Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o721. doi: 10.1107/S1600536811006386

4-(2,4,6-Trimethyl­benz­yl)-1,3-thia­zol-2-amine

Abel M Maharramov a, Ali N Khalilov a, Atash V Gurbanov a, Mirze A Allahverdiyev a, Seik Weng Ng b,*
PMCID: PMC3052085  PMID: 21522463

Abstract

The methyl­ene C atom in the title compound, C13H16N2S, is connected to a five-membered thia­zole ring and a mesityl substituent. The rings are aligned at 75.4 (1)°. The amino substitutent inter­acts with the ring N atom of an adjacent mol­ecule by an inter­molecular N—H⋯N hydrogen bond, generating a helical chain running along the b axis.

Related literature

For background to the synthetic procedure,: see: Yadigarov et al. (2010).graphic file with name e-67-0o721-scheme1.jpg

Experimental

Crystal data

  • C13H16N2S

  • M r = 232.34

  • Monoclinic, Inline graphic

  • a = 5.5028 (5) Å

  • b = 30.832 (3) Å

  • c = 7.8355 (7) Å

  • β = 110.016 (1)°

  • V = 1249.08 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.933, T max = 0.955

  • 7129 measured reflections

  • 2749 independent reflections

  • 2486 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.120

  • S = 1.06

  • 2749 reflections

  • 156 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006386/im2269sup1.cif

e-67-0o721-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006386/im2269Isup2.hkl

e-67-0o721-Isup2.hkl (135KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N2i 0.88 (1) 2.06 (1) 2.907 (2) 163 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Baku State University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A recent study reported the reaction of 1-chloro-3-(2,4,6-trimethylphenyl)-propan-2-one with primary amines. The chlorine atom in the α-chloro ketone is not replaced directly by an amino RNH– group. The intermediate product undergoes a Favorskii rearrangement that furnishes a compound having two methylene groups between the aromatic system and the amido unit (Yadigarov et al., 2010). The present study employs thiourea as the amine. One of its amino –NH2 groups is involved in the formation of the thiazolyl ring in the resulting product (Scheme I, Fig. 1). The methylene carbon is connected to the five-membered thiazolyl ring and the six-membered mesityl group. The rings are aligned at 75.4 (1) °. The amino –NH2 substitutent interacts with the ring N atom of an adjacent molecule by an N–H···N hydrogen bond generating a helical chain that runs along the b-axis of the monoclinic unit cell.

Experimental

1-Chloro-3-(2,4,6-trimethylphenyl)-propan-2-one (10 mmol) and thiourea (10 mmol) were stirred in water (100 ml) for an hour. A precipitate formed and this was collected and redissolved in hot ethanol. Slow evaporation of the solvent gave colorless crystals in 50% yield; m.p. 380–381 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å] and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5 Ueq(C).

The amino H-atoms were located in a difference Fourier map and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined isotropically.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C13H16N2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C13H16N2S F(000) = 496
Mr = 232.34 Dx = 1.235 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3598 reflections
a = 5.5028 (5) Å θ = 2.6–29.1°
b = 30.832 (3) Å µ = 0.23 mm1
c = 7.8355 (7) Å T = 100 K
β = 110.016 (1)° Prism, colorless
V = 1249.08 (19) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII diffractometer 2749 independent reflections
Radiation source: fine-focus sealed tube 2486 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.933, Tmax = 0.955 k = −40→24
7129 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.060P)2 + 0.6878P] where P = (Fo2 + 2Fc2)/3
2749 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.38 e Å3
2 restraints Δρmin = −0.24 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.65720 (8) 0.220399 (14) 0.75764 (6) 0.02680 (15)
N1 0.2450 (3) 0.26387 (5) 0.7802 (2) 0.0283 (3)
H11 0.351 (3) 0.2757 (6) 0.8795 (19) 0.030 (5)*
H12 0.080 (2) 0.2637 (8) 0.764 (3) 0.038 (6)*
N2 0.1780 (3) 0.20379 (5) 0.58369 (19) 0.0241 (3)
C1 0.3278 (3) 0.23024 (5) 0.7040 (2) 0.0215 (3)
C2 0.5821 (3) 0.17807 (6) 0.6029 (2) 0.0267 (4)
H2 0.7056 0.1604 0.5759 0.032*
C3 0.3239 (3) 0.17382 (5) 0.5263 (2) 0.0244 (3)
C4 0.1797 (4) 0.13975 (6) 0.3931 (3) 0.0338 (4)
H4A 0.0544 0.1542 0.2862 0.041*
H4B 0.0800 0.1217 0.4502 0.041*
C5 0.3520 (3) 0.11046 (6) 0.3288 (2) 0.0282 (4)
C6 0.3814 (4) 0.11748 (6) 0.1605 (2) 0.0301 (4)
C7 0.5436 (4) 0.09018 (7) 0.1069 (3) 0.0344 (4)
H7 0.5633 0.0950 −0.0075 0.041*
C8 0.6772 (4) 0.05629 (6) 0.2137 (3) 0.0344 (4)
C9 0.6454 (4) 0.04995 (6) 0.3799 (3) 0.0365 (4)
H9 0.7352 0.0269 0.4557 0.044*
C10 0.4858 (4) 0.07644 (6) 0.4388 (3) 0.0336 (4)
C11 0.2363 (5) 0.15279 (7) 0.0330 (3) 0.0473 (6)
H11A 0.2694 0.1807 0.0966 0.071*
H11B 0.0505 0.1465 −0.0085 0.071*
H11C 0.2946 0.1541 −0.0719 0.071*
C12 0.8478 (4) 0.02682 (8) 0.1499 (3) 0.0487 (6)
H12A 0.9348 0.0438 0.0820 0.073*
H12B 0.7419 0.0042 0.0711 0.073*
H12C 0.9776 0.0133 0.2552 0.073*
C13 0.4571 (7) 0.06770 (8) 0.6208 (3) 0.0609 (8)
H13A 0.5687 0.0434 0.6802 0.091*
H13B 0.2767 0.0605 0.6029 0.091*
H13C 0.5074 0.0936 0.6974 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0157 (2) 0.0299 (2) 0.0334 (3) −0.00014 (16) 0.00646 (16) −0.00426 (18)
N1 0.0173 (7) 0.0329 (8) 0.0320 (8) 0.0012 (6) 0.0049 (6) −0.0077 (7)
N2 0.0193 (7) 0.0246 (7) 0.0269 (7) −0.0006 (6) 0.0061 (5) −0.0005 (6)
C1 0.0171 (7) 0.0248 (8) 0.0214 (7) 0.0014 (6) 0.0051 (6) 0.0038 (6)
C2 0.0229 (8) 0.0246 (8) 0.0342 (9) 0.0014 (7) 0.0118 (7) −0.0012 (7)
C3 0.0241 (8) 0.0230 (8) 0.0267 (8) 0.0000 (7) 0.0096 (6) 0.0010 (7)
C4 0.0296 (9) 0.0303 (9) 0.0407 (10) −0.0038 (8) 0.0110 (8) −0.0094 (8)
C5 0.0298 (9) 0.0229 (8) 0.0295 (9) −0.0032 (7) 0.0072 (7) −0.0051 (7)
C6 0.0343 (9) 0.0249 (9) 0.0255 (9) −0.0034 (7) 0.0031 (7) −0.0002 (7)
C7 0.0414 (10) 0.0374 (11) 0.0234 (9) −0.0047 (9) 0.0098 (8) −0.0049 (8)
C8 0.0328 (10) 0.0319 (10) 0.0339 (10) −0.0014 (8) 0.0055 (8) −0.0129 (8)
C9 0.0458 (11) 0.0245 (9) 0.0292 (9) 0.0056 (8) 0.0000 (8) −0.0014 (8)
C10 0.0489 (11) 0.0239 (9) 0.0260 (9) −0.0024 (8) 0.0102 (8) −0.0025 (7)
C11 0.0621 (14) 0.0328 (11) 0.0353 (11) 0.0052 (10) 0.0016 (10) 0.0071 (9)
C12 0.0402 (12) 0.0481 (13) 0.0552 (14) 0.0031 (10) 0.0127 (10) −0.0213 (11)
C13 0.118 (2) 0.0327 (12) 0.0400 (13) 0.0024 (13) 0.0379 (15) 0.0050 (10)

Geometric parameters (Å, °)

S1—C2 1.7323 (18) C7—C8 1.383 (3)
S1—C1 1.7415 (16) C7—H7 0.9500
N1—C1 1.351 (2) C8—C9 1.386 (3)
N1—H11 0.88 (1) C8—C12 1.509 (3)
N1—H12 0.87 (1) C9—C10 1.389 (3)
N2—C1 1.304 (2) C9—H9 0.9500
N2—C3 1.396 (2) C10—C13 1.512 (3)
C2—C3 1.346 (2) C11—H11A 0.9800
C2—H2 0.9500 C11—H11B 0.9800
C3—C4 1.502 (2) C11—H11C 0.9800
C4—C5 1.515 (2) C12—H12A 0.9800
C4—H4A 0.9900 C12—H12B 0.9800
C4—H4B 0.9900 C12—H12C 0.9800
C5—C10 1.397 (3) C13—H13A 0.9800
C5—C6 1.399 (3) C13—H13B 0.9800
C6—C7 1.393 (3) C13—H13C 0.9800
C6—C11 1.508 (3)
C2—S1—C1 89.03 (8) C6—C7—H7 118.8
C1—N1—H11 119.3 (14) C7—C8—C9 117.63 (18)
C1—N1—H12 115.1 (16) C7—C8—C12 121.1 (2)
H11—N1—H12 118 (2) C9—C8—C12 121.3 (2)
C1—N2—C3 110.84 (14) C8—C9—C10 121.79 (18)
N2—C1—N1 125.03 (15) C8—C9—H9 119.1
N2—C1—S1 114.43 (12) C10—C9—H9 119.1
N1—C1—S1 120.50 (13) C9—C10—C5 119.78 (17)
C3—C2—S1 110.36 (13) C9—C10—C13 119.37 (19)
C3—C2—H2 124.8 C5—C10—C13 120.84 (19)
S1—C2—H2 124.8 C6—C11—H11A 109.5
C2—C3—N2 115.33 (15) C6—C11—H11B 109.5
C2—C3—C4 127.16 (16) H11A—C11—H11B 109.5
N2—C3—C4 117.47 (15) C6—C11—H11C 109.5
C3—C4—C5 113.94 (15) H11A—C11—H11C 109.5
C3—C4—H4A 108.8 H11B—C11—H11C 109.5
C5—C4—H4A 108.8 C8—C12—H12A 109.5
C3—C4—H4B 108.8 C8—C12—H12B 109.5
C5—C4—H4B 108.8 H12A—C12—H12B 109.5
H4A—C4—H4B 107.7 C8—C12—H12C 109.5
C10—C5—C6 119.39 (17) H12A—C12—H12C 109.5
C10—C5—C4 120.04 (17) H12B—C12—H12C 109.5
C6—C5—C4 120.56 (17) C10—C13—H13A 109.5
C5—C6—C7 118.95 (17) C10—C13—H13B 109.5
C5—C6—C11 122.00 (18) H13A—C13—H13B 109.5
C7—C6—C11 119.01 (18) C10—C13—H13C 109.5
C8—C7—C6 122.45 (18) H13A—C13—H13C 109.5
C8—C7—H7 118.8 H13B—C13—H13C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11···N2i 0.88 (1) 2.06 (1) 2.907 (2) 163 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2269).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856–1858.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006386/im2269sup1.cif

e-67-0o721-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006386/im2269Isup2.hkl

e-67-0o721-Isup2.hkl (135KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES