Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 16;67(Pt 3):o633. doi: 10.1107/S1600536811004922

1,3-Dimethyl-4-phenyl­sulfanyl-1H-pyrazol-5-ol

Tara Shahani a, Hoong-Kun Fun a,*,, R Venkat Ragavan b, V Vijayakumar b, S Sarveswari b
PMCID: PMC3052103  PMID: 21522387

Abstract

In the title compound, C11H12N2OS, the pyrazole ring makes a dihedral angle of 85.40 (8)° with the phenyl ring. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into a two-dimensional network parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a ,b ,c ). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0o633-scheme1.jpg

Experimental

Crystal data

  • C11H12N2OS

  • M r = 220.30

  • Orthorhombic, Inline graphic

  • a = 10.9479 (2) Å

  • b = 11.3470 (3) Å

  • c = 17.7392 (4) Å

  • V = 2203.67 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.33 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.917, T max = 0.971

  • 12209 measured reflections

  • 3027 independent reflections

  • 2406 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.104

  • S = 1.04

  • 3027 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004922/is2676sup1.cif

e-67-0o633-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004922/is2676Isup2.hkl

e-67-0o633-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.94 (2) 1.71 (2) 2.6446 (16) 173 (2)
C3—H3A⋯O1ii 0.93 2.53 3.2549 (19) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strain had led to the development of new antimicrobial compounds. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling, and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010). The structure of the title compound is presented here.

In the title compound, (Fig. 1), the 1H-pyrazol ring (C7–C9/N1/N2) [maximum deviation of 0.00117 (14) Å] makes a dihedral angle of 85.40 (8)° with the phenyl ring (C1–C6). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c).

In the crystal packing (Fig. 2), pairs of intermolecular N1—H1N1···O1 and C3—H3A···O1 hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the bc plane.

Experimental

The compound has been synthesized using the method available in the literature (Ragavan et al., 2009) and recrystallized using the ethanol-chloroform 1:1 mixture (yield 60%, m.p. 444 K).

Refinement

The H atoms bound to C atoms were positioned geometrically (C—H = 0.93–0.96 Å) with Uiso(H) =1.2 or 1.5Ueq(C). The H atoms attached to the N atom was located from the difference map and refined freely, [N—H = 0.94 (2) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of the title compound viewed approximately along the b axis. Intermolecular interactions are shown in dashed lines. Hydrogen bond not involved in intermolecular interactions are omitted for clarity.

Crystal data

C11H12N2OS F(000) = 928
Mr = 220.30 Dx = 1.328 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2873 reflections
a = 10.9479 (2) Å θ = 2.8–29.1°
b = 11.3470 (3) Å µ = 0.27 mm1
c = 17.7392 (4) Å T = 100 K
V = 2203.67 (9) Å3 Block, colourless
Z = 8 0.33 × 0.13 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3027 independent reflections
Radiation source: fine-focus sealed tube 2406 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→15
Tmin = 0.917, Tmax = 0.971 k = −15→15
12209 measured reflections l = −16→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8061P] where P = (Fo2 + 2Fc2)/3
3027 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.09449 (3) 0.31932 (3) 0.09298 (2) 0.01802 (11)
O1 0.32686 (10) 0.34450 (8) −0.02532 (6) 0.0207 (2)
N1 0.20240 (12) 0.61926 (10) 0.00845 (8) 0.0202 (3)
N2 0.28173 (12) 0.54374 (10) −0.02791 (7) 0.0192 (3)
C1 0.28747 (15) 0.36136 (13) 0.19278 (9) 0.0225 (3)
H1A 0.3057 0.4285 0.1649 0.027*
C2 0.35663 (15) 0.33304 (13) 0.25590 (9) 0.0254 (3)
H2A 0.4211 0.3816 0.2700 0.031*
C3 0.33066 (15) 0.23327 (14) 0.29808 (9) 0.0236 (3)
H3A 0.3766 0.2154 0.3407 0.028*
C4 0.23531 (15) 0.16043 (13) 0.27606 (9) 0.0243 (3)
H4A 0.2180 0.0929 0.3037 0.029*
C5 0.16551 (14) 0.18758 (13) 0.21304 (9) 0.0212 (3)
H5A 0.1019 0.1382 0.1986 0.025*
C6 0.19092 (13) 0.28904 (12) 0.17148 (8) 0.0173 (3)
C7 0.16428 (13) 0.43840 (11) 0.04922 (8) 0.0166 (3)
C8 0.26321 (13) 0.43076 (11) −0.00304 (8) 0.0164 (3)
C9 0.13144 (14) 0.55679 (12) 0.05474 (8) 0.0178 (3)
C10 0.38173 (15) 0.58669 (13) −0.07387 (10) 0.0239 (3)
H10A 0.4171 0.5222 −0.1013 0.036*
H10B 0.4427 0.6217 −0.0420 0.036*
H10C 0.3517 0.6446 −0.1087 0.036*
C11 0.03683 (15) 0.61354 (14) 0.10271 (9) 0.0248 (3)
H11A 0.0198 0.6912 0.0839 0.037*
H11B 0.0661 0.6189 0.1536 0.037*
H11C −0.0365 0.5672 0.1016 0.037*
H1N1 0.1983 (19) 0.700 (2) −0.0036 (13) 0.047 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01876 (19) 0.01847 (18) 0.0168 (2) −0.00372 (13) −0.00109 (13) 0.00267 (13)
O1 0.0267 (6) 0.0139 (4) 0.0215 (6) 0.0008 (4) 0.0046 (4) 0.0000 (4)
N1 0.0264 (7) 0.0129 (5) 0.0212 (7) 0.0017 (5) −0.0005 (5) −0.0006 (5)
N2 0.0240 (6) 0.0131 (5) 0.0206 (7) −0.0002 (5) 0.0034 (5) 0.0007 (5)
C1 0.0273 (8) 0.0198 (7) 0.0204 (8) −0.0046 (6) −0.0027 (6) 0.0034 (6)
C2 0.0285 (8) 0.0257 (7) 0.0221 (9) −0.0037 (6) −0.0065 (7) −0.0002 (6)
C3 0.0255 (8) 0.0298 (8) 0.0155 (8) 0.0053 (6) −0.0012 (6) 0.0006 (6)
C4 0.0247 (8) 0.0260 (7) 0.0222 (8) 0.0015 (6) 0.0032 (6) 0.0082 (6)
C5 0.0197 (7) 0.0213 (7) 0.0225 (8) −0.0015 (6) 0.0013 (6) 0.0043 (6)
C6 0.0196 (7) 0.0188 (6) 0.0134 (7) 0.0007 (5) 0.0019 (5) 0.0003 (5)
C7 0.0193 (7) 0.0148 (6) 0.0156 (7) −0.0014 (5) −0.0003 (5) 0.0005 (5)
C8 0.0224 (7) 0.0127 (6) 0.0141 (7) −0.0017 (5) −0.0018 (6) 0.0001 (5)
C9 0.0207 (7) 0.0179 (6) 0.0149 (7) 0.0009 (5) −0.0035 (6) −0.0002 (5)
C10 0.0283 (8) 0.0184 (7) 0.0250 (8) −0.0043 (6) 0.0050 (7) 0.0032 (6)
C11 0.0248 (8) 0.0250 (7) 0.0245 (9) 0.0071 (6) −0.0008 (6) −0.0021 (6)

Geometric parameters (Å, °)

S1—C7 1.7356 (14) C3—H3A 0.9300
S1—C6 1.7809 (15) C4—C5 1.389 (2)
O1—C8 1.2648 (17) C4—H4A 0.9300
N1—C9 1.3343 (19) C5—C6 1.395 (2)
N1—N2 1.3801 (17) C5—H5A 0.9300
N1—H1N1 0.94 (2) C7—C9 1.3942 (19)
N2—C8 1.3708 (17) C7—C8 1.428 (2)
N2—C10 1.4494 (19) C9—C11 1.487 (2)
C1—C2 1.389 (2) C10—H10A 0.9600
C1—C6 1.391 (2) C10—H10B 0.9600
C1—H1A 0.9300 C10—H10C 0.9600
C2—C3 1.387 (2) C11—H11A 0.9600
C2—H2A 0.9300 C11—H11B 0.9600
C3—C4 1.388 (2) C11—H11C 0.9600
C7—S1—C6 103.83 (7) C1—C6—S1 123.32 (11)
C9—N1—N2 108.92 (11) C5—C6—S1 117.02 (11)
C9—N1—H1N1 129.0 (13) C9—C7—C8 107.44 (12)
N2—N1—H1N1 121.9 (13) C9—C7—S1 127.24 (12)
C8—N2—N1 109.70 (12) C8—C7—S1 125.24 (10)
C8—N2—C10 127.39 (13) O1—C8—N2 122.79 (13)
N1—N2—C10 121.97 (11) O1—C8—C7 131.88 (13)
C2—C1—C6 119.79 (14) N2—C8—C7 105.33 (12)
C2—C1—H1A 120.1 N1—C9—C7 108.57 (13)
C6—C1—H1A 120.1 N1—C9—C11 121.85 (13)
C3—C2—C1 120.80 (15) C7—C9—C11 129.57 (14)
C3—C2—H2A 119.6 N2—C10—H10A 109.5
C1—C2—H2A 119.6 N2—C10—H10B 109.5
C2—C3—C4 119.26 (15) H10A—C10—H10B 109.5
C2—C3—H3A 120.4 N2—C10—H10C 109.5
C4—C3—H3A 120.4 H10A—C10—H10C 109.5
C3—C4—C5 120.56 (14) H10B—C10—H10C 109.5
C3—C4—H4A 119.7 C9—C11—H11A 109.5
C5—C4—H4A 119.7 C9—C11—H11B 109.5
C4—C5—C6 119.92 (14) H11A—C11—H11B 109.5
C4—C5—H5A 120.0 C9—C11—H11C 109.5
C6—C5—H5A 120.0 H11A—C11—H11C 109.5
C1—C6—C5 119.66 (14) H11B—C11—H11C 109.5
C9—N1—N2—C8 −1.48 (17) N1—N2—C8—O1 −177.46 (13)
C9—N1—N2—C10 −171.15 (14) C10—N2—C8—O1 −8.5 (2)
C6—C1—C2—C3 0.0 (2) N1—N2—C8—C7 2.10 (16)
C1—C2—C3—C4 0.9 (2) C10—N2—C8—C7 171.06 (14)
C2—C3—C4—C5 −0.8 (2) C9—C7—C8—O1 177.55 (16)
C3—C4—C5—C6 −0.2 (2) S1—C7—C8—O1 −5.6 (2)
C2—C1—C6—C5 −1.0 (2) C9—C7—C8—N2 −1.96 (16)
C2—C1—C6—S1 178.43 (12) S1—C7—C8—N2 174.91 (11)
C4—C5—C6—C1 1.1 (2) N2—N1—C9—C7 0.18 (17)
C4—C5—C6—S1 −178.38 (12) N2—N1—C9—C11 179.36 (13)
C7—S1—C6—C1 7.87 (15) C8—C7—C9—N1 1.12 (17)
C7—S1—C6—C5 −172.70 (12) S1—C7—C9—N1 −175.67 (11)
C6—S1—C7—C9 −100.38 (14) C8—C7—C9—C11 −177.97 (15)
C6—S1—C7—C8 83.36 (14) S1—C7—C9—C11 5.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.94 (2) 1.71 (2) 2.6446 (16) 173 (2)
C3—H3A···O1ii 0.93 2.53 3.2549 (19) 135

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2676).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.
  5. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180. [DOI] [PubMed]
  6. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250. [DOI] [PMC free article] [PubMed]
  7. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143. [DOI] [PMC free article] [PubMed]
  8. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358. [DOI] [PMC free article] [PubMed]
  9. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811004922/is2676sup1.cif

e-67-0o633-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811004922/is2676Isup2.hkl

e-67-0o633-Isup2.hkl (148.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES