal structure.

X-ray crystallography confirmed the molecular structure and atom connectivity for title compound, as illustrated in Fig. 1. The indole ring is planar, with bond distances and angles comparable with those previously reported for other indole derivatives (Mason et al.., 2003; Zarza et al.., 1988). The benzene ring of the benzyl group linked to the N1 position of the indole ring is slightly twisted, making a dihedral angle of 78.56 (6)° with the plane of the indole ring system.

The title compound is the Z isomer, with the C10—C11 bond in a trans disposition with respect to the C8—C9 bond. The double bond has a nearly planar arrangement, since the r.m.s. deviation from the best plane passing through atoms N2/C10/ C11/C9/C8 is 0.0143 (15) Å. The azabicyclic system presents very small distortions around atoms N2, C14, C13, C12, C16 and C11. The value of the C1=C8—C9=C10 torsion angle -13.87° indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring.

Experimental

Compound 2-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene) quinuclidin-3-one was prepared by aldol condensation of 1-(4-chlorobenzyl-indole-3-carboxaldehyde with 1-azabicyclo[2.2.2]octan- 3-one to afford (Z)-2-(1-(4-chlorobenzyl-1H-indol-3-yl methylene)-1-azabicyclo[2.2.2]octan-3-one, as a single geometric isomer, according to the previously reported procedure of Sonar et al. (2003). A mixture (Z)-2-(1-(4-chlorobenzyl-1H-indol-3-yl methylene)1-azabicyclo[2.2.2]octan-3-one (0.5 g, 1.32 mmol), hydroxylamine hydrocloride (0.18 g, 2.65 mmol) and sodium acetate trihydrate (0.36 g, 2.65 mmol) was stirred in methanol (25 ml) under reflux for 8 hrs. The reaction mixture was cooled to room temperature, diluted with water (15 ml), and the light yellow solid that separated was collected by filtration, washed with water and dried, to afford the the crude product. Crystallization from methanol gave a colorless crystalline product of (2Z,3E)-2- ((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene) quinuclidin-3-one oxime that was suitable for X-ray analysis. 1H NMR (CDCl3): δ 1.76–1.79 (m, 4H), 2.91–3.09 (m, 4H), 3.67–3.69 (m, 1H), 5.34 (s, 2H), 7.01–7.04 (d, 2H), 7.10 (s, 1H), 7.14–7.25 (m, 5H), 7.30 (bs, 1H), 7.79–7.83 (d, 1H), 8.21 (s, 1H) p.p.m.; 13C NMR (DMSO d6): δ 24.46, 25.87, 47.77, 50.06, 109.92, 110.45, 111.47, 119.34, 120.34, 122.39, 128.05, 128.63, 129.09, 131.27, 133.54, 135.80, 135.98, 138.23, 161.31 p.p.m..

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (OH) of the attached atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C23H22ClN3O F(000) = 824
Mr = 391.89 Dx = 1.346 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2610 reflections
a = 5.8382 (1) Å θ = 1.0–27.5°
b = 10.7005 (2) Å µ = 0.22 mm1
c = 30.9451 (6) Å T = 90 K
V = 1933.19 (6) Å3 Plate, colourless
Z = 4 0.40 × 0.12 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer 4433 independent reflections
Radiation source: fine-focus sealed tube 3150 reflections with I > 2σ(I)
graphite Rint = 0.103
Detector resolution: 9.1 pixels mm-1 θmax = 27.5°, θmin = 1.3°
ω scans at fixed χ = 55° h = −7→7
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −13→13
Tmin = 0.918, Tmax = 0.983 l = −39→40
37270 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0788P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4433 reflections Δρmax = 0.40 e Å3
254 parameters Δρmin = −0.24 e Å3
0 restraints Absolute structure: Flack (1983), 1853 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1498 (4) 0.0866 (2) 0.89083 (7) 0.0245 (5)
N2 0.0660 (4) 0.1260 (2) 0.75130 (7) 0.0265 (5)
N3 0.3789 (4) 0.4000 (2) 0.71465 (7) 0.0311 (6)
O1 0.3831 (4) 0.45515 (18) 0.67293 (6) 0.0327 (5)
H1O 0.4731 0.5164 0.6730 0.049*
Cl1 0.28052 (15) −0.51575 (6) 0.95786 (2) 0.0408 (2)
C1 0.1254 (5) 0.1143 (3) 0.84757 (8) 0.0263 (6)
H1 0.0091 0.0816 0.8293 0.032*
C2 0.3379 (5) 0.1501 (2) 0.90706 (9) 0.0257 (6)
C3 0.4304 (5) 0.1521 (2) 0.94836 (9) 0.0313 (7)
H3 0.3656 0.1040 0.9711 0.038*
C4 0.6191 (5) 0.2263 (3) 0.95518 (10) 0.0338 (7)
H4 0.6823 0.2314 0.9834 0.041*
C5 0.7198 (5) 0.2941 (2) 0.92199 (9) 0.0357 (7)
H5 0.8529 0.3425 0.9276 0.043*
C6 0.6283 (5) 0.2917 (2) 0.88076 (9) 0.0303 (7)
H6 0.6975 0.3385 0.8582 0.036*
C7 0.4340 (5) 0.2203 (2) 0.87271 (9) 0.0252 (6)
C8 0.2938 (5) 0.1964 (2) 0.83457 (8) 0.0241 (6)
C9 0.3253 (5) 0.2570 (2) 0.79299 (9) 0.0249 (6)
H9 0.4310 0.3245 0.7925 0.030*
C10 0.2250 (5) 0.2300 (2) 0.75544 (8) 0.0232 (6)
C11 0.2554 (5) 0.2987 (2) 0.71447 (8) 0.0254 (6)
C12 0.1228 (5) 0.2401 (3) 0.67821 (9) 0.0307 (7)
H12 0.1483 0.2857 0.6504 0.037*
C13 −0.1316 (5) 0.2419 (3) 0.69126 (10) 0.0371 (7)
H13A −0.2244 0.1972 0.6694 0.044*
H13B −0.1872 0.3292 0.6931 0.044*
C14 −0.1551 (5) 0.1767 (3) 0.73590 (9) 0.0306 (7)
H14A −0.2140 0.2376 0.7573 0.037*
H14B −0.2677 0.1078 0.7336 0.037*
C15 0.1538 (5) 0.0380 (2) 0.71842 (8) 0.0297 (7)
H15A 0.0415 −0.0303 0.7143 0.036*
H15B 0.2984 0.0004 0.7289 0.036*
C16 0.1976 (6) 0.1027 (3) 0.67474 (9) 0.0355 (7)
H16A 0.3624 0.0980 0.6674 0.043*
H16B 0.1096 0.0603 0.6517 0.043*
C17 −0.0065 (5) 0.0109 (2) 0.91598 (9) 0.0283 (6)
H17A −0.1531 0.0046 0.9001 0.034*
H17B −0.0380 0.0546 0.9435 0.034*
C18 0.0755 (5) −0.1200 (3) 0.92624 (8) 0.0256 (6)
C19 −0.0692 (5) −0.1968 (3) 0.95003 (8) 0.0289 (6)
H19 −0.2120 −0.1649 0.9597 0.035*
C20 −0.0099 (5) −0.3190 (2) 0.95994 (9) 0.0295 (6)
H20 −0.1105 −0.3710 0.9760 0.035*
C21 0.1993 (5) −0.3631 (2) 0.94579 (9) 0.0291 (7)
C22 0.3478 (5) −0.2890 (2) 0.92239 (8) 0.0292 (7)
H22 0.4916 −0.3209 0.9131 0.035*
C23 0.2838 (5) −0.1665 (2) 0.91249 (8) 0.0263 (6)
H23 0.3841 −0.1148 0.8962 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0254 (13) 0.0248 (12) 0.0232 (12) 0.0017 (10) 0.0011 (10) −0.0014 (9)
N2 0.0248 (13) 0.0252 (12) 0.0297 (13) −0.0052 (11) 0.0008 (11) 0.0003 (10)
N3 0.0348 (15) 0.0266 (12) 0.0321 (13) 0.0075 (11) 0.0085 (12) 0.0067 (10)
O1 0.0341 (13) 0.0300 (11) 0.0340 (11) −0.0025 (9) 0.0030 (9) 0.0037 (8)
Cl1 0.0491 (5) 0.0268 (4) 0.0464 (4) 0.0042 (4) 0.0006 (4) 0.0036 (3)
C1 0.0252 (15) 0.0261 (13) 0.0277 (15) 0.0036 (12) −0.0044 (12) −0.0025 (12)
C2 0.0287 (17) 0.0232 (14) 0.0252 (14) 0.0076 (12) −0.0020 (12) −0.0046 (11)
C3 0.0337 (17) 0.0270 (15) 0.0332 (17) 0.0081 (13) −0.0022 (14) −0.0056 (12)
C4 0.0417 (19) 0.0278 (14) 0.0318 (16) 0.0108 (14) −0.0103 (15) −0.0074 (13)
C5 0.0348 (18) 0.0264 (14) 0.0460 (18) 0.0022 (14) −0.0096 (15) −0.0120 (13)
C6 0.0320 (17) 0.0222 (14) 0.0367 (17) 0.0010 (13) −0.0031 (14) −0.0031 (12)
C7 0.0217 (15) 0.0228 (14) 0.0311 (15) 0.0027 (12) 0.0008 (12) −0.0048 (12)
C8 0.0264 (15) 0.0173 (12) 0.0287 (14) 0.0014 (12) 0.0010 (12) −0.0016 (10)
C9 0.0198 (14) 0.0208 (12) 0.0342 (15) 0.0015 (12) 0.0011 (12) 0.0005 (11)
C10 0.0175 (14) 0.0199 (12) 0.0323 (15) −0.0013 (12) 0.0050 (12) 0.0021 (11)
C11 0.0221 (15) 0.0217 (13) 0.0325 (15) 0.0015 (12) 0.0029 (13) 0.0031 (11)
C12 0.0309 (17) 0.0337 (16) 0.0275 (16) −0.0038 (14) 0.0004 (13) 0.0065 (12)
C13 0.0264 (17) 0.0386 (17) 0.0462 (18) −0.0001 (14) −0.0041 (15) 0.0116 (14)
C14 0.0216 (16) 0.0336 (15) 0.0368 (17) −0.0003 (13) −0.0009 (13) 0.0009 (13)
C15 0.0326 (17) 0.0222 (13) 0.0342 (16) −0.0013 (13) −0.0030 (13) −0.0045 (12)
C16 0.0412 (19) 0.0346 (16) 0.0306 (16) −0.0054 (15) 0.0029 (14) −0.0057 (13)
C17 0.0265 (16) 0.0286 (15) 0.0298 (15) 0.0020 (13) 0.0035 (12) 0.0011 (12)
C18 0.0261 (15) 0.0285 (14) 0.0224 (14) 0.0010 (13) −0.0023 (12) −0.0018 (11)
C19 0.0289 (16) 0.0324 (15) 0.0254 (15) 0.0032 (13) 0.0012 (13) −0.0002 (12)
C20 0.0311 (17) 0.0284 (14) 0.0288 (15) −0.0034 (13) 0.0066 (13) 0.0033 (13)
C21 0.0377 (18) 0.0229 (13) 0.0268 (14) 0.0035 (13) −0.0051 (13) −0.0020 (11)
C22 0.0308 (17) 0.0297 (15) 0.0270 (15) 0.0041 (13) −0.0003 (13) −0.0038 (12)
C23 0.0255 (16) 0.0289 (14) 0.0247 (14) −0.0023 (13) 0.0022 (13) −0.0009 (11)

Geometric parameters (Å, °)

N1—C1 1.379 (3) C11—C12 1.500 (4)
N1—C2 1.385 (4) C12—C16 1.538 (4)
N1—C17 1.448 (3) C12—C13 1.539 (4)
N2—C10 1.455 (3) C12—H12 1.0000
N2—C15 1.479 (3) C13—C14 1.554 (4)
N2—C14 1.479 (4) C13—H13A 0.9900
N3—C11 1.302 (4) C13—H13B 0.9900
N3—O1 1.420 (3) C14—H14A 0.9900
O1—H1O 0.8400 C14—H14B 0.9900
Cl1—C21 1.741 (3) C15—C16 1.540 (4)
C1—C8 1.378 (4) C15—H15A 0.9900
C1—H1 0.9500 C15—H15B 0.9900
C2—C3 1.387 (4) C16—H16A 0.9900
C2—C7 1.418 (4) C16—H16B 0.9900
C3—C4 1.374 (4) C17—C18 1.514 (4)
C3—H3 0.9500 C17—H17A 0.9900
C4—C5 1.388 (4) C17—H17B 0.9900
C4—H4 0.9500 C18—C23 1.381 (4)
C5—C6 1.383 (4) C18—C19 1.389 (4)
C5—H5 0.9500 C19—C20 1.387 (4)
C6—C7 1.390 (4) C19—H19 0.9500
C6—H6 0.9500 C20—C21 1.380 (4)
C7—C8 1.459 (4) C20—H20 0.9500
C8—C9 1.453 (4) C21—C22 1.381 (4)
C9—C10 1.333 (3) C22—C23 1.397 (4)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.476 (3) C23—H23 0.9500
C1—N1—C2 109.2 (2) C12—C13—H13A 110.1
C1—N1—C17 125.3 (2) C14—C13—H13A 110.1
C2—N1—C17 125.4 (2) C12—C13—H13B 110.1
C10—N2—C15 109.1 (2) C14—C13—H13B 110.1
C10—N2—C14 107.7 (2) H13A—C13—H13B 108.4
C15—N2—C14 108.3 (2) N2—C14—C13 112.0 (2)
C11—N3—O1 110.6 (2) N2—C14—H14A 109.2
N3—O1—H1O 109.5 C13—C14—H14A 109.2
C8—C1—N1 110.3 (2) N2—C14—H14B 109.2
C8—C1—H1 124.9 C13—C14—H14B 109.2
N1—C1—H1 124.9 H14A—C14—H14B 107.9
N1—C2—C3 130.6 (3) N2—C15—C16 112.0 (2)
N1—C2—C7 107.6 (2) N2—C15—H15A 109.2
C3—C2—C7 121.9 (3) C16—C15—H15A 109.2
C4—C3—C2 117.6 (3) N2—C15—H15B 109.2
C4—C3—H3 121.2 C16—C15—H15B 109.2
C2—C3—H3 121.2 H15A—C15—H15B 107.9
C3—C4—C5 121.8 (3) C12—C16—C15 108.8 (2)
C3—C4—H4 119.1 C12—C16—H16A 109.9
C5—C4—H4 119.1 C15—C16—H16A 109.9
C6—C5—C4 120.6 (3) C12—C16—H16B 109.9
C6—C5—H5 119.7 C15—C16—H16B 109.9
C4—C5—H5 119.7 H16A—C16—H16B 108.3
C5—C6—C7 119.4 (3) N1—C17—C18 115.6 (2)
C5—C6—H6 120.3 N1—C17—H17A 108.4
C7—C6—H6 120.3 C18—C17—H17A 108.4
C6—C7—C2 118.7 (3) N1—C17—H17B 108.4
C6—C7—C8 134.4 (3) C18—C17—H17B 108.4
C2—C7—C8 106.9 (2) H17A—C17—H17B 107.4
C1—C8—C9 129.3 (3) C23—C18—C19 119.0 (3)
C1—C8—C7 106.0 (2) C23—C18—C17 123.2 (3)
C9—C8—C7 124.5 (2) C19—C18—C17 117.8 (3)
C10—C9—C8 128.3 (3) C20—C19—C18 121.5 (3)
C10—C9—H9 115.9 C20—C19—H19 119.2
C8—C9—H9 115.9 C18—C19—H19 119.2
C9—C10—N2 121.5 (2) C21—C20—C19 118.2 (3)
C9—C10—C11 126.0 (2) C21—C20—H20 120.9
N2—C10—C11 112.5 (2) C19—C20—H20 120.9
N3—C11—C10 118.5 (2) C20—C21—C22 121.7 (3)
N3—C11—C12 129.5 (2) C20—C21—Cl1 119.6 (2)
C10—C11—C12 111.9 (2) C22—C21—Cl1 118.7 (2)
C11—C12—C16 107.8 (2) C21—C22—C23 119.0 (3)
C11—C12—C13 107.3 (2) C21—C22—H22 120.5
C16—C12—C13 107.7 (3) C23—C22—H22 120.5
C11—C12—H12 111.3 C18—C23—C22 120.4 (3)
C16—C12—H12 111.3 C18—C23—H23 119.8
C13—C12—H12 111.3 C22—C23—H23 119.8
C12—C13—C14 108.2 (2)
C2—N1—C1—C8 −0.5 (3) C9—C10—C11—N3 −4.8 (4)
C17—N1—C1—C8 175.3 (2) N2—C10—C11—N3 174.5 (2)
C1—N1—C2—C3 −180.0 (3) C9—C10—C11—C12 178.1 (3)
C17—N1—C2—C3 4.3 (4) N2—C10—C11—C12 −2.7 (3)
C1—N1—C2—C7 0.2 (3) N3—C11—C12—C16 127.3 (3)
C17—N1—C2—C7 −175.5 (2) C10—C11—C12—C16 −55.9 (3)
N1—C2—C3—C4 −179.1 (3) N3—C11—C12—C13 −117.0 (3)
C7—C2—C3—C4 0.7 (4) C10—C11—C12—C13 59.8 (3)
C2—C3—C4—C5 −2.1 (4) C11—C12—C13—C14 −54.6 (3)
C3—C4—C5—C6 1.9 (4) C16—C12—C13—C14 61.1 (3)
C4—C5—C6—C7 −0.2 (4) C10—N2—C14—C13 60.5 (3)
C5—C6—C7—C2 −1.1 (4) C15—N2—C14—C13 −57.4 (3)
C5—C6—C7—C8 179.7 (3) C12—C13—C14—N2 −3.5 (4)
N1—C2—C7—C6 −179.3 (2) C10—N2—C15—C16 −55.6 (3)
C3—C2—C7—C6 0.9 (4) C14—N2—C15—C16 61.4 (3)
N1—C2—C7—C8 0.1 (3) C11—C12—C16—C15 57.8 (3)
C3—C2—C7—C8 −179.7 (2) C13—C12—C16—C15 −57.6 (3)
N1—C1—C8—C9 −175.4 (2) N2—C15—C16—C12 −3.0 (3)
N1—C1—C8—C7 0.5 (3) C1—N1—C17—C18 104.6 (3)
C6—C7—C8—C1 178.9 (3) C2—N1—C17—C18 −80.3 (3)
C2—C7—C8—C1 −0.4 (3) N1—C17—C18—C23 −0.6 (4)
C6—C7—C8—C9 −5.0 (5) N1—C17—C18—C19 −179.5 (2)
C2—C7—C8—C9 175.8 (2) C23—C18—C19—C20 −0.5 (4)
C1—C8—C9—C10 −13.9 (5) C17—C18—C19—C20 178.4 (2)
C7—C8—C9—C10 170.9 (3) C18—C19—C20—C21 0.5 (4)
C8—C9—C10—N2 −2.2 (4) C19—C20—C21—C22 0.0 (4)
C8—C9—C10—C11 176.9 (3) C19—C20—C21—Cl1 179.6 (2)
C15—N2—C10—C9 −121.0 (3) C20—C21—C22—C23 −0.5 (4)
C14—N2—C10—C9 121.6 (3) Cl1—C21—C22—C23 179.9 (2)
C15—N2—C10—C11 59.7 (3) C19—C18—C23—C22 0.0 (4)
C14—N2—C10—C11 −57.7 (3) C17—C18—C23—C22 −178.9 (3)
O1—N3—C11—C10 −178.2 (2) C21—C22—C23—C18 0.5 (4)
O1—N3—C11—C12 −1.6 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2375).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531–540.
  3. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636–5645. [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sonar, V. N., Parkin, S. & Crooks, P. A. (2003). Acta Cryst. E59, o1478–o1480. [DOI] [PubMed]
  8. Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821–6824. [DOI] [PMC free article] [PubMed]
  9. Zarza, P. M., Gill, P., Díaz González, M. C., Martin Reyes, M. G., Arrieta, J. M., Nastopoulos, V., Germain, G. & Debaerdemaeker, T. (1988). Acta Cryst. C44, 678–681.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100612X/fj2375sup1.cif

e-67-0o735-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100612X/fj2375Isup2.hkl

e-67-0o735-Isup2.hkl (217.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES