Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 2;67(Pt 3):o544–o545. doi: 10.1107/S1600536811003564

Dimethyl 8-acetyl-2-methyl-1,2-dihydro­quinoline-2,4-dicarboxyl­ate

Zeynep Keleşoğlu a, Zeynep Gültekin b, Orhan Büyükgüngör a,*
PMCID: PMC3052105  PMID: 21522312

Abstract

In the title compound, C16H17NO5, the six-membered N-containing ring has a half-boat form; the spiro C atom deviates by 0.34 (2) Å from the plane (r.m.s. deviation = 0.051 Å) defined by the N and four aromatic C atoms. Intra­molecular N—H⋯O hydrogen bonding generates an S(6) ring motif and the dihedral angle between the mean plane though the S(6) ring and that through the five-atom half-boat plane is 3.39 (2)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into zigzag chains along [001] due to c-glide symmetry, and C—H⋯π inter­actions extend along [010].

Related literature

For the preparation of 1,2-dihydro­quinoline, see: Dauphinee & Forrest (1978); Katritzky et al. (1996); Elmore et al. (2001); Lu & Malinakova (2004); Wang et al. (2009); Rezgui et al. (1999). For related structures, see: Yadav et al. (2007); Kamakshi & Reddy (2007); Kim et al. (2001); Sundèn et al. (2007); Waldmann et al. (2008). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-67-0o544-scheme1.jpg

Experimental

Crystal data

  • C16H17NO5

  • M r = 303.31

  • Monoclinic, Inline graphic

  • a = 8.0222 (3) Å

  • b = 18.2466 (9) Å

  • c = 10.3478 (4) Å

  • β = 101.042 (3)°

  • V = 1486.65 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.74 × 0.43 × 0.23 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.823, T max = 0.968

  • 14613 measured reflections

  • 3068 independent reflections

  • 2221 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.169

  • S = 1.07

  • 14613 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003564/si2329sup1.cif

e-67-0o544-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003564/si2329Isup2.hkl

e-67-0o544-Isup2.hkl (147.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 1.95 (2) 2.650 (2) 138 (2)
C10—H10⋯O3i 0.93 2.59 3.517 (3) 174
C14—H14CCg1i 0.96 2.89 3.692 (3) 142
C8—H8BCg1ii 0.96 2.85 3.501 (3) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The title product was synthesized at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Dihydroquinoline moiety is found in a wide variety of natural products and they have attracted a lot of attention from synthetic organic chemists (Kamakshi & Reddy, 2007). 1,2-Dihydroquinolines have received substantial attention due to their potential biological activities arising from their antioxidative properties as well as their usefulness as precursors of some other biologically active compounds (Kim et al., 2001). 1,2-Dihydroquinoline derivatives are known to exhibit a wide spectrum of biological activities such as antimalarial, antibacterial and anti-inflammatory behavior (Yadav et al., 2007).

Asymmetric synthesis of 1,2-dihydroquinolin have been attracted in recent years (Wang et al., 2009; Rezgui et al., 1999). Sundèn and co-worker has reported asymmetric synthesis of 1,2-dihydroquinolines using Domino reactions between 2-aminobenzaldehyde and α,β-unsaturated aldehydes to give pharmaceutically valuable 1,2-dihydroquinolines in high enantioselectivity (Sundèn et al., 2007). 1,2-dihydroquinolines was used for several applications, such as synthesis of quinolines: (Dauphinee & Forrest, 1978; Lu & Malinakova, 2004), 1,2,3,4- tetrahydroquinolines: (Katritzky et al., 1996) and natural products: (Elmore et al., 2001).

The molecule of the title compound contains dihydroquinoline, two methoxycarbonyl (O=C—O—CH3) and acetyl group (O=C—CH3). The two –CO2Me groups are antisymmetric with respect to atom C10 (Fig. 1).

The six-membered N containing ring of the quinoline system displays a half-boat conformation with the puckering parameters of QT=0.261 (2) Å, Φ=146.7 (6)° and Θ=112.7 (4) ° (Cremer & Pople, 1975) and the spiro carbon atom deviates 0.34 (2) Å from the plane (r.m.s. deviation 0.051 Å) defined by the N1 and C1, C6, C9, C10 atoms. The intramolecular N—H..O hydrogen bond generate S(6) ring motif (Bernstein et al., 1995) (Fig. 1, Table 1). The dihedral angle between the S(6) ring mean plane and the half-boat plane of five atoms is 3.39 (2)°.

The crystal packing is stabilized by C10—H10···O3i intermolecular hydrogen bonds linking the molecules into chains in a zigzag mode along [0 0 1] due to c-glide symmetry, and there are also two C—H···π interactions C14—H14c···Cg1i and C8—H8b···Cg1ii [(i): x,1/2 - y,-1/2 + z; (ii):1 - x,1 - y,1 - z] extending along the b axis (Fig. 2., Table 1.).

Experimental

The title compound was synthesized after a method described by Waldmann et al., (2008). 2'-aminoacetophenone (100 mg, 1 eq) was dissolved in acetonitrile (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol %, 0.05 eq) was added to the mixture. This mixture were stirred at room temperature for 4 days until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc: Cyclohexane 2:98) gave 27% yield as a yellow solid. Recrystallized over pentan and ethyl acetate gave yellow crystalline solid. Rf 0.5 (2:1 Cyclohexane/EtOAc); m.p: (374–375 K).

Refinement

The H atom of the NH group was located in a difference Fourier map and refined with the constraint N—H = 0.86 (2) Å. All other H atoms were positioned with idealized geometry using a riding model, [C—H = 0.93–0.96Å and Uiso = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.

Fig. 2.

Fig. 2.

A packing diagram for (I), showing the C—H···O hydrogen bonds and C—H···π interactions. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code; (i): x,1/2 - y,-1/2 + z; (ii): 1 - x,1 - y,1 - z]. (Cg1 is the centroid of the C1—C6 ring).

Crystal data

C16H17NO5 F(000) = 640
Mr = 303.31 Dx = 1.355 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 14613 reflections
a = 8.0222 (3) Å θ = 2.0–28.0°
b = 18.2466 (9) Å µ = 0.10 mm1
c = 10.3478 (4) Å T = 296 K
β = 101.042 (3)° Prism, brown
V = 1486.65 (11) Å3 0.74 × 0.43 × 0.23 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 3068 independent reflections
Radiation source: fine-focus sealed tube 2221 reflections with I > 2σ(I)
graphite Rint = 0.055
rotation method scans θmax = 26.5°, θmin = 2.2°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −10→10
Tmin = 0.823, Tmax = 0.968 k = −22→22
14613 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.2827P] where P = (Fo2 + 2Fc2)/3
14613 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.43 e Å3
1 restraint Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4104 (2) 0.37012 (12) 0.3615 (2) 0.0427 (5)
C2 0.5203 (3) 0.39441 (12) 0.4782 (2) 0.0458 (5)
C3 0.4559 (3) 0.39964 (14) 0.5939 (2) 0.0537 (6)
H3 0.5267 0.4161 0.6702 0.064*
C4 0.2911 (3) 0.38117 (16) 0.5987 (2) 0.0582 (6)
H4 0.2512 0.3853 0.6771 0.070*
C5 0.1846 (3) 0.35628 (15) 0.4853 (2) 0.0529 (6)
H5 0.0732 0.3436 0.4887 0.064*
C6 0.2403 (2) 0.34998 (13) 0.3675 (2) 0.0436 (5)
C7 0.6980 (3) 0.41517 (14) 0.4779 (2) 0.0507 (6)
C8 0.8065 (3) 0.44802 (16) 0.5984 (3) 0.0618 (7)
H8A 0.8402 0.4104 0.6630 0.074*
H8B 0.7431 0.4850 0.6341 0.074*
H8C 0.9058 0.4697 0.5751 0.074*
C9 0.1341 (2) 0.32351 (13) 0.2442 (2) 0.0454 (5)
C10 0.1863 (3) 0.32944 (14) 0.1302 (2) 0.0491 (5)
H10 0.1169 0.3113 0.0547 0.059*
C11 0.3514 (3) 0.36395 (13) 0.1178 (2) 0.0462 (5)
C12 −0.0356 (3) 0.28883 (15) 0.2385 (2) 0.0521 (6)
C13 −0.2120 (3) 0.21400 (18) 0.3394 (3) 0.0732 (8)
H13A −0.2844 0.2489 0.3708 0.088*
H13B −0.1979 0.1719 0.3960 0.088*
H13C −0.2625 0.1993 0.2515 0.088*
C14 0.4362 (3) 0.32316 (16) 0.0183 (2) 0.0572 (6)
H14A 0.5410 0.3470 0.0119 0.069*
H14B 0.3620 0.3234 −0.0663 0.069*
H14C 0.4588 0.2735 0.0469 0.069*
C15 0.3165 (3) 0.44329 (14) 0.0688 (2) 0.0496 (6)
C16 0.1661 (4) 0.51590 (18) −0.1039 (3) 0.0788 (9)
H16A 0.1176 0.5463 −0.0450 0.095*
H16B 0.0861 0.5102 −0.1851 0.095*
H16C 0.2678 0.5384 −0.1211 0.095*
N1 0.4639 (2) 0.36371 (12) 0.24524 (18) 0.0508 (5)
O1 0.7624 (2) 0.40668 (13) 0.38037 (19) 0.0708 (6)
O2 −0.1528 (2) 0.29932 (15) 0.1485 (2) 0.0906 (8)
O3 −0.0469 (2) 0.24724 (11) 0.33918 (18) 0.0657 (5)
O4 0.3796 (3) 0.49676 (12) 0.1243 (2) 0.0794 (6)
O5 0.2062 (2) 0.44499 (10) −0.04465 (18) 0.0641 (5)
H1 0.566 (2) 0.3785 (15) 0.248 (3) 0.065 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0390 (10) 0.0448 (12) 0.0419 (11) 0.0046 (9) 0.0017 (8) 0.0007 (9)
C2 0.0438 (11) 0.0449 (12) 0.0450 (12) 0.0039 (9) −0.0014 (9) 0.0003 (10)
C3 0.0524 (12) 0.0619 (16) 0.0425 (12) −0.0001 (11) −0.0015 (10) −0.0073 (11)
C4 0.0540 (13) 0.0755 (18) 0.0454 (13) 0.0000 (12) 0.0099 (10) −0.0068 (12)
C5 0.0463 (11) 0.0635 (15) 0.0486 (13) 0.0016 (10) 0.0081 (10) −0.0037 (11)
C6 0.0397 (10) 0.0455 (12) 0.0431 (12) 0.0025 (8) 0.0018 (8) −0.0009 (9)
C7 0.0441 (11) 0.0536 (14) 0.0507 (14) 0.0021 (10) −0.0005 (10) −0.0018 (11)
C8 0.0503 (12) 0.0684 (17) 0.0611 (16) −0.0086 (11) −0.0031 (11) −0.0069 (13)
C9 0.0392 (10) 0.0497 (13) 0.0446 (12) 0.0008 (9) 0.0013 (9) 0.0021 (10)
C10 0.0422 (10) 0.0575 (14) 0.0440 (12) −0.0040 (10) −0.0007 (9) −0.0034 (10)
C11 0.0407 (10) 0.0574 (14) 0.0391 (11) −0.0018 (9) 0.0041 (8) −0.0030 (10)
C12 0.0461 (12) 0.0657 (16) 0.0424 (12) −0.0063 (10) 0.0027 (10) −0.0011 (11)
C13 0.0639 (15) 0.086 (2) 0.0689 (18) −0.0292 (15) 0.0113 (13) 0.0083 (16)
C14 0.0509 (12) 0.0676 (17) 0.0534 (15) 0.0019 (11) 0.0108 (10) −0.0106 (12)
C15 0.0463 (11) 0.0599 (15) 0.0428 (12) −0.0056 (10) 0.0095 (9) −0.0046 (11)
C16 0.0801 (19) 0.077 (2) 0.074 (2) 0.0029 (16) 0.0012 (15) 0.0221 (17)
N1 0.0375 (9) 0.0726 (14) 0.0405 (10) −0.0042 (9) 0.0032 (8) −0.0029 (9)
O1 0.0446 (9) 0.1052 (16) 0.0605 (11) −0.0100 (9) 0.0051 (8) −0.0129 (11)
O2 0.0528 (10) 0.149 (2) 0.0624 (12) −0.0263 (11) −0.0078 (9) 0.0270 (13)
O3 0.0573 (9) 0.0731 (13) 0.0615 (11) −0.0174 (8) −0.0020 (8) 0.0178 (10)
O4 0.1003 (15) 0.0624 (12) 0.0673 (13) −0.0137 (11) −0.0043 (11) −0.0087 (10)
O5 0.0648 (10) 0.0631 (12) 0.0566 (11) −0.0039 (8) −0.0079 (8) 0.0080 (9)

Geometric parameters (Å, °)

C1—N1 1.358 (3) C10—H10 0.9300
C1—C2 1.423 (3) C11—N1 1.448 (3)
C1—C6 1.426 (3) C11—C14 1.531 (3)
C2—C3 1.395 (3) C11—C15 1.542 (3)
C2—C7 1.475 (3) C12—O2 1.205 (3)
C3—C4 1.374 (3) C12—O3 1.306 (3)
C3—H3 0.9300 C13—O3 1.457 (3)
C4—C5 1.389 (3) C13—H13A 0.9600
C4—H4 0.9300 C13—H13B 0.9600
C5—C6 1.381 (3) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—C9 1.474 (3) C14—H14B 0.9600
C7—O1 1.229 (3) C14—H14C 0.9600
C7—C8 1.502 (3) C15—O4 1.195 (3)
C8—H8A 0.9600 C15—O5 1.328 (3)
C8—H8B 0.9600 C16—O5 1.442 (3)
C8—H8C 0.9600 C16—H16A 0.9600
C9—C10 1.330 (3) C16—H16B 0.9600
C9—C12 1.492 (3) C16—H16C 0.9600
C10—C11 1.494 (3) N1—H1 0.858 (17)
N1—C1—C2 121.97 (18) N1—C11—C14 109.33 (18)
N1—C1—C6 118.91 (19) C10—C11—C14 111.6 (2)
C2—C1—C6 119.11 (19) N1—C11—C15 110.15 (19)
C3—C2—C1 118.56 (19) C10—C11—C15 108.43 (18)
C3—C2—C7 120.1 (2) C14—C11—C15 108.15 (19)
C1—C2—C7 121.3 (2) O2—C12—O3 123.1 (2)
C4—C3—C2 122.1 (2) O2—C12—C9 122.3 (2)
C4—C3—H3 118.9 O3—C12—C9 114.68 (19)
C2—C3—H3 118.9 O3—C13—H13A 109.5
C3—C4—C5 119.3 (2) O3—C13—H13B 109.5
C3—C4—H4 120.3 H13A—C13—H13B 109.5
C5—C4—H4 120.3 O3—C13—H13C 109.5
C6—C5—C4 121.5 (2) H13A—C13—H13C 109.5
C6—C5—H5 119.3 H13B—C13—H13C 109.5
C4—C5—H5 119.3 C11—C14—H14A 109.5
C5—C6—C1 119.4 (2) C11—C14—H14B 109.5
C5—C6—C9 124.05 (19) H14A—C14—H14B 109.5
C1—C6—C9 116.55 (19) C11—C14—H14C 109.5
O1—C7—C2 121.9 (2) H14A—C14—H14C 109.5
O1—C7—C8 117.6 (2) H14B—C14—H14C 109.5
C2—C7—C8 120.5 (2) O4—C15—O5 123.7 (2)
C7—C8—H8A 109.5 O4—C15—C11 125.1 (2)
C7—C8—H8B 109.5 O5—C15—C11 111.1 (2)
H8A—C8—H8B 109.5 O5—C16—H16A 109.5
C7—C8—H8C 109.5 O5—C16—H16B 109.5
H8A—C8—H8C 109.5 H16A—C16—H16B 109.5
H8B—C8—H8C 109.5 O5—C16—H16C 109.5
C10—C9—C6 120.85 (19) H16A—C16—H16C 109.5
C10—C9—C12 116.1 (2) H16B—C16—H16C 109.5
C6—C9—C12 123.04 (19) C1—N1—C11 124.00 (17)
C9—C10—C11 123.1 (2) C1—N1—H1 114.2 (19)
C9—C10—H10 118.5 C11—N1—H1 116.7 (19)
C11—C10—H10 118.5 C12—O3—C13 116.44 (19)
N1—C11—C10 109.17 (18) C15—O5—C16 117.0 (2)
N1—C1—C2—C3 179.9 (2) C12—C9—C10—C11 178.9 (2)
C6—C1—C2—C3 −1.8 (3) C9—C10—C11—N1 20.8 (3)
N1—C1—C2—C7 1.1 (3) C9—C10—C11—C14 141.8 (2)
C6—C1—C2—C7 179.3 (2) C9—C10—C11—C15 −99.2 (3)
C1—C2—C3—C4 0.9 (4) C10—C9—C12—O2 −37.6 (4)
C7—C2—C3—C4 179.8 (2) C6—C9—C12—O2 142.5 (3)
C2—C3—C4—C5 0.2 (4) C10—C9—C12—O3 143.2 (2)
C3—C4—C5—C6 −0.3 (4) C6—C9—C12—O3 −36.7 (3)
C4—C5—C6—C1 −0.6 (4) N1—C11—C15—O4 3.5 (3)
C4—C5—C6—C9 179.6 (2) C10—C11—C15—O4 122.9 (3)
N1—C1—C6—C5 180.0 (2) C14—C11—C15—O4 −115.9 (3)
C2—C1—C6—C5 1.7 (3) N1—C11—C15—O5 −176.59 (17)
N1—C1—C6—C9 −0.2 (3) C10—C11—C15—O5 −57.2 (2)
C2—C1—C6—C9 −178.5 (2) C14—C11—C15—O5 64.0 (2)
C3—C2—C7—O1 175.0 (3) C2—C1—N1—C11 −158.1 (2)
C1—C2—C7—O1 −6.1 (4) C6—C1—N1—C11 23.6 (3)
C3—C2—C7—C8 −5.2 (4) C10—C11—N1—C1 −32.7 (3)
C1—C2—C7—C8 173.6 (2) C14—C11—N1—C1 −155.0 (2)
C5—C6—C9—C10 169.4 (2) C15—C11—N1—C1 86.3 (3)
C1—C6—C9—C10 −10.4 (3) O2—C12—O3—C13 −0.9 (4)
C5—C6—C9—C12 −10.7 (4) C9—C12—O3—C13 178.3 (2)
C1—C6—C9—C12 169.5 (2) O4—C15—O5—C16 1.8 (4)
C6—C9—C10—C11 −1.3 (4) C11—C15—O5—C16 −178.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 (2) 1.95 (2) 2.650 (2) 138 (2)
C10—H10···O3i 0.93 2.59 3.517 (3) 174
C14—H14C···Cg1i 0.96 2.89 3.692 (3) 142
C8—H8B···Cg1ii 0.96 2.85 3.501 (3) 126

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2329).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.
  4. Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Kamakshi, R. & Reddy, B. S. R. (2007). Catal. Commun. 8, 825–828.
  8. Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070.
  9. Kim, J. N., Kim, H. S., Gong, J. H. & Chung, Y. M. (2001). Tetrahedron Lett. 42, 8341–8344.
  10. Lu, G. & Malinakova, H. C. (2004). J. Org. Chem. 69, 4701–4715. [DOI] [PubMed]
  11. Rezgui, F., Mangeney, P. & Alexakis, A. (1999). Tetrahedron Lett. 40, 6241–6244.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stoe & Cie (2002). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  14. Sundèn, H., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L. & Cordova, A. (2007). Adv. Synth. Catal. 349, 827–832.
  15. Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162. [DOI] [PubMed]
  16. Wang, Y. F., Zhang, W., Luo, S. P., Li, B. L., Xia, A. B., Zhong, A. G. & Xu, D. Q. (2009). Chem. Asian. J. 4, 1834–1838. [DOI] [PubMed]
  17. Yadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A, 271, 161–163.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003564/si2329sup1.cif

e-67-0o544-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003564/si2329Isup2.hkl

e-67-0o544-Isup2.hkl (147.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES