Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):m301–m302. doi: 10.1107/S1600536811003734

Tris{4-[(2H-tetra­zol-5-yl)meth­yl]morpholinium} dodeca­tungstophosphate hexa­hydrate

Babak Feizyzadeh a,*, Masoud Mirzaei b,*, Hossein Eshtiagh-Hosseini b, Ahmad Gholizadeh c
PMCID: PMC3052096  PMID: 21522240

Abstract

The title heteropolyoxidotungstate-based inorganic–organic hybrid material, (C6H12N5O)3[W12(PO4)O36]·6H2O, consists of one α-Keggin-type [W12(PO4)O36]3− polyoxidometalate anion (POM), three crystallographically independent 4-[(2H-tetra­zol-5-yl)meth­yl]morpholinium cations and six water mol­ecules of crystallization. The morpholine ring of the cation adopts a chair conformation. The anion shows characteristic features with respect to bond lengths and angles. An extensive network of N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the organic cations, inorganic anion and the crystal water mol­ecules lead to a three-dimensional structure. Moreover, six uncoordinated water mol­ecules increase the number of hydrogen bonds in the network and lead to the formation of (H2O) clusters.

Related literature

For other inorganic–organic hybrid materials based on polyoxidometalates with organic cations, see: Alizadeh et al. (2008a ,b ); Nikpour et al. (2009, 2010). For details of (H2O)n cluster analysis, see: Aghabozorg et al. (2010). For background to pseudopolymorphism, see: Desiraju (2003).graphic file with name e-67-0m301-scheme1.jpg

Experimental

Crystal data

  • (C6H12N5O)3[W12(PO4)O36]·6H2O

  • M r = 3495.88

  • Orthorhombic, Inline graphic

  • a = 14.616 (3) Å

  • b = 15.213 (3) Å

  • c = 26.735 (6) Å

  • V = 5944 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 23.27 mm−1

  • T = 100 K

  • 0.12 × 0.11 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.078, T max = 0.246

  • 59635 measured reflections

  • 12321 independent reflections

  • 9617 reflections with I > 2σ(I)

  • R int = 0.159

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.104

  • S = 1.00

  • 12321 reflections

  • 446 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.80 e Å−3

  • Δρmin = −2.72 e Å−3

  • Absolute structure: Flack (1983), 5544 Friedel pairs

  • Flack parameter: −0.041 (19)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003734/wm2435sup1.cif

e-67-0m301-sup1.cif (38.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003734/wm2435Isup2.hkl

e-67-0m301-Isup2.hkl (602.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A⋯O2W 0.88 1.90 2.77 (2) 173
N5A—H5A⋯O5W 0.90 1.88 2.76 (3) 166
N4B—H4B⋯O1Wi 0.88 1.84 2.71 (2) 168
N5B—H5B⋯N2Aii 0.90 2.31 2.97 (2) 130
N4C—H4C⋯O2W 0.88 2.09 2.87 (3) 149
N5C—H5C⋯O4W 0.87 2.01 2.71 (2) 137
O1W—H1W⋯O3Ciii 0.85 2.01 2.84 (2) 164
O1W—H2W⋯O3 0.85 1.92 2.77 (2) 180
O2W—H3W⋯O11Tiv 0.85 2.43 2.87 (2) 113
O2W—H4W⋯O9Tv 0.85 2.18 2.96 (2) 153
O2W—H4W⋯O2vi 0.85 2.54 3.06 (2) 121
O3W—H5W⋯N1Aii 0.85 2.41 3.03 (3) 130
O3W—H6W⋯N2C 0.85 2.14 2.79 (3) 134
O4W—H7W⋯O7T 0.85 2.11 2.96 (2) 180
O4W—H8W⋯O6Wvii 0.85 2.00 2.82 (2) 161
O5W—H9W⋯O2W 0.85 1.99 2.82 (2) 164
O5W—H10W⋯O6W 0.85 1.93 2.78 (2) 178
O6W—H11W⋯N2B 0.85 2.11 2.85 (2) 146
O6W—H12W⋯O2Tv 0.85 2.25 2.91 (2) 134
O6W—H12W⋯O1Wvi 0.85 2.44 3.11 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The Islamic Azad University, Quchan Branch, Quchan, Iran is gratefully acknowledged for financial support of this research paper.

supplementary crystallographic information

Comment

In continuation of our previous studies of inorganic-organic hybrid materials based on polyoxidometalates (Alizadeh et al., 2008a,b; Nikpour et al., 2009), we report here on the structure of the title compound, [C6H12N5O]3[W12(PO4)O36].6H2O, (I), as a pseudopolymorph (different number of crystal water molecules; Desiraju, 2003) of [C6H12N5O]3[W12(PO4)O36].5H2O as reported by us previously (Nikpour et al., 2010).

The structure of (I) consists of one discrete anion [(PO4)W12O36]3-, three [C6H12N5O]+ cations and six water molecules of crystallisation. (Fig. 1). The anion in the title compound is of the well-known α-Keggin type consisting of four groups of W3O10 units. Each WO6 octahedron in such a unit shares edges with its neighbours. Four W3O10 units are linked together via corner-sharing WO6 octahedra to form a cage with a P atom located in the tetrahedrally surrounded centre. There are four kinds of oxygen atoms in the heteropolyanion, viz. four O atoms (O1c, O5c, O9c, O13c) that are bonded to the P atom and to three W atoms, twelve corner-sharing atoms Oc atom that bridge the different W3O13 units, twelve edge-sharing atoms Ob that bridge within the W3O13 units, and twelve terminal oxygen atoms Ot. In the organic cation, the 1H-tetrazole ring and the methylcarbon atom lie approximately in the same plane and the morpholine ring is in a chair configuration. In (I), all bond lengths and angles are normal and comparable with those observed in the pseudopolymorph with 5 crystal water molecules (Nikpour et al., 2010)). The three organic cations in (I) show only minor differences with respect to bond lengths and angles.

The molecular entities are linked together via an extensive network of N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonding interactions (Fig. 2). The charge-compensating cations [C6H12N5O]+ can be considered as the space-filling structural subunits and are connected to one side of the α-[(PO4)W12O36]3- anion by the aforementioned multiple hydrogen-bonding interactions. Since [C6H12N5O]+ cations lie at one side of the anion, the inorganic anions are well-separated by [C6H12N5O]+ cations and by additional water molecules of crystallisation.

In recent years, there has been increasing interest in the experimental and theoretical study of water clusters (H2O)n because these water assemblies might provide an insight into some of the unexplained properties of bulk water, namely into the processes that occur at the ice-liquid, ice-air, and liquid-air interfaces, and into the nature of water-water and water-solute interactions (Aghabozorg et al. 2010). In the network of (I), six uncoordinated water molecules increase the number of O—H···O hydrogen bonds and thus lead to the formation of (H2O) clusters. Indeed, these units were found to act as a 'supramolecular glue' in the aggregation of [C6H12N5O]3[W12(PO4)O36].6H2O and hence support the consolidation of the three-dimensional network.

Experimental

A solution of ((1H-tetrazole-5-yl)methyl)morpholine (0.14 g, 0.82 mmol) in 30 ml of distilled water was added with vigorous stirring to a solution of α-H3[(PO4)W12O36].21H2O (0.50 g, 0.27 mmol) in 25 ml of distilled water. A colorless precipitate was formed after five hours. The solid was filtered off, washed with DMF and dried at room temperature. The precipitate was then re-dissolved in acetonitrile and the solution was cooled to ambient temperature; colorless block-shaped crystals were obtained, filtered off, washed several times with distilled water, and dried in air (yield 30% based on W) and characterized by spectroscopy and X-ray crystallography methods. 1H NMR in D2O:d 2.65 (t, 4H, (CH2)2N), 3.80 (t,4H, (CH2)2O), 4.15 (s, 2H, CH2-(N(CH2)2)).Anal. calcd. for C18H45N15O49PW12:C, 6.19; H, 1.30; N, 6.02; P, 0.90; W, 63.20. Found: C, 6.41; H, 1.41; N, 5.88; P, 0.85; W, 63.00.

Refinement

Only heavy atoms (P and W) were refined anisotropically. Refinement in anisotropic approximation for all atoms was unstable due to the limited scattering powder of the crystal and absorption effects which could not be completely corrected. The highest peak and the deepest hole in the final Fourier map are 0.86 Å and 0.91 Å away from atoms W8 and W3, respectively.

Positions of hydrogen atoms were calculated. All hydrogen atoms were treated in the riding model approximation with the Uiso(H) parameters equal to 1.2 Ueq(Ci), where Ueq(C) are the equivalent temperature factors of the atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of [C6H12N5O]3[W12(PO4)O36].6H2O, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I) in a projection along a, emphasizing the three-dimensional H-bonded network (dashed lines).

Crystal data

(C6H12N5O)3[W12(PO4)O36]·6H2O F(000) = 6224
Mr = 3495.88 Dx = 3.906 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 846 reflections
a = 14.616 (3) Å θ = 2.4–24.2°
b = 15.213 (3) Å µ = 23.27 mm1
c = 26.735 (6) Å T = 100 K
V = 5944 (2) Å3 Plate, colourless
Z = 4 0.12 × 0.11 × 0.06 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 12321 independent reflections
Radiation source: fine-focus sealed tube 9617 reflections with I > 2σ(I)
graphite Rint = 0.159
ω scans θmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −18→18
Tmin = 0.078, Tmax = 0.246 k = −19→19
59635 measured reflections l = −33→33

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.015P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
12321 reflections Δρmax = 2.80 e Å3
446 parameters Δρmin = −2.72 e Å3
6 restraints Absolute structure: Flack (1983), 5544 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.041 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
W1 0.13685 (6) 0.08083 (6) 0.78414 (3) 0.0071 (2)
W2 0.12581 (6) −0.11475 (6) 0.84527 (3) 0.00680 (19)
W3 −0.01178 (6) 0.05564 (6) 0.88273 (3) 0.00663 (19)
W4 0.23993 (6) 0.27465 (6) 0.84686 (3) 0.0063 (2)
W5 0.32328 (6) 0.25584 (6) 0.96592 (3) 0.00742 (19)
W6 0.09215 (6) 0.24836 (6) 0.94429 (3) 0.00671 (19)
W7 0.38668 (6) 0.08881 (6) 0.80600 (3) 0.0069 (2)
W8 0.46950 (6) 0.07104 (6) 0.92481 (3) 0.0077 (2)
W9 0.37534 (7) −0.10728 (6) 0.86647 (3) 0.0078 (2)
W10 0.21725 (7) −0.13462 (6) 0.97307 (3) 0.0076 (2)
W11 0.08109 (6) 0.03551 (6) 1.01029 (3) 0.0071 (2)
W12 0.31213 (6) 0.04266 (6) 1.03168 (3) 0.0075 (2)
P1 0.2295 (4) 0.0669 (4) 0.9062 (2) 0.0048 (11)
O1B 0.1641 (10) 0.1949 (9) 0.8099 (5) 0.004 (3)*
O2B 0.2655 (11) 0.0633 (9) 0.7824 (5) 0.010 (3)*
O3B 0.2554 (11) −0.1191 (10) 0.8382 (6) 0.015 (4)*
O4B 0.1447 (10) −0.1393 (10) 0.9133 (5) 0.009 (3)*
O5B 0.0152 (10) 0.0215 (9) 0.9489 (5) 0.006 (3)*
O6B 0.0257 (11) 0.1702 (9) 0.9025 (5) 0.009 (3)*
O7B 0.3371 (11) 0.1990 (10) 0.8259 (6) 0.011 (4)*
O8B 0.4150 (11) 0.1809 (9) 0.9367 (5) 0.009 (3)*
O9B 0.3045 (11) 0.1634 (9) 1.0121 (5) 0.007 (3)*
O10B 0.0901 (11) 0.1564 (10) 0.9929 (6) 0.013 (4)*
O11B 0.4062 (11) 0.0320 (10) 0.9827 (5) 0.012 (3)*
O12B 0.3195 (10) −0.1331 (9) 0.9280 (5) 0.008 (3)*
O1C 0.1542 (10) 0.0355 (9) 0.8695 (5) 0.006 (3)*
O2C 0.1237 (10) −0.0454 (9) 0.7853 (5) 0.009 (3)*
O3C 0.0181 (10) 0.0886 (9) 0.8151 (5) 0.006 (3)*
O4C 0.0105 (10) −0.0617 (9) 0.8616 (5) 0.009 (3)*
O5C 0.2234 (11) 0.1677 (9) 0.9125 (5) 0.010 (4)*
O6C 0.1364 (11) 0.3072 (9) 0.8851 (5) 0.008 (3)*
O7C 0.3141 (10) 0.3122 (9) 0.9011 (5) 0.002 (3)*
O8C 0.1998 (10) 0.2924 (9) 0.9769 (5) 0.004 (3)*
O9C 0.3222 (11) 0.0400 (10) 0.8850 (5) 0.009 (3)*
O10C 0.4081 (11) −0.0347 (10) 0.8101 (5) 0.012 (3)*
O11C 0.4790 (11) 0.1034 (10) 0.8545 (5) 0.012 (3)*
O12C 0.4726 (12) −0.0506 (11) 0.9018 (6) 0.017 (4)*
O13C 0.2162 (10) 0.0225 (9) 0.9574 (5) 0.004 (3)*
O14C 0.2926 (10) −0.0796 (9) 1.0242 (5) 0.005 (3)*
O15C 0.1137 (11) −0.0849 (10) 1.0077 (5) 0.012 (3)*
O16C 0.1849 (11) 0.0503 (10) 1.0520 (6) 0.014 (4)*
O1T 0.1113 (11) 0.1009 (9) 0.7229 (5) 0.008 (3)*
O2T 0.0886 (12) −0.2120 (11) 0.8230 (6) 0.021 (4)*
O3T −0.1262 (11) 0.0627 (10) 0.8820 (5) 0.009 (3)*
O4T 0.2503 (11) 0.3612 (9) 0.8069 (6) 0.011 (3)*
O5T 0.3826 (11) 0.3329 (10) 0.9988 (6) 0.013 (4)*
O6T 0.0161 (12) 0.3183 (10) 0.9630 (6) 0.015 (4)*
O7T 0.4435 (10) 0.1134 (10) 0.7519 (5) 0.008 (3)*
O8T 0.5799 (10) 0.0855 (10) 0.9435 (5) 0.009 (3)*
O9T 0.4278 (10) −0.2028 (9) 0.8515 (5) 0.008 (3)*
O10T 0.2142 (10) −0.2426 (9) 0.9929 (5) 0.007 (3)*
O11T −0.0015 (10) 0.0336 (9) 1.0544 (5) 0.007 (3)*
O12T 0.3661 (11) 0.0419 (10) 1.0867 (5) 0.010 (3)*
O1 −0.0329 (11) 0.6253 (10) 0.9033 (6) 0.014 (4)*
O2 0.3910 (12) 0.1840 (10) 0.6455 (6) 0.014 (4)*
O3 0.7992 (11) 0.3157 (10) 0.8498 (6) 0.013 (4)*
N1A 0.2428 (14) 0.5669 (13) 1.0482 (7) 0.016 (5)*
N2A 0.3121 (13) 0.6174 (12) 1.0671 (6) 0.010 (4)*
N3A 0.3715 (13) 0.6348 (12) 1.0333 (7) 0.012 (4)*
N4A 0.3446 (13) 0.5980 (12) 0.9905 (7) 0.014 (4)*
H4A 0.3725 0.6005 0.9614 0.017*
N5A 0.1426 (13) 0.5627 (13) 0.9376 (7) 0.014 (4)*
H5A 0.1673 0.5989 0.9147 0.017*
N1B 0.1622 (12) 0.4400 (11) 0.7087 (6) 0.006 (4)*
N2B 0.1362 (15) 0.4894 (13) 0.7487 (7) 0.019 (5)*
N3B 0.0718 (14) 0.4460 (13) 0.7736 (7) 0.017 (5)*
N4B 0.0632 (13) 0.3681 (12) 0.7506 (6) 0.009 (4)*
H4B 0.0263 0.3256 0.7601 0.010*
N5B 0.2227 (13) 0.2763 (12) 0.6584 (7) 0.010 (4)*
H5B 0.2237 0.3313 0.6460 0.012*
N1C 0.4485 (14) 0.3858 (13) 0.7645 (7) 0.015 (5)*
N2C 0.4037 (14) 0.4569 (13) 0.7477 (7) 0.015 (4)*
N3C 0.3909 (14) 0.5159 (13) 0.7846 (7) 0.017 (5)*
N4C 0.4281 (14) 0.4820 (13) 0.8246 (7) 0.017 (5)*
H4C 0.4293 0.5058 0.8546 0.020*
N5C 0.6017 (12) 0.3217 (11) 0.8337 (6) 0.005 (4)*
H5C 0.6146 0.3135 0.8023 0.006*
C1A 0.2647 (16) 0.5557 (14) 1.0014 (8) 0.013 (5)*
C2A 0.2074 (16) 0.5054 (14) 0.9619 (8) 0.012 (5)*
H2A 0.2489 0.4797 0.9365 0.014*
H2B 0.1742 0.4566 0.9784 0.014*
C3A 0.0767 (16) 0.6076 (15) 0.9709 (9) 0.014 (5)*
H3A 0.1105 0.6373 0.9981 0.017*
H3B 0.0358 0.5633 0.9863 0.017*
C4A 0.0184 (18) 0.6757 (15) 0.9428 (8) 0.016 (5)*
H4D −0.0247 0.7050 0.9660 0.019*
H4E 0.0579 0.7210 0.9273 0.019*
C5A 0.0289 (14) 0.5823 (13) 0.8701 (7) 0.004 (4)*
H5D 0.0670 0.6270 0.8531 0.005*
H5E −0.0066 0.5507 0.8442 0.005*
C6A 0.0924 (15) 0.5159 (13) 0.8974 (7) 0.004 (4)*
H6A 0.0556 0.4676 0.9119 0.004*
H6B 0.1364 0.4901 0.8733 0.004*
C1B 0.1192 (16) 0.3644 (14) 0.7108 (8) 0.011 (5)*
C2B 0.1251 (15) 0.2898 (13) 0.6748 (7) 0.006 (4)*
H2C 0.0864 0.3024 0.6452 0.007*
H2D 0.1020 0.2355 0.6908 0.007*
C3B 0.2338 (17) 0.2013 (14) 0.6242 (9) 0.013 (5)*
H3C 0.2175 0.1464 0.6420 0.016*
H3D 0.1910 0.2080 0.5957 0.016*
C4B 0.3270 (17) 0.1938 (16) 0.6050 (9) 0.017 (6)*
H4F 0.3313 0.1422 0.5825 0.021*
H4G 0.3424 0.2469 0.5853 0.021*
C5B 0.3838 (16) 0.2549 (14) 0.6768 (8) 0.011 (5)*
H5F 0.3981 0.3090 0.6578 0.013*
H5G 0.4299 0.2491 0.7038 0.013*
C6B 0.2899 (14) 0.2648 (13) 0.7004 (7) 0.006 (5)*
H6C 0.2746 0.2118 0.7202 0.007*
H6D 0.2886 0.3165 0.7228 0.007*
C1C 0.4646 (16) 0.4033 (15) 0.8114 (8) 0.013 (5)*
C2C 0.5061 (16) 0.3423 (15) 0.8466 (8) 0.013 (5)*
H2E 0.4701 0.2872 0.8472 0.016*
H2F 0.5040 0.3682 0.8806 0.016*
C3C 0.6655 (15) 0.3995 (14) 0.8253 (8) 0.007 (5)*
H3E 0.6405 0.4372 0.7983 0.008*
H3F 0.6691 0.4351 0.8562 0.008*
C4C 0.7572 (18) 0.3700 (16) 0.8114 (9) 0.019 (6)*
H4H 0.7536 0.3361 0.7799 0.022*
H4I 0.7964 0.4220 0.8052 0.022*
C5C 0.7445 (17) 0.2421 (15) 0.8584 (9) 0.015 (5)*
H5H 0.7725 0.2068 0.8855 0.018*
H5I 0.7439 0.2054 0.8278 0.018*
C6C 0.6498 (17) 0.2625 (16) 0.8723 (8) 0.015 (5)*
H6E 0.6495 0.2922 0.9053 0.019*
H6F 0.6150 0.2069 0.8757 0.019*
O1W 0.9409 (11) 0.2541 (10) 0.7904 (5) 0.013 (4)*
H1W 0.9675 0.2096 0.8030 0.016*
H2W 0.8972 0.2730 0.8085 0.016*
O2W 0.4266 (11) 0.6202 (10) 0.8979 (5) 0.014 (4)*
H35 0.4805 0.6109 0.9087 0.017*
H36 0.4465 0.6690 0.8867 0.017*
O3W 0.3234 (12) 0.4705 (11) 0.6534 (7) 0.027 (4)*
H5W 0.3264 0.4896 0.6236 0.033*
H6W 0.3570 0.4951 0.6752 0.033*
O4W 0.6176 (14) 0.2121 (12) 0.7543 (6) 0.029 (5)*
H7W 0.5676 0.1836 0.7536 0.035*
H8W 0.6645 0.1847 0.7436 0.035*
O5W 0.2453 (12) 0.6697 (10) 0.8761 (6) 0.018 (4)*
H9W 0.2960 0.6448 0.8824 0.022*
H10W 0.2317 0.6666 0.8452 0.022*
O6W 0.2054 (12) 0.6585 (11) 0.7745 (6) 0.020 (4)*
H71 0.1806 0.6207 0.7554 0.024*
H72 0.1714 0.7033 0.7707 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
W1 0.0073 (5) 0.0071 (4) 0.0068 (4) −0.0005 (4) −0.0002 (4) −0.0001 (4)
W2 0.0071 (5) 0.0054 (4) 0.0079 (4) 0.0006 (4) −0.0003 (4) −0.0009 (4)
W3 0.0049 (5) 0.0065 (4) 0.0085 (4) 0.0006 (4) 0.0000 (4) −0.0006 (4)
W4 0.0061 (5) 0.0051 (4) 0.0077 (5) −0.0002 (4) 0.0001 (4) 0.0006 (4)
W5 0.0080 (5) 0.0055 (4) 0.0088 (5) −0.0005 (4) −0.0015 (4) 0.0001 (4)
W6 0.0060 (5) 0.0051 (4) 0.0091 (4) 0.0001 (4) 0.0014 (4) −0.0003 (4)
W7 0.0050 (5) 0.0068 (4) 0.0090 (4) 0.0005 (4) 0.0007 (4) 0.0007 (4)
W8 0.0061 (5) 0.0076 (4) 0.0094 (4) −0.0004 (4) −0.0014 (4) 0.0007 (4)
W9 0.0058 (5) 0.0061 (4) 0.0114 (5) 0.0012 (4) 0.0015 (4) −0.0002 (4)
W10 0.0088 (5) 0.0052 (4) 0.0088 (5) −0.0003 (4) −0.0004 (4) 0.0008 (4)
W11 0.0070 (5) 0.0068 (4) 0.0076 (5) 0.0000 (4) 0.0010 (4) 0.0009 (4)
W12 0.0089 (5) 0.0073 (4) 0.0064 (5) 0.0002 (4) −0.0008 (4) 0.0008 (4)
P1 0.0043 (18) 0.0060 (17) 0.0042 (17) −0.0007 (15) −0.0014 (15) 0.0003 (15)

Geometric parameters (Å, °)

W1—O1T 1.706 (14) N1A—C1A 1.30 (3)
W1—O2B 1.900 (16) N1A—N2A 1.37 (3)
W1—O1B 1.909 (14) N2A—N3A 1.28 (2)
W1—O3C 1.926 (15) N3A—N4A 1.33 (2)
W1—O2C 1.930 (14) N4A—C1A 1.37 (3)
W1—O1C 2.396 (14) N4A—H4A 0.8800
W2—O2T 1.685 (17) N5A—C2A 1.44 (3)
W2—O4B 1.878 (14) N5A—C6A 1.48 (3)
W2—O3B 1.905 (17) N5A—C3A 1.48 (3)
W2—O2C 1.920 (14) N5A—H5A 0.8997
W2—O4C 1.919 (15) N1B—C1B 1.31 (3)
W2—O1C 2.412 (14) N1B—N2B 1.36 (3)
W3—O3T 1.676 (15) N2B—N3B 1.33 (3)
W3—O5B 1.886 (14) N3B—N4B 1.34 (3)
W3—O4C 1.900 (14) N4B—C1B 1.34 (3)
W3—O6B 1.902 (15) N4B—H4B 0.8800
W3—O3C 1.925 (13) N5B—C3B 1.47 (3)
W3—O1C 2.471 (15) N5B—C6B 1.50 (3)
W4—O4T 1.703 (15) N5B—C2B 1.51 (3)
W4—O6C 1.893 (15) N5B—H5B 0.9000
W4—O7C 1.899 (14) N1C—C1C 1.30 (3)
W4—O7B 1.912 (16) N1C—N2C 1.34 (3)
W4—O1B 1.917 (14) N2C—N3C 1.35 (3)
W4—O5C 2.405 (14) N3C—N4C 1.31 (3)
W5—O5T 1.702 (16) N4C—C1C 1.36 (3)
W5—O9B 1.892 (14) N4C—H4C 0.8800
W5—O8C 1.911 (15) N5C—C2C 1.47 (3)
W5—O8B 1.925 (15) N5C—C3C 1.52 (3)
W5—O7C 1.938 (13) N5C—C6C 1.54 (3)
W5—O5C 2.444 (15) N5C—H5C 0.8698
W6—O6T 1.619 (16) C1A—C2A 1.55 (3)
W6—O6B 1.898 (15) C2A—H2A 0.9900
W6—O10B 1.910 (15) C2A—H2B 0.9900
W6—O8C 1.919 (14) C3A—C4A 1.54 (3)
W6—O6C 1.928 (14) C3A—H3A 0.9900
W6—O5C 2.430 (15) C3A—H3B 0.9900
W7—O7T 1.710 (14) C4A—H4D 0.9900
W7—O11C 1.884 (15) C4A—H4E 0.9900
W7—O7B 1.902 (15) C5A—C6A 1.55 (3)
W7—O10C 1.908 (15) C5A—H5D 0.9900
W7—O2B 1.920 (15) C5A—H5E 0.9900
W7—O9C 2.428 (14) C6A—H6A 0.9900
W8—O8T 1.704 (15) C6A—H6B 0.9900
W8—O8B 1.879 (15) C1B—C2B 1.49 (3)
W8—O11B 1.900 (15) C2B—H2C 0.9900
W8—O12C 1.950 (16) C2B—H2D 0.9900
W8—O11C 1.949 (14) C3B—C4B 1.46 (3)
W8—O9C 2.448 (15) C3B—H3C 0.9900
W9—O9T 1.691 (14) C3B—H3D 0.9900
W9—O12B 1.878 (15) C4B—H4F 0.9900
W9—O12C 1.913 (17) C4B—H4G 0.9900
W9—O3B 1.918 (17) C5B—C6B 1.52 (3)
W9—O10C 1.928 (15) C5B—H5F 0.9900
W9—O9C 2.423 (15) C5B—H5G 0.9900
W10—O10T 1.727 (14) C6B—H6C 0.9900
W10—O12B 1.920 (15) C6B—H6D 0.9900
W10—O4B 1.918 (14) C1C—C2C 1.46 (3)
W10—O15C 1.929 (15) C2C—H2E 0.9900
W10—O14C 1.944 (14) C2C—H2F 0.9900
W10—O13C 2.427 (13) C3C—C4C 1.46 (3)
W11—O11T 1.687 (14) C3C—H3E 0.9900
W11—O15C 1.895 (15) C3C—H3F 0.9900
W11—O16C 1.897 (16) C4C—H4H 0.9900
W11—O10B 1.901 (15) C4C—H4I 0.9900
W11—O5B 1.914 (14) C5C—C6C 1.47 (3)
W11—O13C 2.437 (14) C5C—H5H 0.9900
W12—O12T 1.668 (14) C5C—H5I 0.9900
W12—O14C 1.892 (13) C6C—H6E 0.9900
W12—O11B 1.904 (15) C6C—H6F 0.9900
W12—O9B 1.913 (14) O1W—H1W 0.8498
W12—O16C 1.941 (16) O1W—H2W 0.8501
W12—O13C 2.451 (14) O2W—H35 0.8500
P1—O9C 1.525 (16) O2W—H36 0.8500
P1—O13C 1.538 (14) O3W—H5W 0.8498
P1—O5C 1.545 (15) O3W—H6W 0.8501
P1—O1C 1.550 (15) O4W—H7W 0.8500
O1—C5A 1.43 (2) O4W—H8W 0.8500
O1—C4A 1.51 (3) O5W—H9W 0.8499
O2—C5B 1.37 (2) O5W—H10W 0.8500
O2—C4B 1.44 (3) O6W—H71 0.8500
O3—C5C 1.40 (3) O6W—H72 0.8499
O3—C4C 1.45 (3)
O1T—W1—O2B 102.6 (7) W2—O4B—W10 151.7 (9)
O1T—W1—O1B 103.2 (6) W3—O5B—W11 151.5 (8)
O2B—W1—O1B 86.0 (6) W6—O6B—W3 152.2 (9)
O1T—W1—O3C 101.8 (7) W7—O7B—W4 153.5 (9)
O2B—W1—O3C 155.6 (6) W8—O8B—W5 153.0 (9)
O1B—W1—O3C 88.7 (6) W5—O9B—W12 152.2 (8)
O1T—W1—O2C 99.9 (6) W11—O10B—W6 151.1 (9)
O2B—W1—O2C 87.7 (6) W8—O11B—W12 152.3 (9)
O1B—W1—O2C 156.8 (6) W9—O12B—W10 152.9 (9)
O3C—W1—O2C 87.9 (6) P1—O1C—W1 126.1 (8)
O1T—W1—O1C 171.0 (6) P1—O1C—W2 125.7 (8)
O2B—W1—O1C 83.0 (6) W1—O1C—W2 90.0 (5)
O1B—W1—O1C 84.0 (5) P1—O1C—W3 124.6 (8)
O3C—W1—O1C 72.7 (5) W1—O1C—W3 89.8 (5)
O2C—W1—O1C 73.1 (5) W2—O1C—W3 89.3 (5)
O2T—W2—O4B 102.4 (7) W2—O2C—W1 124.0 (7)
O2T—W2—O3B 104.8 (8) W1—O3C—W3 126.3 (7)
O4B—W2—O3B 86.7 (7) W3—O4C—W2 127.8 (8)
O2T—W2—O2C 100.5 (7) P1—O5C—W4 125.9 (8)
O4B—W2—O2C 157.1 (6) P1—O5C—W6 125.8 (9)
O3B—W2—O2C 87.3 (7) W4—O5C—W6 89.6 (5)
O2T—W2—O4C 99.5 (8) P1—O5C—W5 125.0 (9)
O4B—W2—O4C 89.6 (6) W4—O5C—W5 89.7 (5)
O3B—W2—O4C 155.6 (6) W6—O5C—W5 89.4 (5)
O2C—W2—O4C 86.8 (6) W4—O6C—W6 126.2 (8)
O2T—W2—O1C 169.3 (7) W4—O7C—W5 126.1 (7)
O4B—W2—O1C 84.5 (6) W5—O8C—W6 127.1 (7)
O3B—W2—O1C 83.6 (6) P1—O9C—W9 127.5 (9)
O2C—W2—O1C 72.9 (5) P1—O9C—W7 125.9 (8)
O4C—W2—O1C 72.0 (6) W9—O9C—W7 88.9 (5)
O3T—W3—O5B 103.7 (7) P1—O9C—W8 124.6 (8)
O3T—W3—O4C 103.1 (7) W9—O9C—W8 89.1 (5)
O5B—W3—O4C 89.1 (6) W7—O9C—W8 88.7 (5)
O3T—W3—O6B 103.4 (7) W7—O10C—W9 124.6 (8)
O5B—W3—O6B 86.1 (6) W7—O11C—W8 125.6 (8)
O4C—W3—O6B 153.4 (7) W9—O12C—W8 124.5 (9)
O3T—W3—O3C 101.5 (7) P1—O13C—W10 125.8 (8)
O5B—W3—O3C 154.8 (6) P1—O13C—W11 125.7 (8)
O4C—W3—O3C 85.8 (6) W10—O13C—W11 89.1 (5)
O6B—W3—O3C 87.5 (6) P1—O13C—W12 126.4 (8)
O3T—W3—O1C 170.4 (6) W10—O13C—W12 88.8 (4)
O5B—W3—O1C 84.0 (6) W11—O13C—W12 89.0 (4)
O4C—W3—O1C 70.9 (6) W12—O14C—W10 125.7 (7)
O6B—W3—O1C 82.6 (6) W11—O15C—W10 126.4 (8)
O3C—W3—O1C 71.0 (5) W11—O16C—W12 126.5 (8)
O4T—W4—O6C 102.0 (7) C5A—O1—C4A 110.7 (17)
O4T—W4—O7C 101.3 (7) C5B—O2—C4B 109.3 (17)
O6C—W4—O7C 88.0 (6) C5C—O3—C4C 109.4 (18)
O4T—W4—O7B 102.4 (7) C1A—N1A—N2A 104.3 (19)
O6C—W4—O7B 155.5 (6) N3A—N2A—N1A 110.9 (17)
O7C—W4—O7B 88.9 (6) N2A—N3A—N4A 108.6 (18)
O4T—W4—O1B 102.5 (7) N3A—N4A—C1A 105.5 (18)
O6C—W4—O1B 89.0 (6) N3A—N4A—H4A 127.3
O7C—W4—O1B 156.1 (6) C1A—N4A—H4A 127.3
O7B—W4—O1B 84.1 (6) C2A—N5A—C6A 111.2 (17)
O4T—W4—O5C 171.9 (6) C2A—N5A—C3A 115.9 (18)
O6C—W4—O5C 72.7 (6) C6A—N5A—C3A 109.6 (18)
O7C—W4—O5C 72.8 (5) C2A—N5A—H5A 114.4
O7B—W4—O5C 83.2 (6) C6A—N5A—H5A 89.9
O1B—W4—O5C 83.7 (5) C3A—N5A—H5A 112.8
O5T—W5—O9B 104.5 (7) C1B—N1B—N2B 108.5 (18)
O5T—W5—O8C 101.7 (7) N3B—N2B—N1B 108.5 (18)
O9B—W5—O8C 88.8 (6) N2B—N3B—N4B 106.0 (18)
O5T—W5—O8B 105.2 (7) N3B—N4B—C1B 110.1 (19)
O9B—W5—O8B 85.7 (6) N3B—N4B—H4B 124.9
O8C—W5—O8B 153.1 (6) C1B—N4B—H4B 124.9
O5T—W5—O7C 101.1 (6) C3B—N5B—C6B 107.6 (17)
O9B—W5—O7C 154.5 (6) C3B—N5B—C2B 113.0 (17)
O8C—W5—O7C 86.7 (6) C6B—N5B—C2B 114.7 (16)
O8B—W5—O7C 87.0 (6) C3B—N5B—H5B 119.4
O5T—W5—O5C 169.7 (6) C6B—N5B—H5B 111.8
O9B—W5—O5C 83.5 (6) C2B—N5B—H5B 89.8
O8C—W5—O5C 71.6 (6) C1C—N1C—N2C 104.1 (19)
O8B—W5—O5C 81.6 (6) N1C—N2C—N3C 111.2 (18)
O7C—W5—O5C 71.3 (5) N4C—N3C—N2C 106.2 (19)
O6T—W6—O6B 104.1 (8) N3C—N4C—C1C 107.4 (19)
O6T—W6—O10B 105.1 (7) N3C—N4C—H4C 126.3
O6B—W6—O10B 86.2 (6) C1C—N4C—H4C 126.3
O6T—W6—O8C 101.1 (7) C2C—N5C—C3C 116.8 (16)
O6B—W6—O8C 154.8 (6) C2C—N5C—C6C 113.6 (17)
O10B—W6—O8C 87.7 (6) C3C—N5C—C6C 105.9 (16)
O6T—W6—O6C 100.3 (7) C2C—N5C—H5C 117.6
O6B—W6—O6C 88.8 (6) C3C—N5C—H5C 80.4
O10B—W6—O6C 154.6 (7) C6C—N5C—H5C 117.6
O8C—W6—O6C 86.3 (6) N1A—C1A—N4A 111 (2)
O6T—W6—O5C 169.2 (7) N1A—C1A—C2A 126 (2)
O6B—W6—O5C 83.2 (6) N4A—C1A—C2A 123 (2)
O10B—W6—O5C 83.1 (6) N5A—C2A—C1A 111.3 (18)
O8C—W6—O5C 71.8 (5) N5A—C2A—H2A 109.4
O6C—W6—O5C 71.5 (6) C1A—C2A—H2A 109.4
O7T—W7—O11C 102.0 (7) N5A—C2A—H2B 109.4
O7T—W7—O7B 103.2 (7) C1A—C2A—H2B 109.4
O11C—W7—O7B 88.6 (7) H2A—C2A—H2B 108.0
O7T—W7—O10C 100.6 (7) N5A—C3A—C4A 112.2 (18)
O11C—W7—O10C 87.6 (6) N5A—C3A—H3A 109.2
O7B—W7—O10C 156.1 (7) C4A—C3A—H3A 109.2
O7T—W7—O2B 102.4 (7) N5A—C3A—H3B 109.2
O11C—W7—O2B 155.6 (6) C4A—C3A—H3B 109.2
O7B—W7—O2B 85.4 (6) H3A—C3A—H3B 107.9
O10C—W7—O2B 88.4 (6) O1—C4A—C3A 106.0 (18)
O7T—W7—O9C 172.4 (6) O1—C4A—H4D 110.5
O11C—W7—O9C 73.5 (6) C3A—C4A—H4D 110.5
O7B—W7—O9C 83.0 (6) O1—C4A—H4E 110.5
O10C—W7—O9C 73.3 (6) C3A—C4A—H4E 110.5
O2B—W7—O9C 82.3 (6) H4D—C4A—H4E 108.7
O8T—W8—O8B 103.7 (7) O1—C5A—C6A 112.7 (16)
O8T—W8—O11B 105.2 (7) O1—C5A—H5D 109.1
O8B—W8—O11B 86.2 (6) C6A—C5A—H5D 109.1
O8T—W8—O12C 101.1 (7) O1—C5A—H5E 109.1
O8B—W8—O12C 155.2 (7) C6A—C5A—H5E 109.1
O11B—W8—O12C 88.4 (6) H5D—C5A—H5E 107.8
O8T—W8—O11C 100.6 (7) N5A—C6A—C5A 108.9 (16)
O8B—W8—O11C 88.2 (6) N5A—C6A—H6A 109.9
O11B—W8—O11C 154.2 (7) C5A—C6A—H6A 109.9
O12C—W8—O11C 86.2 (6) N5A—C6A—H6B 109.9
O8T—W8—O9C 170.3 (6) C5A—C6A—H6B 109.9
O8B—W8—O9C 82.7 (6) H6A—C6A—H6B 108.3
O11B—W8—O9C 82.3 (6) N1B—C1B—N4B 106.8 (19)
O12C—W8—O9C 72.6 (6) N1B—C1B—C2B 128 (2)
O11C—W8—O9C 72.0 (6) N4B—C1B—C2B 125 (2)
O9T—W9—O12B 102.9 (7) C1B—C2B—N5B 110.3 (18)
O9T—W9—O12C 99.6 (7) C1B—C2B—H2C 109.6
O12B—W9—O12C 89.1 (6) N5B—C2B—H2C 109.6
O9T—W9—O3B 103.9 (7) C1B—C2B—H2D 109.6
O12B—W9—O3B 85.9 (7) N5B—C2B—H2D 109.6
O12C—W9—O3B 156.4 (7) H2C—C2B—H2D 108.1
O9T—W9—O10C 101.2 (7) C4B—C3B—N5B 112 (2)
O12B—W9—O10C 155.8 (6) C4B—C3B—H3C 109.1
O12C—W9—O10C 86.7 (7) N5B—C3B—H3C 109.1
O3B—W9—O10C 88.5 (7) C4B—C3B—H3D 109.1
O9T—W9—O9C 171.3 (6) N5B—C3B—H3D 109.1
O12B—W9—O9C 82.9 (6) H3C—C3B—H3D 107.8
O12C—W9—O9C 73.8 (6) O2—C4B—C3B 110.5 (19)
O3B—W9—O9C 82.8 (6) O2—C4B—H4F 109.5
O10C—W9—O9C 73.1 (6) C3B—C4B—H4F 109.5
O10T—W10—O12B 102.9 (6) O2—C4B—H4G 109.5
O10T—W10—O4B 101.9 (6) C3B—C4B—H4G 109.5
O12B—W10—O4B 84.7 (6) H4F—C4B—H4G 108.1
O10T—W10—O15C 101.9 (7) O2—C5B—C6B 113.7 (19)
O12B—W10—O15C 155.2 (6) O2—C5B—H5F 108.8
O4B—W10—O15C 88.9 (6) C6B—C5B—H5F 108.8
O10T—W10—O14C 102.1 (6) O2—C5B—H5G 108.8
O12B—W10—O14C 89.7 (6) C6B—C5B—H5G 108.8
O4B—W10—O14C 156.1 (6) H5F—C5B—H5G 107.7
O15C—W10—O14C 86.5 (6) N5B—C6B—C5B 107.0 (16)
O10T—W10—O13C 171.9 (6) N5B—C6B—H6C 110.3
O12B—W10—O13C 83.4 (6) C5B—C6B—H6C 110.3
O4B—W10—O13C 83.6 (6) N5B—C6B—H6D 110.3
O15C—W10—O13C 72.1 (6) C5B—C6B—H6D 110.3
O14C—W10—O13C 72.6 (5) H6C—C6B—H6D 108.6
O11T—W11—O15C 100.9 (7) N1C—C1C—N4C 111 (2)
O11T—W11—O16C 99.4 (7) N1C—C1C—C2C 125 (2)
O15C—W11—O16C 86.3 (7) N4C—C1C—C2C 124 (2)
O11T—W11—O10B 103.7 (7) C1C—C2C—N5C 112.3 (19)
O15C—W11—O10B 155.4 (7) C1C—C2C—H2E 109.1
O16C—W11—O10B 88.5 (7) N5C—C2C—H2E 109.1
O11T—W11—O5B 103.7 (7) C1C—C2C—H2F 109.1
O15C—W11—O5B 89.3 (6) N5C—C2C—H2F 109.1
O16C—W11—O5B 156.9 (6) H2E—C2C—H2F 107.9
O10B—W11—O5B 86.2 (6) C4C—C3C—N5C 111.2 (18)
O11T—W11—O13C 169.7 (6) C4C—C3C—H3E 109.4
O15C—W11—O13C 72.4 (6) N5C—C3C—H3E 109.4
O16C—W11—O13C 72.7 (6) C4C—C3C—H3F 109.4
O10B—W11—O13C 83.1 (6) N5C—C3C—H3F 109.4
O5B—W11—O13C 84.3 (5) H3E—C3C—H3F 108.0
O12T—W12—O14C 99.1 (7) O3—C4C—C3C 112.5 (19)
O12T—W12—O11B 105.3 (7) O3—C4C—H4H 109.1
O14C—W12—O11B 87.2 (6) C3C—C4C—H4H 109.1
O12T—W12—O9B 106.0 (7) O3—C4C—H4I 109.1
O14C—W12—O9B 154.9 (6) C3C—C4C—H4I 109.1
O11B—W12—O9B 86.3 (6) H4H—C4C—H4I 107.8
O12T—W12—O16C 101.9 (7) O3—C5C—C6C 114 (2)
O14C—W12—O16C 86.8 (6) O3—C5C—H5H 108.7
O11B—W12—O16C 152.8 (6) C6C—C5C—H5H 108.7
O9B—W12—O16C 87.9 (7) O3—C5C—H5I 108.7
O12T—W12—O13C 169.7 (6) C6C—C5C—H5I 108.7
O14C—W12—O13C 72.8 (5) H5H—C5C—H5I 107.6
O11B—W12—O13C 81.1 (6) C5C—C6C—N5C 112.7 (19)
O9B—W12—O13C 82.2 (5) C5C—C6C—H6E 109.1
O16C—W12—O13C 71.7 (6) N5C—C6C—H6E 109.1
O9C—P1—O13C 109.0 (9) C5C—C6C—H6F 109.1
O9C—P1—O5C 111.0 (9) N5C—C6C—H6F 109.1
O13C—P1—O5C 109.3 (8) H6E—C6C—H6F 107.8
O9C—P1—O1C 108.2 (8) H1W—O1W—H2W 112.9
O13C—P1—O1C 109.8 (8) H35—O2W—H36 87.1
O5C—P1—O1C 109.5 (9) H5W—O3W—H6W 117.6
W1—O1B—W4 151.8 (8) H7W—O4W—H8W 115.8
W1—O2B—W7 151.2 (8) H9W—O5W—H10W 111.9
W2—O3B—W9 150.1 (9) H71—O6W—H72 102.9
C1A—N1A—N2A—N3A 0(2) N1B—C1B—C2B—N5B 41 (3)
N1A—N2A—N3A—N4A 1(2) N4B—C1B—C2B—N5B −143 (2)
N2A—N3A—N4A—C1A −1(2) C3B—N5B—C2B—C1B 177.8 (18)
C1B—N1B—N2B—N3B −4(3) C6B—N5B—C2B—C1B 54 (2)
N1B—N2B—N3B—N4B 4(2) C6B—N5B—C3B—C4B −58 (2)
N2B—N3B—N4B—C1B −2(2) C2B—N5B—C3B—C4B 174.7 (18)
C1C—N1C—N2C—N3C −2(3) C5B—O2—C4B—C3B −58 (2)
N1C—N2C—N3C—N4C 0(3) N5B—C3B—C4B—O2 59 (3)
N2C—N3C—N4C—C1C 1(3) C4B—O2—C5B—C6B 61 (2)
N2A—N1A—C1A—N4A −1(2) C3B—N5B—C6B—C5B 55 (2)
N2A—N1A—C1A—C2A −178 (2) C2B—N5B—C6B—C5B −178.3 (17)
N3A—N4A—C1A—N1A 1(3) O2—C5B—C6B—N5B −60 (2)
N3A—N4A—C1A—C2A 178.3 (19) N2C—N1C—C1C—N4C 2(3)
C6A—N5A—C2A—C1A 176.0 (18) N2C—N1C—C1C—C2C 175 (2)
C3A—N5A—C2A—C1A −58 (3) N3C—N4C—C1C—N1C −2(3)
N1A—C1A—C2A—N5A 88 (3) N3C—N4C—C1C—C2C −175 (2)
N4A—C1A—C2A—N5A −89 (3) N1C—C1C—C2C—N5C 66 (3)
C2A—N5A—C3A—C4A 172.9 (19) N4C—C1C—C2C—N5C −122 (2)
C6A—N5A—C3A—C4A −60 (2) C3C—N5C—C2C—C1C 52 (2)
C5A—O1—C4A—C3A −60 (2) C6C—N5C—C2C—C1C 176.0 (18)
N5A—C3A—C4A—O1 61 (2) C2C—N5C—C3C—C4C −178.4 (19)
C4A—O1—C5A—C6A 60 (2) C6C—N5C—C3C—C4C 54 (2)
C2A—N5A—C6A—C5A −176.0 (17) C5C—O3—C4C—C3C 59 (2)
C3A—N5A—C6A—C5A 55 (2) N5C—C3C—C4C—O3 −60 (2)
O1—C5A—C6A—N5A −56 (2) C4C—O3—C5C—C6C −56 (3)
N2B—N1B—C1B—N4B 3(2) O3—C5C—C6C—N5C 55 (3)
N2B—N1B—C1B—C2B 179 (2) C2C—N5C—C6C—C5C 179.4 (19)
N3B—N4B—C1B—N1B 0(3) C3C—N5C—C6C—C5C −51 (2)
N3B—N4B—C1B—C2B −177 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4A—H4A···O2W 0.88 1.90 2.77 (2) 173
N5A—H5A···O5W 0.90 1.88 2.76 (3) 166
N4B—H4B···O1Wi 0.88 1.84 2.71 (2) 168
N5B—H5B···N2Aii 0.90 2.31 2.97 (2) 130
N4C—H4C···O2W 0.88 2.09 2.87 (3) 149
N5C—H5C···O4W 0.87 2.01 2.71 (2) 137
O1W—H1W···O3Ciii 0.85 2.01 2.84 (2) 164
O1W—H2W···O3 0.85 1.92 2.77 (2) 180
O2W—H3W···O11Tiv 0.85 2.43 2.87 (2) 113
O2W—H4W···O9Tv 0.85 2.18 2.96 (2) 153
O2W—H4W···O2vi 0.85 2.54 3.06 (2) 121
O3W—H5W···N1Aii 0.85 2.41 3.03 (3) 130
O3W—H6W···N2C 0.85 2.14 2.79 (3) 134
O4W—H7W···O7T 0.85 2.11 2.96 (2) 180
O4W—H8W···O6Wvii 0.85 2.00 2.82 (2) 161
O5W—H9W···O2W 0.85 1.99 2.82 (2) 164
O5W—H10W···O6W 0.85 1.93 2.78 (2) 178
O6W—H11W···N2B 0.85 2.11 2.85 (2) 146
O6W—H12W···O2Tv 0.85 2.25 2.91 (2) 134
O6W—H12W···O1Wvi 0.85 2.44 3.11 (2) 137

Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, −y+1, z−1/2; (iii) x+1, y, z; (iv) x+1/2, −y+1/2, −z+2; (v) x, y+1, z; (vi) −x+1, y+1/2, −z+3/2; (vii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2435).

References

  1. Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.
  2. Alizadeh, M. H., Eshtiagh-Hosseini, H., Mirzaei, M., Salimi, A. R. & Razavi, H. (2008b). Struct. Chem. 19, 155–164.
  3. Alizadeh, M. H., Razavi, H. & Mirzaei, M. (2008a). Mater. Res. Bull. 43, 546–555.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, R. G. (2003). J. Mol. Struct. 656, 5–15.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Nikpour, M., Eshtiagh-Hosseini, H., Mirzaei, M., Aghaei Kaju, A., Chen, Y.-G. & Zarinabadi, S. (2010). Chin. Chem. Lett. 21, 501–505.
  8. Nikpour, M., Mirzaei, M., Chen, Y.-G., Aghaei Kaju, A. & Bakavoli, M. (2009). Inorg. Chem. Commun. 12, 879–882.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003734/wm2435sup1.cif

e-67-0m301-sup1.cif (38.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003734/wm2435Isup2.hkl

e-67-0m301-Isup2.hkl (602.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES