Abstract
In the title compound, C16H17NO5, the six-membered N-containing ring has a half-boat form; the spiro C atom deviates by 0.34 (2) Å from the plane (r.m.s. deviation = 0.051 Å) defined by the N and four aromatic C atoms. Intramolecular N—H⋯O hydrogen bonding generates an S(6) ring motif and the dihedral angle between the mean plane though the S(6) ring and that through the five-atom half-boat plane is 3.39 (2)°. In the crystal, weak intermolecular C—H⋯O hydrogen bonds link molecules into zigzag chains along [001] due to c-glide symmetry, and C—H⋯π interactions extend along [010].
Related literature
For the preparation of 1,2-dihydroquinoline, see: Dauphinee & Forrest (1978 ▶); Katritzky et al. (1996 ▶); Elmore et al. (2001 ▶); Lu & Malinakova (2004 ▶); Wang et al. (2009 ▶); Rezgui et al. (1999 ▶). For related structures, see: Yadav et al. (2007 ▶); Kamakshi & Reddy (2007 ▶); Kim et al. (2001 ▶); Sundèn et al. (2007 ▶); Waldmann et al. (2008 ▶). For ring puckering analysis, see: Cremer & Pople (1975 ▶). For graph-set theory, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C16H17NO5
M r = 303.31
Monoclinic,
a = 8.0222 (3) Å
b = 18.2466 (9) Å
c = 10.3478 (4) Å
β = 101.042 (3)°
V = 1486.65 (11) Å3
Z = 4
Mo Kα radiation
μ = 0.10 mm−1
T = 296 K
0.74 × 0.43 × 0.23 mm
Data collection
Stoe IPDS 2 diffractometer
Absorption correction: integration (X-RED32; Stoe & Cie, 2002 ▶) T min = 0.823, T max = 0.968
14613 measured reflections
3068 independent reflections
2221 reflections with I > 2σ(I)
R int = 0.055
Refinement
R[F 2 > 2σ(F 2)] = 0.059
wR(F 2) = 0.169
S = 1.07
14613 reflections
205 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.43 e Å−3
Δρmin = −0.36 e Å−3
Data collection: X-AREA (Stoe & Cie, 2002 ▶); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003564/si2329sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003564/si2329Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C1–C6 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯O1 | 0.86 (2) | 1.95 (2) | 2.650 (2) | 138 (2) |
| C10—H10⋯O3i | 0.93 | 2.59 | 3.517 (3) | 174 |
| C14—H14C⋯Cg1i | 0.96 | 2.89 | 3.692 (3) | 142 |
| C8—H8B⋯Cg1ii | 0.96 | 2.85 | 3.501 (3) | 126 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The title product was synthesized at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
supplementary crystallographic information
Comment
Dihydroquinoline moiety is found in a wide variety of natural products and they have attracted a lot of attention from synthetic organic chemists (Kamakshi & Reddy, 2007). 1,2-Dihydroquinolines have received substantial attention due to their potential biological activities arising from their antioxidative properties as well as their usefulness as precursors of some other biologically active compounds (Kim et al., 2001). 1,2-Dihydroquinoline derivatives are known to exhibit a wide spectrum of biological activities such as antimalarial, antibacterial and anti-inflammatory behavior (Yadav et al., 2007).
Asymmetric synthesis of 1,2-dihydroquinolin have been attracted in recent years (Wang et al., 2009; Rezgui et al., 1999). Sundèn and co-worker has reported asymmetric synthesis of 1,2-dihydroquinolines using Domino reactions between 2-aminobenzaldehyde and α,β-unsaturated aldehydes to give pharmaceutically valuable 1,2-dihydroquinolines in high enantioselectivity (Sundèn et al., 2007). 1,2-dihydroquinolines was used for several applications, such as synthesis of quinolines: (Dauphinee & Forrest, 1978; Lu & Malinakova, 2004), 1,2,3,4- tetrahydroquinolines: (Katritzky et al., 1996) and natural products: (Elmore et al., 2001).
The molecule of the title compound contains dihydroquinoline, two methoxycarbonyl (O=C—O—CH3) and acetyl group (O=C—CH3). The two –CO2Me groups are antisymmetric with respect to atom C10 (Fig. 1).
The six-membered N containing ring of the quinoline system displays a half-boat conformation with the puckering parameters of QT=0.261 (2) Å, Φ=146.7 (6)° and Θ=112.7 (4) ° (Cremer & Pople, 1975) and the spiro carbon atom deviates 0.34 (2) Å from the plane (r.m.s. deviation 0.051 Å) defined by the N1 and C1, C6, C9, C10 atoms. The intramolecular N—H..O hydrogen bond generate S(6) ring motif (Bernstein et al., 1995) (Fig. 1, Table 1). The dihedral angle between the S(6) ring mean plane and the half-boat plane of five atoms is 3.39 (2)°.
The crystal packing is stabilized by C10—H10···O3i intermolecular hydrogen bonds linking the molecules into chains in a zigzag mode along [0 0 1] due to c-glide symmetry, and there are also two C—H···π interactions C14—H14c···Cg1i and C8—H8b···Cg1ii [(i): x,1/2 - y,-1/2 + z; (ii):1 - x,1 - y,1 - z] extending along the b axis (Fig. 2., Table 1.).
Experimental
The title compound was synthesized after a method described by Waldmann et al., (2008). 2'-aminoacetophenone (100 mg, 1 eq) was dissolved in acetonitrile (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol %, 0.05 eq) was added to the mixture. This mixture were stirred at room temperature for 4 days until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc: Cyclohexane 2:98) gave 27% yield as a yellow solid. Recrystallized over pentan and ethyl acetate gave yellow crystalline solid. Rf 0.5 (2:1 Cyclohexane/EtOAc); m.p: (374–375 K).
Refinement
The H atom of the NH group was located in a difference Fourier map and refined with the constraint N—H = 0.86 (2) Å. All other H atoms were positioned with idealized geometry using a riding model, [C—H = 0.93–0.96Å and Uiso = 1.2Ueq(C)].
Figures
Fig. 1.
An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
Fig. 2.
A packing diagram for (I), showing the C—H···O hydrogen bonds and C—H···π interactions. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code; (i): x,1/2 - y,-1/2 + z; (ii): 1 - x,1 - y,1 - z]. (Cg1 is the centroid of the C1—C6 ring).
Crystal data
| C16H17NO5 | F(000) = 640 |
| Mr = 303.31 | Dx = 1.355 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 14613 reflections |
| a = 8.0222 (3) Å | θ = 2.0–28.0° |
| b = 18.2466 (9) Å | µ = 0.10 mm−1 |
| c = 10.3478 (4) Å | T = 296 K |
| β = 101.042 (3)° | Prism, brown |
| V = 1486.65 (11) Å3 | 0.74 × 0.43 × 0.23 mm |
| Z = 4 |
Data collection
| Stoe IPDS 2 diffractometer | 3068 independent reflections |
| Radiation source: fine-focus sealed tube | 2221 reflections with I > 2σ(I) |
| graphite | Rint = 0.055 |
| rotation method scans | θmax = 26.5°, θmin = 2.2° |
| Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −10→10 |
| Tmin = 0.823, Tmax = 0.968 | k = −22→22 |
| 14613 measured reflections | l = −12→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.169 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0846P)2 + 0.2827P] where P = (Fo2 + 2Fc2)/3 |
| 14613 reflections | (Δ/σ)max < 0.001 |
| 205 parameters | Δρmax = 0.43 e Å−3 |
| 1 restraint | Δρmin = −0.36 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.4104 (2) | 0.37012 (12) | 0.3615 (2) | 0.0427 (5) | |
| C2 | 0.5203 (3) | 0.39441 (12) | 0.4782 (2) | 0.0458 (5) | |
| C3 | 0.4559 (3) | 0.39964 (14) | 0.5939 (2) | 0.0537 (6) | |
| H3 | 0.5267 | 0.4161 | 0.6702 | 0.064* | |
| C4 | 0.2911 (3) | 0.38117 (16) | 0.5987 (2) | 0.0582 (6) | |
| H4 | 0.2512 | 0.3853 | 0.6771 | 0.070* | |
| C5 | 0.1846 (3) | 0.35628 (15) | 0.4853 (2) | 0.0529 (6) | |
| H5 | 0.0732 | 0.3436 | 0.4887 | 0.064* | |
| C6 | 0.2403 (2) | 0.34998 (13) | 0.3675 (2) | 0.0436 (5) | |
| C7 | 0.6980 (3) | 0.41517 (14) | 0.4779 (2) | 0.0507 (6) | |
| C8 | 0.8065 (3) | 0.44802 (16) | 0.5984 (3) | 0.0618 (7) | |
| H8A | 0.8402 | 0.4104 | 0.6630 | 0.074* | |
| H8B | 0.7431 | 0.4850 | 0.6341 | 0.074* | |
| H8C | 0.9058 | 0.4697 | 0.5751 | 0.074* | |
| C9 | 0.1341 (2) | 0.32351 (13) | 0.2442 (2) | 0.0454 (5) | |
| C10 | 0.1863 (3) | 0.32944 (14) | 0.1302 (2) | 0.0491 (5) | |
| H10 | 0.1169 | 0.3113 | 0.0547 | 0.059* | |
| C11 | 0.3514 (3) | 0.36395 (13) | 0.1178 (2) | 0.0462 (5) | |
| C12 | −0.0356 (3) | 0.28883 (15) | 0.2385 (2) | 0.0521 (6) | |
| C13 | −0.2120 (3) | 0.21400 (18) | 0.3394 (3) | 0.0732 (8) | |
| H13A | −0.2844 | 0.2489 | 0.3708 | 0.088* | |
| H13B | −0.1979 | 0.1719 | 0.3960 | 0.088* | |
| H13C | −0.2625 | 0.1993 | 0.2515 | 0.088* | |
| C14 | 0.4362 (3) | 0.32316 (16) | 0.0183 (2) | 0.0572 (6) | |
| H14A | 0.5410 | 0.3470 | 0.0119 | 0.069* | |
| H14B | 0.3620 | 0.3234 | −0.0663 | 0.069* | |
| H14C | 0.4588 | 0.2735 | 0.0469 | 0.069* | |
| C15 | 0.3165 (3) | 0.44329 (14) | 0.0688 (2) | 0.0496 (6) | |
| C16 | 0.1661 (4) | 0.51590 (18) | −0.1039 (3) | 0.0788 (9) | |
| H16A | 0.1176 | 0.5463 | −0.0450 | 0.095* | |
| H16B | 0.0861 | 0.5102 | −0.1851 | 0.095* | |
| H16C | 0.2678 | 0.5384 | −0.1211 | 0.095* | |
| N1 | 0.4639 (2) | 0.36371 (12) | 0.24524 (18) | 0.0508 (5) | |
| O1 | 0.7624 (2) | 0.40668 (13) | 0.38037 (19) | 0.0708 (6) | |
| O2 | −0.1528 (2) | 0.29932 (15) | 0.1485 (2) | 0.0906 (8) | |
| O3 | −0.0469 (2) | 0.24724 (11) | 0.33918 (18) | 0.0657 (5) | |
| O4 | 0.3796 (3) | 0.49676 (12) | 0.1243 (2) | 0.0794 (6) | |
| O5 | 0.2062 (2) | 0.44499 (10) | −0.04465 (18) | 0.0641 (5) | |
| H1 | 0.566 (2) | 0.3785 (15) | 0.248 (3) | 0.065 (8)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0390 (10) | 0.0448 (12) | 0.0419 (11) | 0.0046 (9) | 0.0017 (8) | 0.0007 (9) |
| C2 | 0.0438 (11) | 0.0449 (12) | 0.0450 (12) | 0.0039 (9) | −0.0014 (9) | 0.0003 (10) |
| C3 | 0.0524 (12) | 0.0619 (16) | 0.0425 (12) | −0.0001 (11) | −0.0015 (10) | −0.0073 (11) |
| C4 | 0.0540 (13) | 0.0755 (18) | 0.0454 (13) | 0.0000 (12) | 0.0099 (10) | −0.0068 (12) |
| C5 | 0.0463 (11) | 0.0635 (15) | 0.0486 (13) | 0.0016 (10) | 0.0081 (10) | −0.0037 (11) |
| C6 | 0.0397 (10) | 0.0455 (12) | 0.0431 (12) | 0.0025 (8) | 0.0018 (8) | −0.0009 (9) |
| C7 | 0.0441 (11) | 0.0536 (14) | 0.0507 (14) | 0.0021 (10) | −0.0005 (10) | −0.0018 (11) |
| C8 | 0.0503 (12) | 0.0684 (17) | 0.0611 (16) | −0.0086 (11) | −0.0031 (11) | −0.0069 (13) |
| C9 | 0.0392 (10) | 0.0497 (13) | 0.0446 (12) | 0.0008 (9) | 0.0013 (9) | 0.0021 (10) |
| C10 | 0.0422 (10) | 0.0575 (14) | 0.0440 (12) | −0.0040 (10) | −0.0007 (9) | −0.0034 (10) |
| C11 | 0.0407 (10) | 0.0574 (14) | 0.0391 (11) | −0.0018 (9) | 0.0041 (8) | −0.0030 (10) |
| C12 | 0.0461 (12) | 0.0657 (16) | 0.0424 (12) | −0.0063 (10) | 0.0027 (10) | −0.0011 (11) |
| C13 | 0.0639 (15) | 0.086 (2) | 0.0689 (18) | −0.0292 (15) | 0.0113 (13) | 0.0083 (16) |
| C14 | 0.0509 (12) | 0.0676 (17) | 0.0534 (15) | 0.0019 (11) | 0.0108 (10) | −0.0106 (12) |
| C15 | 0.0463 (11) | 0.0599 (15) | 0.0428 (12) | −0.0056 (10) | 0.0095 (9) | −0.0046 (11) |
| C16 | 0.0801 (19) | 0.077 (2) | 0.074 (2) | 0.0029 (16) | 0.0012 (15) | 0.0221 (17) |
| N1 | 0.0375 (9) | 0.0726 (14) | 0.0405 (10) | −0.0042 (9) | 0.0032 (8) | −0.0029 (9) |
| O1 | 0.0446 (9) | 0.1052 (16) | 0.0605 (11) | −0.0100 (9) | 0.0051 (8) | −0.0129 (11) |
| O2 | 0.0528 (10) | 0.149 (2) | 0.0624 (12) | −0.0263 (11) | −0.0078 (9) | 0.0270 (13) |
| O3 | 0.0573 (9) | 0.0731 (13) | 0.0615 (11) | −0.0174 (8) | −0.0020 (8) | 0.0178 (10) |
| O4 | 0.1003 (15) | 0.0624 (12) | 0.0673 (13) | −0.0137 (11) | −0.0043 (11) | −0.0087 (10) |
| O5 | 0.0648 (10) | 0.0631 (12) | 0.0566 (11) | −0.0039 (8) | −0.0079 (8) | 0.0080 (9) |
Geometric parameters (Å, °)
| C1—N1 | 1.358 (3) | C10—H10 | 0.9300 |
| C1—C2 | 1.423 (3) | C11—N1 | 1.448 (3) |
| C1—C6 | 1.426 (3) | C11—C14 | 1.531 (3) |
| C2—C3 | 1.395 (3) | C11—C15 | 1.542 (3) |
| C2—C7 | 1.475 (3) | C12—O2 | 1.205 (3) |
| C3—C4 | 1.374 (3) | C12—O3 | 1.306 (3) |
| C3—H3 | 0.9300 | C13—O3 | 1.457 (3) |
| C4—C5 | 1.389 (3) | C13—H13A | 0.9600 |
| C4—H4 | 0.9300 | C13—H13B | 0.9600 |
| C5—C6 | 1.381 (3) | C13—H13C | 0.9600 |
| C5—H5 | 0.9300 | C14—H14A | 0.9600 |
| C6—C9 | 1.474 (3) | C14—H14B | 0.9600 |
| C7—O1 | 1.229 (3) | C14—H14C | 0.9600 |
| C7—C8 | 1.502 (3) | C15—O4 | 1.195 (3) |
| C8—H8A | 0.9600 | C15—O5 | 1.328 (3) |
| C8—H8B | 0.9600 | C16—O5 | 1.442 (3) |
| C8—H8C | 0.9600 | C16—H16A | 0.9600 |
| C9—C10 | 1.330 (3) | C16—H16B | 0.9600 |
| C9—C12 | 1.492 (3) | C16—H16C | 0.9600 |
| C10—C11 | 1.494 (3) | N1—H1 | 0.858 (17) |
| N1—C1—C2 | 121.97 (18) | N1—C11—C14 | 109.33 (18) |
| N1—C1—C6 | 118.91 (19) | C10—C11—C14 | 111.6 (2) |
| C2—C1—C6 | 119.11 (19) | N1—C11—C15 | 110.15 (19) |
| C3—C2—C1 | 118.56 (19) | C10—C11—C15 | 108.43 (18) |
| C3—C2—C7 | 120.1 (2) | C14—C11—C15 | 108.15 (19) |
| C1—C2—C7 | 121.3 (2) | O2—C12—O3 | 123.1 (2) |
| C4—C3—C2 | 122.1 (2) | O2—C12—C9 | 122.3 (2) |
| C4—C3—H3 | 118.9 | O3—C12—C9 | 114.68 (19) |
| C2—C3—H3 | 118.9 | O3—C13—H13A | 109.5 |
| C3—C4—C5 | 119.3 (2) | O3—C13—H13B | 109.5 |
| C3—C4—H4 | 120.3 | H13A—C13—H13B | 109.5 |
| C5—C4—H4 | 120.3 | O3—C13—H13C | 109.5 |
| C6—C5—C4 | 121.5 (2) | H13A—C13—H13C | 109.5 |
| C6—C5—H5 | 119.3 | H13B—C13—H13C | 109.5 |
| C4—C5—H5 | 119.3 | C11—C14—H14A | 109.5 |
| C5—C6—C1 | 119.4 (2) | C11—C14—H14B | 109.5 |
| C5—C6—C9 | 124.05 (19) | H14A—C14—H14B | 109.5 |
| C1—C6—C9 | 116.55 (19) | C11—C14—H14C | 109.5 |
| O1—C7—C2 | 121.9 (2) | H14A—C14—H14C | 109.5 |
| O1—C7—C8 | 117.6 (2) | H14B—C14—H14C | 109.5 |
| C2—C7—C8 | 120.5 (2) | O4—C15—O5 | 123.7 (2) |
| C7—C8—H8A | 109.5 | O4—C15—C11 | 125.1 (2) |
| C7—C8—H8B | 109.5 | O5—C15—C11 | 111.1 (2) |
| H8A—C8—H8B | 109.5 | O5—C16—H16A | 109.5 |
| C7—C8—H8C | 109.5 | O5—C16—H16B | 109.5 |
| H8A—C8—H8C | 109.5 | H16A—C16—H16B | 109.5 |
| H8B—C8—H8C | 109.5 | O5—C16—H16C | 109.5 |
| C10—C9—C6 | 120.85 (19) | H16A—C16—H16C | 109.5 |
| C10—C9—C12 | 116.1 (2) | H16B—C16—H16C | 109.5 |
| C6—C9—C12 | 123.04 (19) | C1—N1—C11 | 124.00 (17) |
| C9—C10—C11 | 123.1 (2) | C1—N1—H1 | 114.2 (19) |
| C9—C10—H10 | 118.5 | C11—N1—H1 | 116.7 (19) |
| C11—C10—H10 | 118.5 | C12—O3—C13 | 116.44 (19) |
| N1—C11—C10 | 109.17 (18) | C15—O5—C16 | 117.0 (2) |
| N1—C1—C2—C3 | 179.9 (2) | C12—C9—C10—C11 | 178.9 (2) |
| C6—C1—C2—C3 | −1.8 (3) | C9—C10—C11—N1 | 20.8 (3) |
| N1—C1—C2—C7 | 1.1 (3) | C9—C10—C11—C14 | 141.8 (2) |
| C6—C1—C2—C7 | 179.3 (2) | C9—C10—C11—C15 | −99.2 (3) |
| C1—C2—C3—C4 | 0.9 (4) | C10—C9—C12—O2 | −37.6 (4) |
| C7—C2—C3—C4 | 179.8 (2) | C6—C9—C12—O2 | 142.5 (3) |
| C2—C3—C4—C5 | 0.2 (4) | C10—C9—C12—O3 | 143.2 (2) |
| C3—C4—C5—C6 | −0.3 (4) | C6—C9—C12—O3 | −36.7 (3) |
| C4—C5—C6—C1 | −0.6 (4) | N1—C11—C15—O4 | 3.5 (3) |
| C4—C5—C6—C9 | 179.6 (2) | C10—C11—C15—O4 | 122.9 (3) |
| N1—C1—C6—C5 | 180.0 (2) | C14—C11—C15—O4 | −115.9 (3) |
| C2—C1—C6—C5 | 1.7 (3) | N1—C11—C15—O5 | −176.59 (17) |
| N1—C1—C6—C9 | −0.2 (3) | C10—C11—C15—O5 | −57.2 (2) |
| C2—C1—C6—C9 | −178.5 (2) | C14—C11—C15—O5 | 64.0 (2) |
| C3—C2—C7—O1 | 175.0 (3) | C2—C1—N1—C11 | −158.1 (2) |
| C1—C2—C7—O1 | −6.1 (4) | C6—C1—N1—C11 | 23.6 (3) |
| C3—C2—C7—C8 | −5.2 (4) | C10—C11—N1—C1 | −32.7 (3) |
| C1—C2—C7—C8 | 173.6 (2) | C14—C11—N1—C1 | −155.0 (2) |
| C5—C6—C9—C10 | 169.4 (2) | C15—C11—N1—C1 | 86.3 (3) |
| C1—C6—C9—C10 | −10.4 (3) | O2—C12—O3—C13 | −0.9 (4) |
| C5—C6—C9—C12 | −10.7 (4) | C9—C12—O3—C13 | 178.3 (2) |
| C1—C6—C9—C12 | 169.5 (2) | O4—C15—O5—C16 | 1.8 (4) |
| C6—C9—C10—C11 | −1.3 (4) | C11—C15—O5—C16 | −178.1 (2) |
Hydrogen-bond geometry (Å, °)
| Cg1 is the centroid of the C1–C6 ring. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···O1 | 0.86 (2) | 1.95 (2) | 2.650 (2) | 138 (2) |
| C10—H10···O3i | 0.93 | 2.59 | 3.517 (3) | 174 |
| C14—H14C···Cg1i | 0.96 | 2.89 | 3.692 (3) | 142 |
| C8—H8B···Cg1ii | 0.96 | 2.85 | 3.501 (3) | 126 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2329).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.
- Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Kamakshi, R. & Reddy, B. S. R. (2007). Catal. Commun. 8, 825–828.
- Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070.
- Kim, J. N., Kim, H. S., Gong, J. H. & Chung, Y. M. (2001). Tetrahedron Lett. 42, 8341–8344.
- Lu, G. & Malinakova, H. C. (2004). J. Org. Chem. 69, 4701–4715. [DOI] [PubMed]
- Rezgui, F., Mangeney, P. & Alexakis, A. (1999). Tetrahedron Lett. 40, 6241–6244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2002). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
- Sundèn, H., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L. & Cordova, A. (2007). Adv. Synth. Catal. 349, 827–832.
- Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162. [DOI] [PubMed]
- Wang, Y. F., Zhang, W., Luo, S. P., Li, B. L., Xia, A. B., Zhong, A. G. & Xu, D. Q. (2009). Chem. Asian. J. 4, 1834–1838. [DOI] [PubMed]
- Yadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A, 271, 161–163.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811003564/si2329sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003564/si2329Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


