Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o717. doi: 10.1107/S1600536811006246

n-Tridecyl­amine chloride monohydrate

Lijun Zhang a, Youying Di a,*, Wenyan Dan a
PMCID: PMC3052102  PMID: 21522459

Abstract

In the title compound, C13H30N+·Cl·H2O, the C13H27 alkyl chain is in an all-trans conformation. In the crystal, inter­molecular N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds connect the components into layers parallel to (010), with the alkyl chains oriented approximately perpendicular to these layers.

Related literature

For applications of long-chain n-alkyl­ammonium halides, see: Aratono et al. (1998); Tornblom et al. (2000); Ringsdorf et al. (1988). For details of phase transitions in n-alkyl­ammonium chlorides, see: Terreros et al. (2000). For related structures, see: Rademeyer et al. (2009); Lundén (1974); Clark & Hudgens (1950).graphic file with name e-67-0o717-scheme1.jpg

Experimental

Crystal data

  • C13H30N+·Cl·H2O

  • M r = 253.85

  • Monoclinic, Inline graphic

  • a = 4.7420 (5) Å

  • b = 45.250 (3) Å

  • c = 7.8191 (9) Å

  • β = 106.332 (2)°

  • V = 1610.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.34 × 0.33 × 0.03 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.928, T max = 0.993

  • 8230 measured reflections

  • 2845 independent reflections

  • 1379 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.124

  • S = 1.03

  • 2845 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006246/lh5197sup1.cif

e-67-0o717-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006246/lh5197Isup2.hkl

e-67-0o717-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.44 3.303 (3) 162
N1—H1B⋯Cl1i 0.89 2.36 3.236 (2) 170
N1—H1C⋯O1ii 0.89 2.05 2.901 (4) 159
O1—H1H⋯Cl1 0.85 2.45 3.290 (3) 170
O1—H1I⋯Cl1iii 0.85 2.39 3.228 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge the National Natural Science Foundation of China (20973089) for financial support.

supplementary crystallographic information

Comment

Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). It has been shown that phase transitions occur in n-alkylammonium chlorides (Terreros et al., 2000). As a part of our studies on novel potential phase transition materials with thermochemical properties, we report herein the crystal structure of the title compound (Fig. 1).

Atoms C2–C13 are essentially co-planar with a maximum deviation of 0.048 (3)Å for atom C2. The alkyl chain in related compounds is typically in the extended conformation e.g. in the isostructural n-tridecylamine bromide monohydrate compound (Rademeyer et al., 2009), n–dodecylammonium bromide (Lundén, 1974) and n–tridecylamine chloride (Clark & Hudgens, 1950). Although the methylene chain has the extended all–trans conformation, it is slightly bent in the vicinity of the ammonium group possibly to accommodate the hydrogen–bonding interactions. Only the C1–C2–C3–C4 torsion angle deviates significantly from 180 °, with a value of 169.84 (3)°. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1 and Fig.2).

Experimental

n–Tridecylamine chloride monohydrate was prepared by the addition of hydrochloric acid to an ethanolic solution of n–tridecylamine. The mixture was heated and stirred under reflux for 6 h. Single crystals suitable for X–ray diffraction were prepared by evaporation of the resulting solution at room temperature. Analysis, calculated for C13H32ClNO (Mr =253.85): C 61.51, H 12.71, N 5.52, Cl 13.96%; found: C 61.50, H 12.72, N 5.51, Cl 13.95%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with methylene C—H = 0.97 Å, methyl C—H = 0.96 Å, N—H = 0.89 Å, O-H = 0.85 Å and refined as riding on their parent atoms. TheUiso(H) values were set at 1.2Ueq(Cmethylene, O) at 1.5Ueq(Cmethyl,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C13H30N+·Cl·H2O F(000) = 568
Mr = 253.85 Dx = 1.047 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 817 reflections
a = 4.7420 (5) Å θ = 2.7–20.8°
b = 45.250 (3) Å µ = 0.22 mm1
c = 7.8191 (9) Å T = 298 K
β = 106.332 (2)° Acicular, colourless
V = 1610.1 (3) Å3 0.34 × 0.33 × 0.03 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer 2845 independent reflections
Radiation source: fine-focus sealed tube 1379 reflections with I > 2σ(I)
graphite Rint = 0.077
Detector resolution: 10 pixels mm-1 θmax = 25.0°, θmin = 2.7°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −53→46
Tmin = 0.928, Tmax = 0.993 l = −7→9
8230 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3
2845 reflections (Δ/σ)max = 0.001
147 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.77004 (19) 0.727389 (19) 0.54882 (12) 0.0578 (3)
N1 0.2908 (5) 0.72396 (5) 0.1504 (4) 0.0486 (8)
H1A 0.4378 0.7281 0.2466 0.073*
H1B 0.1648 0.7390 0.1270 0.073*
H1C 0.3618 0.7210 0.0578 0.073*
O1 0.3848 (5) 0.70538 (5) 0.8156 (3) 0.0690 (8)
H1H 0.5034 0.7102 0.7566 0.083*
H1I 0.2125 0.7103 0.7554 0.083*
C1 0.1369 (7) 0.69683 (6) 0.1834 (4) 0.0462 (9)
H1D −0.0396 0.6941 0.0856 0.055*
H1E 0.0779 0.6994 0.2915 0.055*
C2 0.3263 (7) 0.66944 (6) 0.2017 (4) 0.0445 (9)
H2A 0.5028 0.6722 0.2995 0.053*
H2B 0.3852 0.6668 0.0935 0.053*
C3 0.1677 (7) 0.64186 (6) 0.2355 (4) 0.0467 (9)
H3A −0.0251 0.6412 0.1498 0.056*
H3B 0.1397 0.6431 0.3534 0.056*
C4 0.3305 (7) 0.61334 (6) 0.2221 (4) 0.0444 (9)
H4A 0.5222 0.6140 0.3090 0.053*
H4B 0.3616 0.6123 0.1049 0.053*
C5 0.1730 (7) 0.58533 (6) 0.2526 (4) 0.0471 (9)
H5A 0.1495 0.5860 0.3718 0.056*
H5B −0.0219 0.5851 0.1691 0.056*
C6 0.3292 (7) 0.55675 (6) 0.2317 (4) 0.0440 (9)
H6A 0.3543 0.5562 0.1128 0.053*
H6B 0.5234 0.5569 0.3159 0.053*
C7 0.1722 (7) 0.52882 (6) 0.2603 (4) 0.0450 (9)
H7A −0.0231 0.5288 0.1773 0.054*
H7B 0.1496 0.5292 0.3798 0.054*
C8 0.3260 (6) 0.50019 (6) 0.2369 (4) 0.0440 (9)
H8A 0.3473 0.4997 0.1171 0.053*
H8B 0.5218 0.5003 0.3193 0.053*
C9 0.1705 (7) 0.47222 (6) 0.2666 (4) 0.0448 (9)
H9A −0.0251 0.4721 0.1839 0.054*
H9B 0.1485 0.4727 0.3862 0.054*
C10 0.3245 (7) 0.44364 (6) 0.2439 (4) 0.0438 (9)
H10A 0.3458 0.4431 0.1242 0.053*
H10B 0.5204 0.4438 0.3263 0.053*
C11 0.1702 (7) 0.41561 (6) 0.2745 (4) 0.0448 (9)
H11A 0.1479 0.4162 0.3940 0.054*
H11B −0.0253 0.4154 0.1917 0.054*
C12 0.3236 (7) 0.38729 (6) 0.2530 (5) 0.0522 (10)
H12A 0.5194 0.3876 0.3355 0.063*
H12B 0.3452 0.3867 0.1333 0.063*
C13 0.1688 (8) 0.35920 (7) 0.2844 (5) 0.0703 (12)
H13A 0.1532 0.3591 0.4042 0.105*
H13B 0.2798 0.3423 0.2668 0.105*
H13C −0.0242 0.3584 0.2021 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0520 (5) 0.0590 (6) 0.0612 (6) −0.0052 (5) 0.0137 (4) −0.0036 (5)
N1 0.0485 (16) 0.0358 (17) 0.061 (2) 0.0041 (15) 0.0145 (14) 0.0002 (14)
O1 0.0659 (17) 0.0752 (17) 0.0683 (19) 0.0036 (15) 0.0230 (13) 0.0100 (14)
C1 0.044 (2) 0.034 (2) 0.062 (3) 0.0005 (18) 0.0178 (17) 0.0039 (16)
C2 0.046 (2) 0.035 (2) 0.053 (2) −0.0022 (18) 0.0152 (17) −0.0021 (16)
C3 0.052 (2) 0.039 (2) 0.053 (2) −0.0043 (19) 0.0209 (18) 0.0011 (17)
C4 0.050 (2) 0.036 (2) 0.050 (2) −0.0033 (18) 0.0191 (18) 0.0020 (16)
C5 0.053 (2) 0.041 (2) 0.049 (2) −0.005 (2) 0.0189 (18) 0.0004 (17)
C6 0.048 (2) 0.039 (2) 0.048 (2) −0.0014 (19) 0.0177 (17) 0.0012 (16)
C7 0.048 (2) 0.039 (2) 0.050 (2) −0.0024 (19) 0.0178 (17) 0.0029 (17)
C8 0.047 (2) 0.040 (2) 0.047 (2) −0.003 (2) 0.0170 (17) 0.0042 (16)
C9 0.051 (2) 0.037 (2) 0.049 (2) −0.0035 (19) 0.0190 (18) −0.0009 (16)
C10 0.048 (2) 0.040 (2) 0.047 (2) −0.0014 (19) 0.0194 (17) −0.0011 (16)
C11 0.050 (2) 0.039 (2) 0.048 (2) −0.0033 (19) 0.0167 (17) 0.0026 (16)
C12 0.062 (2) 0.041 (2) 0.054 (3) 0.004 (2) 0.0163 (19) 0.0000 (17)
C13 0.094 (3) 0.043 (2) 0.076 (3) −0.005 (2) 0.026 (2) 0.001 (2)

Geometric parameters (Å, °)

N1—C1 1.487 (3) C6—H6B 0.9700
N1—H1A 0.8900 C7—C8 1.523 (4)
N1—H1B 0.8900 C7—H7A 0.9700
N1—H1C 0.8900 C7—H7B 0.9700
O1—H1H 0.8499 C8—C9 1.515 (4)
O1—H1I 0.8499 C8—H8A 0.9700
C1—C2 1.513 (4) C8—H8B 0.9700
C1—H1D 0.9700 C9—C10 1.520 (4)
C1—H1E 0.9700 C9—H9A 0.9700
C2—C3 1.518 (4) C9—H9B 0.9700
C2—H2A 0.9700 C10—C11 1.517 (4)
C2—H2B 0.9700 C10—H10A 0.9700
C3—C4 1.523 (4) C10—H10B 0.9700
C3—H3A 0.9700 C11—C12 1.506 (4)
C3—H3B 0.9700 C11—H11A 0.9700
C4—C5 1.524 (4) C11—H11B 0.9700
C4—H4A 0.9700 C12—C13 1.522 (4)
C4—H4B 0.9700 C12—H12A 0.9700
C5—C6 1.522 (4) C12—H12B 0.9700
C5—H5A 0.9700 C13—H13A 0.9600
C5—H5B 0.9700 C13—H13B 0.9600
C6—C7 1.515 (4) C13—H13C 0.9600
C6—H6A 0.9700
C1—N1—H1A 109.5 C6—C7—C8 114.8 (3)
C1—N1—H1B 109.5 C6—C7—H7A 108.6
H1A—N1—H1B 109.5 C8—C7—H7A 108.6
C1—N1—H1C 109.5 C6—C7—H7B 108.6
H1A—N1—H1C 109.5 C8—C7—H7B 108.6
H1B—N1—H1C 109.5 H7A—C7—H7B 107.5
H1H—O1—H1I 108.1 C9—C8—C7 114.9 (2)
N1—C1—C2 112.7 (3) C9—C8—H8A 108.5
N1—C1—H1D 109.1 C7—C8—H8A 108.5
C2—C1—H1D 109.1 C9—C8—H8B 108.5
N1—C1—H1E 109.1 C7—C8—H8B 108.5
C2—C1—H1E 109.1 H8A—C8—H8B 107.5
H1D—C1—H1E 107.8 C8—C9—C10 115.0 (3)
C1—C2—C3 112.3 (3) C8—C9—H9A 108.5
C1—C2—H2A 109.1 C10—C9—H9A 108.5
C3—C2—H2A 109.1 C8—C9—H9B 108.5
C1—C2—H2B 109.1 C10—C9—H9B 108.5
C3—C2—H2B 109.1 H9A—C9—H9B 107.5
H2A—C2—H2B 107.9 C11—C10—C9 115.1 (3)
C2—C3—C4 113.5 (3) C11—C10—H10A 108.5
C2—C3—H3A 108.9 C9—C10—H10A 108.5
C4—C3—H3A 108.9 C11—C10—H10B 108.5
C2—C3—H3B 108.9 C9—C10—H10B 108.5
C4—C3—H3B 108.9 H10A—C10—H10B 107.5
H3A—C3—H3B 107.7 C12—C11—C10 115.1 (3)
C3—C4—C5 114.5 (3) C12—C11—H11A 108.5
C3—C4—H4A 108.6 C10—C11—H11A 108.5
C5—C4—H4A 108.6 C12—C11—H11B 108.5
C3—C4—H4B 108.6 C10—C11—H11B 108.5
C5—C4—H4B 108.6 H11A—C11—H11B 107.5
H4A—C4—H4B 107.6 C11—C12—C13 115.0 (3)
C6—C5—C4 114.5 (3) C11—C12—H12A 108.5
C6—C5—H5A 108.6 C13—C12—H12A 108.5
C4—C5—H5A 108.6 C11—C12—H12B 108.5
C6—C5—H5B 108.6 C13—C12—H12B 108.5
C4—C5—H5B 108.6 H12A—C12—H12B 107.5
H5A—C5—H5B 107.6 C12—C13—H13A 109.5
C7—C6—C5 114.8 (3) C12—C13—H13B 109.5
C7—C6—H6A 108.6 H13A—C13—H13B 109.5
C5—C6—H6A 108.6 C12—C13—H13C 109.5
C7—C6—H6B 108.6 H13A—C13—H13C 109.5
C5—C6—H6B 108.6 H13B—C13—H13C 109.5
H6A—C6—H6B 107.6
N1—C1—C2—C3 180.0 (3) C6—C7—C8—C9 179.6 (3)
C1—C2—C3—C4 169.9 (3) C7—C8—C9—C10 −179.8 (3)
C2—C3—C4—C5 −179.1 (3) C8—C9—C10—C11 179.7 (3)
C3—C4—C5—C6 177.6 (3) C9—C10—C11—C12 −179.7 (3)
C4—C5—C6—C7 −179.5 (3) C10—C11—C12—C13 179.8 (3)
C5—C6—C7—C8 179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1 0.89 2.44 3.303 (3) 162
N1—H1B···Cl1i 0.89 2.36 3.236 (2) 170
N1—H1C···O1ii 0.89 2.05 2.901 (4) 159
O1—H1H···Cl1 0.85 2.45 3.290 (3) 170
O1—H1I···Cl1iii 0.85 2.39 3.228 (2) 170

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5197).

References

  1. Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.
  2. Clark, G. L. & Hudgens, C. R. (1950). Science, 112, 309. [DOI] [PubMed]
  3. Lundén, B.-M. (1974). Acta Cryst. B30, 1756–1760.
  4. Rademeyer, M., Kruger, G. J. & Billing, D. G. (2009). CrystEngComm, 11, 1926–1933.
  5. Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Terreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.
  10. Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006246/lh5197sup1.cif

e-67-0o717-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006246/lh5197Isup2.hkl

e-67-0o717-Isup2.hkl (139.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES