Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o661. doi: 10.1107/S1600536811005393

3,5,3′-Trihy­droxy-4′-meth­oxy-7-(3-methyl­but-2-en­yloxy)flavone

Sheng-Hua Zhu a,*, Shao-Qian Liu b
PMCID: PMC3052086  PMID: 21522412

Abstract

The title compound pteleifolosin C, C21H20O7, was isolated from the petroleum ether-soluble fraction of an indigenous Chinese tree Melicope pteleifolia (Rutaceae). The dihedral angle between the benzene rings is 2.7 (2)°. Intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by inter­molecular O—H—O hydrogen bonds.

Related literature

For the medicinal usage of M. pteleifolia in China, see: Chinese Pharmacopoeia (1977) and for folk use of M. pteleifolia in South East Asia, see: Gunawardana et al. (1987); Shaari et al. (2006). For related structures and background to pteleifolosin C, see: Smith et al. (2001); Sultana et al. (1999).graphic file with name e-67-0o661-scheme1.jpg

Experimental

Crystal data

  • C21H20O7

  • M r = 384.37

  • Triclinic, Inline graphic

  • a = 8.4073 (18) Å

  • b = 9.0343 (19) Å

  • c = 12.489 (3) Å

  • α = 79.371 (2)°

  • β = 83.519 (3)°

  • γ = 78.806 (3)°

  • V = 911.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.60 × 0.50 × 0.45 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.939, T max = 0.954

  • 8186 measured reflections

  • 4103 independent reflections

  • 3126 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.114

  • S = 0.98

  • 4103 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005393/jh2258sup1.cif

e-67-0o661-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005393/jh2258Isup2.hkl

e-67-0o661-Isup2.hkl (201.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.82 2.21 2.6682 (17) 115
O5—H5⋯O6i 0.82 2.04 2.7914 (16) 153
O6—H6⋯O7 0.82 2.19 2.6440 (16) 115
O2—H2⋯O4 0.82 1.88 2.6155 (17) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Professor Bing Chen for helpful discussions and assistance with the crystallization

supplementary crystallographic information

Comment

The title substance is a new compound named pteleifolosin C, which is from petroleum ether soluble fraction of an indigenous Chinese tree Melicope pteleifolia, Rutaceae. In the southern area of China and in the neighboring district of South East Asia, Melicope pteleifolia is a medical herb and an edible plant as well (Gunawardana et al., 1987; Shaari et al., 2006). As a staple material of Guang Dong herbal tea, it also serves as a medical herb for the treatment of injury, wounds, fester and eczema (Chinese Pharmacopoeia, 1977). Nowadays it is used as a constituent in many Chinese patent medicines. In order to find its bioactive ingredients we studied the chemical composition of its leaves and found pteleifolosin C among other flavones.

Experimental

The dried leaves powder (5 K g) of M. pteleifolia was percolated with 80% EtOH to yield crude extract which was fractionated in a Soxhlet to give petroleum ether, ethyl acetate, acetone and methanol soluble fraction successively. The petroleum ether fraction was subjected to column chromatography over silica gel using solvents of increasing polarity. The fraction obtained with 25% ethyl acetate in petroleum ether was subsequently subjected to gel filtration (Sephadex LH-20) eluting with CHCl3 and CH3OH (1:1) mixtures to give yellow powder, which was purified by prep. HPLC and yielded pteleifolosin C (25 mg). It is similar to the flavones found in the same genus with the O-prenylated side chain (Sultana et al., 1999; Smith et al., 2001). 1HNMR (500 MHz, DMSO-d6): δ 9.55 (1H, s, –OH), 12.43 (1H, s, –OH), 6.33 (1H, d, J=2.0 Hz), 6.72 (1H, d, J=2.0 Hz), 7.72 (1H, d, J=1.6 Hz), 9.31 (1H, s, –OH), 7.09 (1H, d, J=8.5 Hz), 7.68 (1H, d, J=1.6, 8.5 Hz), 4.64 (2H, d, J=6.5 Hz), 5.46 (1H, t, J=6.5 Hz), 1.76 (3H, s), 1.73 (3H, s), 3.85 (3H, s);

The dihedral angle between the benzene ring C6—C11 and the benzene ring C15—C20 is 2.7 (2)°. and the dihedral angle between the ring C8, C9, C12, C13, C14, O3 and the benzene ring C15—C20 is 2.2 (2) °. The C2—C4 (1.319 (2) Å) and C13—C14 (1.359 (2) Å) are double bands and are significantly shorter than the other C—C bond (e.g.The distance between the single band C1—C2 is 1.495 (3) Å)

Refinement

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H)= 1.2Ueq (aromatic) or Uiso(H) = 1.5Ueq (methyl).

Figures

Fig. 1.

Fig. 1.

Molecular view the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C21H20O7 Z = 2
Mr = 384.37 F(000) = 404
Triclinic, P1 Dx = 1.400 Mg m3
a = 8.4073 (18) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.0343 (19) Å Cell parameters from 3191 reflections
c = 12.489 (3) Å θ = 0.0–0.0°
α = 79.371 (2)° µ = 0.11 mm1
β = 83.519 (3)° T = 296 K
γ = 78.806 (3)° Block, colourless
V = 911.7 (3) Å3 0.60 × 0.50 × 0.45 mm

Data collection

Bruker APEXII CCD diffractometer 4103 independent reflections
Radiation source: fine-focus sealed tube 3126 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.939, Tmax = 0.954 k = −11→11
8186 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.4019P] where P = (Fo2 + 2Fc2)/3
4103 reflections (Δ/σ)max = 0.001
259 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C5 0.0698 (2) 0.01370 (19) 0.72012 (14) 0.0408 (4)
H5A 0.1690 −0.0115 0.6744 0.049*
H5B −0.0105 0.0810 0.6751 0.049*
C2 −0.0595 (2) −0.21729 (19) 0.72655 (15) 0.0416 (4)
C4 0.0075 (2) −0.12862 (19) 0.77422 (14) 0.0428 (4)
H4 0.0170 −0.1574 0.8490 0.051*
C3 −0.1194 (3) −0.3565 (2) 0.79063 (18) 0.0584 (5)
H3A −0.0962 −0.3684 0.8656 0.088*
H3B −0.0656 −0.4454 0.7606 0.088*
H3C −0.2347 −0.3445 0.7866 0.088*
C1 −0.0815 (3) −0.1880 (2) 0.60687 (17) 0.0596 (5)
H1A −0.0403 −0.0973 0.5729 0.089*
H1B −0.1951 −0.1745 0.5962 0.089*
H1C −0.0234 −0.2736 0.5747 0.089*
O1 0.10023 (15) 0.08534 (13) 0.80716 (9) 0.0457 (3)
C9 0.30637 (18) 0.47465 (17) 0.75333 (12) 0.0334 (3)
C7 0.18620 (19) 0.29532 (17) 0.67786 (13) 0.0351 (3)
H7 0.1540 0.2639 0.6181 0.042*
C8 0.25584 (17) 0.42543 (17) 0.66575 (12) 0.0308 (3)
C11 0.2147 (2) 0.2601 (2) 0.87334 (13) 0.0433 (4)
H11 0.1990 0.2042 0.9429 0.052*
C6 0.16667 (19) 0.21424 (18) 0.78258 (13) 0.0368 (4)
C10 0.2850 (2) 0.38769 (19) 0.85908 (13) 0.0404 (4)
O2 0.3353 (2) 0.43126 (16) 0.94546 (10) 0.0612 (4)
H2 0.3772 0.5074 0.9245 0.092*
C14 0.33864 (17) 0.63647 (16) 0.54058 (12) 0.0296 (3)
C12 0.37894 (18) 0.60914 (17) 0.73464 (12) 0.0337 (3)
C13 0.39232 (18) 0.68726 (17) 0.62346 (12) 0.0327 (3)
O3 0.27254 (13) 0.50474 (12) 0.56215 (8) 0.0341 (3)
O4 0.42931 (16) 0.66001 (14) 0.80866 (9) 0.0477 (3)
C19 0.2782 (2) 0.69577 (18) 0.24055 (13) 0.0383 (4)
H19 0.2381 0.6470 0.1927 0.046*
C15 0.33922 (17) 0.70364 (17) 0.42430 (12) 0.0304 (3)
C18 0.33616 (19) 0.83015 (18) 0.20187 (12) 0.0348 (3)
C16 0.39856 (19) 0.83993 (17) 0.38400 (12) 0.0343 (3)
H16 0.4396 0.8888 0.4313 0.041*
C17 0.39621 (19) 0.90123 (17) 0.27506 (13) 0.0348 (3)
C20 0.27958 (19) 0.63340 (18) 0.35041 (13) 0.0356 (3)
H20 0.2400 0.5429 0.3755 0.043*
O7 0.34083 (16) 0.90551 (14) 0.09652 (9) 0.0479 (3)
O6 0.45551 (17) 1.03420 (14) 0.23818 (10) 0.0501 (3)
H6 0.4399 1.0631 0.1734 0.075*
C21 0.2862 (3) 0.8369 (2) 0.01710 (15) 0.0635 (6)
H21A 0.3524 0.7381 0.0141 0.095*
H21B 0.2944 0.9006 −0.0532 0.095*
H21C 0.1749 0.8255 0.0367 0.095*
O5 0.46006 (16) 0.81540 (14) 0.60612 (9) 0.0478 (3)
H5 0.4836 0.8311 0.6645 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C5 0.0505 (9) 0.0343 (9) 0.0406 (9) −0.0176 (7) −0.0023 (7) −0.0040 (7)
C2 0.0397 (9) 0.0351 (9) 0.0512 (10) −0.0108 (7) 0.0002 (7) −0.0085 (8)
C4 0.0513 (10) 0.0358 (9) 0.0427 (9) −0.0165 (7) −0.0038 (7) −0.0007 (7)
C3 0.0605 (12) 0.0405 (11) 0.0785 (14) −0.0238 (9) 0.0020 (10) −0.0096 (10)
C1 0.0662 (13) 0.0615 (13) 0.0584 (12) −0.0201 (10) −0.0063 (10) −0.0191 (10)
O1 0.0668 (8) 0.0371 (7) 0.0382 (6) −0.0282 (6) −0.0063 (5) 0.0019 (5)
C9 0.0385 (8) 0.0312 (8) 0.0319 (8) −0.0106 (6) −0.0025 (6) −0.0043 (6)
C7 0.0423 (8) 0.0333 (8) 0.0335 (8) −0.0147 (7) −0.0058 (6) −0.0048 (6)
C8 0.0346 (7) 0.0284 (8) 0.0297 (7) −0.0097 (6) −0.0020 (6) −0.0015 (6)
C11 0.0612 (11) 0.0411 (10) 0.0297 (8) −0.0210 (8) −0.0037 (7) 0.0015 (7)
C6 0.0427 (9) 0.0304 (8) 0.0386 (9) −0.0149 (7) −0.0032 (7) −0.0006 (7)
C10 0.0543 (10) 0.0397 (9) 0.0311 (8) −0.0171 (8) −0.0049 (7) −0.0054 (7)
O2 0.1038 (11) 0.0607 (9) 0.0313 (6) −0.0451 (8) −0.0121 (7) −0.0029 (6)
C14 0.0325 (7) 0.0243 (7) 0.0332 (8) −0.0095 (6) −0.0021 (6) −0.0034 (6)
C12 0.0394 (8) 0.0322 (8) 0.0326 (8) −0.0116 (6) −0.0038 (6) −0.0070 (6)
C13 0.0376 (8) 0.0279 (8) 0.0350 (8) −0.0132 (6) −0.0029 (6) −0.0040 (6)
O3 0.0468 (6) 0.0302 (6) 0.0292 (5) −0.0178 (5) −0.0057 (4) −0.0016 (4)
O4 0.0714 (8) 0.0457 (7) 0.0350 (6) −0.0294 (6) −0.0104 (6) −0.0065 (5)
C19 0.0528 (10) 0.0331 (8) 0.0344 (8) −0.0169 (7) −0.0096 (7) −0.0060 (7)
C15 0.0322 (7) 0.0280 (8) 0.0316 (7) −0.0068 (6) −0.0032 (6) −0.0045 (6)
C18 0.0436 (8) 0.0326 (8) 0.0283 (8) −0.0092 (7) −0.0039 (6) −0.0025 (6)
C16 0.0432 (8) 0.0319 (8) 0.0320 (8) −0.0147 (6) −0.0046 (6) −0.0065 (6)
C17 0.0418 (8) 0.0279 (8) 0.0367 (8) −0.0137 (6) −0.0026 (6) −0.0031 (6)
C20 0.0451 (9) 0.0290 (8) 0.0357 (8) −0.0151 (7) −0.0054 (7) −0.0029 (6)
O7 0.0756 (9) 0.0419 (7) 0.0299 (6) −0.0223 (6) −0.0089 (6) 0.0000 (5)
O6 0.0808 (9) 0.0405 (7) 0.0363 (6) −0.0356 (6) −0.0079 (6) 0.0029 (5)
C21 0.1061 (17) 0.0570 (13) 0.0328 (9) −0.0242 (12) −0.0198 (10) −0.0021 (9)
O5 0.0753 (8) 0.0424 (7) 0.0364 (6) −0.0362 (6) −0.0113 (6) −0.0028 (5)

Geometric parameters (Å, °)

C5—O1 1.4328 (19) C10—O2 1.3501 (19)
C5—C4 1.498 (2) O2—H2 0.8200
C5—H5A 0.9700 C14—C13 1.359 (2)
C5—H5B 0.9700 C14—O3 1.3793 (16)
C2—C4 1.319 (2) C14—C15 1.467 (2)
C2—C1 1.495 (3) C12—O4 1.2513 (17)
C2—C3 1.503 (2) C12—C13 1.440 (2)
C4—H4 0.9300 C13—O5 1.3590 (17)
C3—H3A 0.9600 C19—C18 1.380 (2)
C3—H3B 0.9600 C19—C20 1.384 (2)
C3—H3C 0.9600 C19—H19 0.9300
C1—H1A 0.9600 C15—C20 1.396 (2)
C1—H1B 0.9600 C15—C16 1.404 (2)
C1—H1C 0.9600 C18—O7 1.3655 (19)
O1—C6 1.3581 (18) C18—C17 1.396 (2)
C9—C8 1.390 (2) C16—C17 1.372 (2)
C9—C10 1.419 (2) C16—H16 0.9300
C9—C12 1.433 (2) C17—O6 1.3713 (18)
C7—C6 1.385 (2) C20—H20 0.9300
C7—C8 1.389 (2) O7—C21 1.421 (2)
C7—H7 0.9300 O6—H6 0.8200
C8—O3 1.3650 (18) C21—H21A 0.9600
C11—C10 1.369 (2) C21—H21B 0.9600
C11—C6 1.400 (2) C21—H21C 0.9600
C11—H11 0.9300 O5—H5 0.8200
O1—C5—C4 105.77 (13) O2—C10—C9 119.45 (14)
O1—C5—H5A 110.6 C11—C10—C9 120.28 (14)
C4—C5—H5A 110.6 C10—O2—H2 109.5
O1—C5—H5B 110.6 C13—C14—O3 119.66 (13)
C4—C5—H5B 110.6 C13—C14—C15 128.81 (13)
H5A—C5—H5B 108.7 O3—C14—C15 111.53 (12)
C4—C2—C1 123.26 (17) O4—C12—C9 123.70 (14)
C4—C2—C3 121.40 (17) O4—C12—C13 119.81 (14)
C1—C2—C3 115.33 (16) C9—C12—C13 116.49 (13)
C2—C4—C5 126.59 (16) C14—C13—O5 121.85 (14)
C2—C4—H4 116.7 C14—C13—C12 121.80 (13)
C5—C4—H4 116.7 O5—C13—C12 116.35 (13)
C2—C3—H3A 109.5 C8—O3—C14 121.51 (11)
C2—C3—H3B 109.5 C18—C19—C20 120.15 (14)
H3A—C3—H3B 109.5 C18—C19—H19 119.9
C2—C3—H3C 109.5 C20—C19—H19 119.9
H3A—C3—H3C 109.5 C20—C15—C16 118.06 (14)
H3B—C3—H3C 109.5 C20—C15—C14 120.56 (13)
C2—C1—H1A 109.5 C16—C15—C14 121.38 (13)
C2—C1—H1B 109.5 O7—C18—C19 126.65 (13)
H1A—C1—H1B 109.5 O7—C18—C17 114.35 (14)
C2—C1—H1C 109.5 C19—C18—C17 118.99 (14)
H1A—C1—H1C 109.5 C17—C16—C15 120.24 (13)
H1B—C1—H1C 109.5 C17—C16—H16 119.9
C6—O1—C5 119.15 (12) C15—C16—H16 119.9
C8—C9—C10 118.12 (14) C16—C17—O6 118.83 (13)
C8—C9—C12 119.70 (14) C16—C17—C18 121.24 (14)
C10—C9—C12 122.18 (14) O6—C17—C18 119.93 (14)
C6—C7—C8 117.30 (14) C19—C20—C15 121.31 (14)
C6—C7—H7 121.3 C19—C20—H20 119.3
C8—C7—H7 121.3 C15—C20—H20 119.3
O3—C8—C7 116.47 (13) C18—O7—C21 117.28 (13)
O3—C8—C9 120.82 (13) C17—O6—H6 109.5
C7—C8—C9 122.71 (14) O7—C21—H21A 109.5
C10—C11—C6 119.59 (15) O7—C21—H21B 109.5
C10—C11—H11 120.2 H21A—C21—H21B 109.5
C6—C11—H11 120.2 O7—C21—H21C 109.5
O1—C6—C7 124.01 (14) H21A—C21—H21C 109.5
O1—C6—C11 114.00 (14) H21B—C21—H21C 109.5
C7—C6—C11 121.99 (14) C13—O5—H5 109.5
O2—C10—C11 120.26 (15)
C1—C2—C4—C5 0.8 (3) C15—C14—C13—C12 178.36 (14)
C3—C2—C4—C5 −179.14 (17) O4—C12—C13—C14 −179.72 (15)
O1—C5—C4—C2 168.75 (17) C9—C12—C13—C14 0.2 (2)
C4—C5—O1—C6 176.45 (14) O4—C12—C13—O5 −0.4 (2)
C6—C7—C8—O3 −179.33 (14) C9—C12—C13—O5 179.51 (14)
C6—C7—C8—C9 0.5 (2) C7—C8—O3—C14 179.37 (13)
C10—C9—C8—O3 179.69 (14) C9—C8—O3—C14 −0.5 (2)
C12—C9—C8—O3 −0.8 (2) C13—C14—O3—C8 1.6 (2)
C10—C9—C8—C7 −0.2 (2) C15—C14—O3—C8 −178.21 (12)
C12—C9—C8—C7 179.31 (14) C13—C14—C15—C20 179.39 (15)
C5—O1—C6—C7 9.8 (2) O3—C14—C15—C20 −0.8 (2)
C5—O1—C6—C11 −170.35 (15) C13—C14—C15—C16 −0.9 (2)
C8—C7—C6—O1 179.81 (14) O3—C14—C15—C16 178.91 (13)
C8—C7—C6—C11 −0.1 (2) C20—C19—C18—O7 −179.26 (16)
C10—C11—C6—O1 179.35 (15) C20—C19—C18—C17 0.2 (2)
C10—C11—C6—C7 −0.8 (3) C20—C15—C16—C17 0.4 (2)
C6—C11—C10—O2 −178.46 (17) C14—C15—C16—C17 −179.33 (14)
C6—C11—C10—C9 1.1 (3) C15—C16—C17—O6 −179.80 (14)
C8—C9—C10—O2 178.91 (15) C15—C16—C17—C18 −0.3 (2)
C12—C9—C10—O2 −0.5 (3) O7—C18—C17—C16 179.55 (15)
C8—C9—C10—C11 −0.7 (2) C19—C18—C17—C16 0.0 (2)
C12—C9—C10—C11 179.86 (16) O7—C18—C17—O6 −1.0 (2)
C8—C9—C12—O4 −179.14 (15) C19—C18—C17—O6 179.51 (15)
C10—C9—C12—O4 0.3 (3) C18—C19—C20—C15 −0.1 (3)
C8—C9—C12—C13 1.0 (2) C16—C15—C20—C19 −0.2 (2)
C10—C9—C12—C13 −179.57 (15) C14—C15—C20—C19 179.55 (15)
O3—C14—C13—O5 179.23 (13) C19—C18—O7—C21 −2.5 (3)
C15—C14—C13—O5 −1.0 (3) C17—C18—O7—C21 178.09 (16)
O3—C14—C13—C12 −1.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O4 0.82 2.21 2.6682 (17) 115
O5—H5···O6i 0.82 2.04 2.7914 (16) 153
O6—H6···O7 0.82 2.19 2.6440 (16) 115
O2—H2···O4 0.82 1.88 2.6155 (17) 148

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2258).

References

  1. Bruker (1997). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chinese Pharmacopoeia (1977). Beijing: People’s Medical Publishing House.
  4. Gunawardana, Y. A. G. P., Cordell, G. A., Ruangrungsi, N., Chomya, S. & Tantivatana, P. (1987). J. Sci. Sco. Thail 13, 107–112.
  5. Shaari, K., Safri, S., Abas, F., Lajis, N. H. & Israf, D. A. (2006). Natural Product Research 20(5), 415-419. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, G., Bartley, J. P., Wang, E. & Bott, R. C. (2001). Acta Cryst. C57, 1336–1337. [DOI] [PubMed]
  9. Sultana, N., Hartley, T. G. & Waterman, P. G. (1999). Phytochemistry, 50, 1249–1253.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005393/jh2258sup1.cif

e-67-0o661-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005393/jh2258Isup2.hkl

e-67-0o661-Isup2.hkl (201.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES