Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 9;67(Pt 3):m314–m315. doi: 10.1107/S160053681100359X

(Dimethyl sulfoxide-κO){4,4′,6,6′-tetra-tert-butyl-2,2′-[1,2-dicyano­ethene-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}zinc(II) acetonitrile monosolvate

E S Aazam a,, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3052118  PMID: 21522249

Abstract

The Zn atom in the title acetonitrile solvate, [Zn(C34H42N4O2)(C2H6OS)]·CH3CN, exists in a distorted square-pyramidal geometry with the basal plane defined by the N2O2 atoms of the tetra­dentate Schiff base and with the dimethyl sulfoxide O atom in the apical position. The tetra­dentate mode of coordination of the Schiff base ligand leads to a five-membered ZnN2C2 chelate ring which adopts an envelope conformation with the Zn atom at the flap, and two six-membered ZnOC4N chelate rings, one of which is approximately planar (r.m.s. deviation = 0.054 Å) but the other has significant puckering (r.m.s. deviation = 0.203 Å).

Related literature

For background to metal salicylaldiminato complexes as optoelectronic materials, see: Liuzzo et al. (2010); Shirai et al., (2000). For background to zinc complexes as organic light-emitting diodes, see: Chen et al. (2009). For related structures, see: MacLachlan et al. (1996). For geometrical analysis, see: Addison et al. (1984).graphic file with name e-67-0m314-scheme1.jpg

Experimental

Crystal data

  • [Zn(C34H42N4O2)(C2H6OS)]·C2H3N

  • M r = 723.27

  • Monoclinic, Inline graphic

  • a = 12.3288 (7) Å

  • b = 17.7043 (9) Å

  • c = 17.3932 (9) Å

  • β = 92.4391 (8)°

  • V = 3793.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.45 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.603, T max = 0.746

  • 35700 measured reflections

  • 8699 independent reflections

  • 7157 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.080

  • S = 1.02

  • 8699 reflections

  • 448 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100359X/hb5794sup1.cif

e-67-0m314-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100359X/hb5794Isup2.hkl

e-67-0m314-Isup2.hkl (416.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—O1 1.9470 (11)
Zn—O2 1.9390 (11)
Zn—O3 2.0467 (12)
Zn—N1 2.0939 (14)
Zn—N2 2.1001 (13)

Acknowledgments

The authors acknowledge King Abdulaziz University for financial support (grant No. 17–013/430). The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Metal complexes with salicylaldiminato ligands are promising materials for optoelectronic applications due to their outstanding photo- and electro-luminescent properties (Liuzzo et al., 2010; Shirai et al., 2000). One of the main appeals of this class of coordination complexes is that molecular engineering permits systematically the optimizing of spectroscopic and chemical properties. This chemical flexibility allows for the design of systems that respond to specific environmental variables. Recently, zinc complexes have been introduced to OLED's (organic light-emitting diodes) and recognized as useful electron transport materials (Chen et al., 2009). The above motivated the synthesis and structural characterization of the title complex, (I).

The Zn atom in (I), Fig. 1, is tetracoordinated by the N2O2 donor atoms of the tetradentate Schiff-base ligand and the O atom derived from the dimethyl sulfoxide ligand, Table 1; the asymmetric unit is completed by a non-coordinating acetonitrile molecule. The resulting N2O3 donor set is based on a square pyramidal arrangement with the dimethyl sulfoxide-O3 atom occupying an axial site. The value of τ = 0.16 compares with τ = 0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The r.m.s. deviation of the O1, O2, N1 and N2 atoms from their least-squares plane is 0.0836 Å and the Zn atom lies 0.3976 (7) Å out of the plane towards the O3 atom. The tetradentate mode of coordination of the Schiff-base leads to the formation of a five- and two six-membered rings. The former has a conformation based on an envelope on Zn (Spek, 2009). While the chelate ring involving the O1 atom is approximately planar (r.m.s. = 0.054 Å), there is significantly more distortion in the O2-containing chelate ring (r.m.s. = 0.203 Å). Schiff-base ligands derived from diaminomaleonitrile have been documented and shown to adopt comparable coordination modes towards transition metals (MacLachlan et al., 1996).

Experimental

A mixture of diaminemaleonitrile (0.1 g, 0.93 mmol), 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.1 g, 1.86 mmol), zinc(II) acetate dihydrate (0.2 g, 0.93 mmol) and ethanol (5 ml) were placed in a glass Petri dish and capped with a glass cover. The dish was placed in a microwave oven (700 W) and irradiated for 1 min. The reaction mixture was cooled and washed with 15 ml of ethanol. The purple solid was filtered off and washed with ethanol. Re-crystallization was by slow evaporation of an acetonitrile/dimethyl sulfoxide (90/10 v/v) solution which yielded purple blocks of (I). Yield: 70%. M.pt. > 623 K (dec.). 1H NMR (DMSO-d6, 500 MHz): δ = 1.25 (s, 18H, C(CH3)3), 1.47 (s, 18H, C(CH3)3), 2.06 (MeCN), 2.50 (DMSO), 7.24 (s, 2H, Ar—H), 7.43 (s, 2H, Ar—H), 8.58 (s, 2H, N═CH) p.p.m.. 13C NMR (DMSO-d6, 500 MHz): δ = 28.19, 29.80 (C(CH3)3), 32.61, 34.13 (C(CH3)3), 110.48, 116.85, 120.31, 128.10, 130.17, 134.20, 141.11, 161.68 and 172.33 p.p.m. IR: 2952, 2212 (C≡N), 1616 (C═N), 1569, 1519, 1433, 1372, 1170, 1154, 1119, 1032, 795, 656 cm-1. λmax (DMSO, 10 -5 mol L-1): 574, 501, 380, 375, 318, 245 nm.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). In the final refinement three low angle reflections evidently effected by the beam stop were omitted, i.e. (011), (101) and (110).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Crystal data

[Zn(C34H42N4O2)(C2H6OS)]·C2H3N F(000) = 1536
Mr = 723.27 Dx = 1.267 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9906 reflections
a = 12.3288 (7) Å θ = 2.3–28.3°
b = 17.7043 (9) Å µ = 0.74 mm1
c = 17.3932 (9) Å T = 100 K
β = 92.4391 (8)° Block, purple
V = 3793.0 (3) Å3 0.45 × 0.30 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 8699 independent reflections
Radiation source: fine-focus sealed tube 7157 reflections with I > 2σ(I)
graphite Rint = 0.041
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→16
Tmin = 0.603, Tmax = 0.746 k = −23→23
35700 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 1.6768P] where P = (Fo2 + 2Fc2)/3
8699 reflections (Δ/σ)max = 0.002
448 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.516854 (14) 0.654898 (11) 0.558637 (10) 0.01242 (6)
S1 0.41362 (3) 0.82176 (2) 0.50384 (2) 0.01635 (9)
O1 0.63893 (9) 0.70123 (7) 0.61554 (7) 0.0184 (3)
O2 0.44436 (9) 0.61428 (7) 0.64636 (6) 0.0167 (2)
O3 0.41323 (9) 0.73722 (7) 0.51757 (7) 0.0198 (3)
N1 0.61797 (11) 0.64054 (7) 0.46602 (8) 0.0129 (3)
N2 0.42744 (10) 0.57668 (7) 0.49091 (7) 0.0121 (3)
N3 0.64563 (12) 0.60956 (9) 0.27021 (9) 0.0224 (3)
N4 0.34261 (12) 0.51244 (9) 0.30973 (9) 0.0221 (3)
N5 0.63439 (16) 1.00678 (11) 0.54854 (14) 0.0500 (6)
C1 0.73798 (13) 0.71491 (9) 0.59846 (9) 0.0133 (3)
C2 0.81352 (12) 0.74304 (9) 0.65753 (9) 0.0127 (3)
C3 0.91590 (13) 0.76392 (9) 0.63645 (9) 0.0136 (3)
H3 0.9635 0.7851 0.6751 0.016*
C4 0.95562 (12) 0.75609 (9) 0.56135 (9) 0.0128 (3)
C5 0.88612 (12) 0.72505 (9) 0.50676 (9) 0.0129 (3)
H5 0.9107 0.7177 0.4563 0.015*
C6 0.77787 (12) 0.70320 (9) 0.52280 (9) 0.0130 (3)
C7 0.78027 (12) 0.74618 (9) 0.74153 (9) 0.0138 (3)
C8 0.87537 (14) 0.77112 (11) 0.79528 (10) 0.0212 (4)
H8A 0.9355 0.7353 0.7914 0.032*
H8B 0.8520 0.7724 0.8484 0.032*
H8C 0.8994 0.8216 0.7804 0.032*
C9 0.68745 (14) 0.80283 (10) 0.75108 (10) 0.0206 (4)
H9A 0.6683 0.8044 0.8052 0.031*
H9B 0.6240 0.7871 0.7191 0.031*
H9C 0.7108 0.8531 0.7350 0.031*
C10 0.74430 (15) 0.66745 (10) 0.76792 (10) 0.0211 (4)
H10A 0.8033 0.6312 0.7613 0.032*
H10B 0.6801 0.6515 0.7370 0.032*
H10C 0.7266 0.6695 0.8223 0.032*
C11 1.07286 (13) 0.77942 (9) 0.54726 (9) 0.0148 (3)
C12 1.08302 (14) 0.86593 (10) 0.55278 (11) 0.0221 (4)
H12A 1.0340 0.8894 0.5140 0.033*
H12B 1.1580 0.8809 0.5437 0.033*
H12C 1.0636 0.8826 0.6042 0.033*
C13 1.10819 (14) 0.75406 (11) 0.46817 (10) 0.0226 (4)
H13A 1.0609 0.7773 0.4281 0.034*
H13B 1.1029 0.6989 0.4643 0.034*
H13C 1.1834 0.7697 0.4614 0.034*
C14 1.15020 (13) 0.74290 (10) 0.60857 (10) 0.0186 (4)
H14A 1.1375 0.6883 0.6098 0.028*
H14B 1.1367 0.7645 0.6591 0.028*
H14C 1.2256 0.7527 0.5958 0.028*
C15 0.71711 (12) 0.66741 (9) 0.46187 (9) 0.0131 (3)
H15 0.7509 0.6624 0.4141 0.016*
C16 0.56431 (13) 0.60475 (9) 0.40459 (9) 0.0122 (3)
C17 0.60834 (13) 0.60514 (9) 0.32927 (9) 0.0140 (3)
C18 0.46527 (12) 0.57224 (9) 0.41737 (9) 0.0119 (3)
C19 0.40078 (13) 0.53784 (9) 0.35600 (9) 0.0141 (3)
C20 0.33269 (12) 0.55019 (9) 0.50908 (9) 0.0130 (3)
H20 0.2899 0.5258 0.4697 0.016*
C21 0.28904 (12) 0.55523 (9) 0.58319 (9) 0.0122 (3)
C22 0.18261 (13) 0.52592 (9) 0.59065 (9) 0.0144 (3)
H22 0.1463 0.5038 0.5469 0.017*
C23 0.13077 (13) 0.52844 (9) 0.65864 (9) 0.0139 (3)
C24 0.18870 (13) 0.56085 (9) 0.72222 (10) 0.0153 (3)
H24 0.1538 0.5625 0.7699 0.018*
C25 0.29211 (13) 0.59022 (9) 0.72021 (9) 0.0143 (3)
C26 0.34663 (13) 0.58787 (9) 0.64890 (9) 0.0137 (3)
C27 0.01364 (13) 0.50025 (10) 0.66406 (10) 0.0170 (3)
C28 0.00085 (18) 0.42155 (12) 0.63012 (14) 0.0377 (5)
H28A 0.0470 0.3861 0.6599 0.056*
H28B 0.0225 0.4220 0.5766 0.056*
H28C −0.0752 0.4057 0.6320 0.056*
C29 −0.02449 (15) 0.49953 (13) 0.74654 (11) 0.0312 (5)
H29A 0.0230 0.4666 0.7783 0.047*
H29B −0.0992 0.4806 0.7468 0.047*
H29C −0.0217 0.5509 0.7675 0.047*
C30 −0.06285 (15) 0.55409 (12) 0.61742 (12) 0.0287 (4)
H30A −0.1381 0.5372 0.6214 0.043*
H30B −0.0437 0.5538 0.5633 0.043*
H30C −0.0552 0.6054 0.6380 0.043*
C31 0.34962 (14) 0.62514 (10) 0.79195 (10) 0.0175 (3)
C32 0.27723 (16) 0.62444 (13) 0.86125 (11) 0.0293 (4)
H32A 0.2104 0.6527 0.8487 0.044*
H32B 0.3159 0.6480 0.9054 0.044*
H32C 0.2590 0.5722 0.8740 0.044*
C33 0.45222 (14) 0.57956 (10) 0.81404 (10) 0.0213 (4)
H33A 0.4881 0.6017 0.8601 0.032*
H33B 0.5018 0.5808 0.7715 0.032*
H33C 0.4322 0.5271 0.8246 0.032*
C34 0.37892 (15) 0.70810 (10) 0.77625 (11) 0.0227 (4)
H34A 0.3126 0.7366 0.7629 0.034*
H34B 0.4280 0.7105 0.7335 0.034*
H34C 0.4147 0.7300 0.8224 0.034*
C35 0.44163 (17) 0.86449 (11) 0.59519 (11) 0.0272 (4)
H35A 0.3795 0.8573 0.6277 0.041*
H35B 0.4546 0.9186 0.5883 0.041*
H35C 0.5062 0.8411 0.6198 0.041*
C36 0.53942 (15) 0.84257 (11) 0.46161 (12) 0.0260 (4)
H36A 0.5411 0.8186 0.4109 0.039*
H36B 0.5994 0.8232 0.4947 0.039*
H36C 0.5469 0.8974 0.4560 0.039*
C37 0.71611 (16) 0.99001 (11) 0.57521 (12) 0.0284 (4)
C38 0.82087 (17) 0.96856 (14) 0.60957 (14) 0.0398 (5)
H38A 0.8254 0.9844 0.6636 0.060*
H38B 0.8786 0.9932 0.5818 0.060*
H38C 0.8294 0.9136 0.6066 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.01068 (9) 0.01551 (10) 0.01115 (10) −0.00142 (7) 0.00141 (7) −0.00244 (7)
S1 0.01486 (19) 0.0156 (2) 0.0185 (2) −0.00009 (15) −0.00009 (15) −0.00080 (16)
O1 0.0123 (6) 0.0290 (7) 0.0141 (6) −0.0051 (5) 0.0029 (4) −0.0070 (5)
O2 0.0122 (5) 0.0260 (7) 0.0120 (6) −0.0043 (5) 0.0008 (4) 0.0004 (5)
O3 0.0160 (6) 0.0143 (6) 0.0291 (7) 0.0003 (5) −0.0007 (5) −0.0002 (5)
N1 0.0125 (6) 0.0148 (7) 0.0112 (7) 0.0002 (5) −0.0010 (5) −0.0006 (5)
N2 0.0133 (6) 0.0126 (7) 0.0105 (7) 0.0012 (5) 0.0014 (5) 0.0003 (5)
N3 0.0248 (8) 0.0260 (8) 0.0167 (8) −0.0025 (6) 0.0036 (6) −0.0005 (6)
N4 0.0203 (8) 0.0251 (8) 0.0207 (8) −0.0033 (6) −0.0005 (6) −0.0046 (6)
N5 0.0405 (11) 0.0296 (11) 0.0778 (16) −0.0031 (9) −0.0226 (11) 0.0054 (10)
C1 0.0124 (7) 0.0145 (8) 0.0130 (8) 0.0003 (6) 0.0007 (6) −0.0011 (6)
C2 0.0135 (7) 0.0121 (8) 0.0125 (8) 0.0012 (6) 0.0002 (6) −0.0018 (6)
C3 0.0139 (7) 0.0134 (8) 0.0132 (8) −0.0004 (6) −0.0015 (6) −0.0020 (6)
C4 0.0120 (7) 0.0132 (8) 0.0131 (8) 0.0007 (6) 0.0014 (6) 0.0019 (6)
C5 0.0129 (7) 0.0150 (8) 0.0109 (8) 0.0023 (6) 0.0018 (6) 0.0013 (6)
C6 0.0126 (7) 0.0141 (8) 0.0122 (8) 0.0004 (6) 0.0002 (6) 0.0006 (6)
C7 0.0135 (8) 0.0169 (8) 0.0113 (8) 0.0004 (6) 0.0013 (6) −0.0024 (6)
C8 0.0187 (9) 0.0323 (10) 0.0125 (8) −0.0032 (7) −0.0005 (7) −0.0052 (7)
C9 0.0215 (9) 0.0236 (10) 0.0169 (9) 0.0038 (7) 0.0037 (7) −0.0046 (7)
C10 0.0271 (9) 0.0213 (9) 0.0154 (9) −0.0026 (7) 0.0060 (7) 0.0006 (7)
C11 0.0118 (7) 0.0191 (8) 0.0135 (8) −0.0022 (6) 0.0020 (6) 0.0004 (7)
C12 0.0181 (8) 0.0208 (9) 0.0274 (10) −0.0044 (7) 0.0011 (7) 0.0040 (8)
C13 0.0136 (8) 0.0375 (11) 0.0171 (9) −0.0064 (7) 0.0040 (7) −0.0040 (8)
C14 0.0124 (8) 0.0231 (9) 0.0203 (9) 0.0004 (7) 0.0017 (7) 0.0024 (7)
C15 0.0135 (7) 0.0147 (8) 0.0112 (8) 0.0020 (6) 0.0017 (6) 0.0010 (6)
C16 0.0144 (7) 0.0121 (8) 0.0100 (8) 0.0020 (6) 0.0001 (6) −0.0003 (6)
C17 0.0127 (7) 0.0145 (8) 0.0146 (8) −0.0008 (6) −0.0014 (6) −0.0007 (6)
C18 0.0138 (7) 0.0110 (8) 0.0108 (7) 0.0013 (6) 0.0000 (6) 0.0005 (6)
C19 0.0139 (7) 0.0149 (8) 0.0138 (8) 0.0007 (6) 0.0033 (6) 0.0002 (6)
C20 0.0144 (7) 0.0108 (8) 0.0138 (8) 0.0004 (6) −0.0010 (6) −0.0010 (6)
C21 0.0125 (7) 0.0118 (8) 0.0125 (8) 0.0010 (6) 0.0009 (6) 0.0011 (6)
C22 0.0150 (8) 0.0135 (8) 0.0145 (8) −0.0008 (6) −0.0003 (6) 0.0001 (6)
C23 0.0131 (7) 0.0126 (8) 0.0162 (8) 0.0002 (6) 0.0018 (6) 0.0029 (6)
C24 0.0167 (8) 0.0166 (8) 0.0129 (8) 0.0007 (6) 0.0038 (6) −0.0003 (6)
C25 0.0160 (8) 0.0149 (8) 0.0118 (8) 0.0017 (6) 0.0005 (6) 0.0001 (6)
C26 0.0136 (7) 0.0134 (8) 0.0140 (8) 0.0013 (6) −0.0006 (6) 0.0022 (6)
C27 0.0166 (8) 0.0175 (9) 0.0172 (8) −0.0054 (6) 0.0055 (6) −0.0020 (7)
C28 0.0358 (12) 0.0261 (11) 0.0527 (14) −0.0109 (9) 0.0218 (10) −0.0110 (10)
C29 0.0212 (9) 0.0500 (13) 0.0228 (10) −0.0085 (9) 0.0055 (8) 0.0026 (9)
C30 0.0181 (9) 0.0363 (12) 0.0316 (11) −0.0033 (8) −0.0012 (8) 0.0057 (9)
C31 0.0181 (8) 0.0221 (9) 0.0125 (8) −0.0027 (7) 0.0018 (6) −0.0027 (7)
C32 0.0260 (10) 0.0454 (12) 0.0168 (9) −0.0096 (9) 0.0045 (8) −0.0105 (9)
C33 0.0236 (9) 0.0263 (10) 0.0136 (8) −0.0007 (7) −0.0037 (7) 0.0002 (7)
C34 0.0257 (9) 0.0225 (9) 0.0196 (9) −0.0002 (7) −0.0022 (7) −0.0049 (7)
C35 0.0344 (11) 0.0256 (10) 0.0215 (10) −0.0044 (8) 0.0019 (8) −0.0061 (8)
C36 0.0213 (9) 0.0274 (10) 0.0300 (10) −0.0052 (8) 0.0092 (8) −0.0012 (8)
C37 0.0312 (11) 0.0192 (10) 0.0345 (11) −0.0027 (8) −0.0034 (9) 0.0023 (8)
C38 0.0298 (11) 0.0479 (14) 0.0412 (13) 0.0011 (10) −0.0056 (10) 0.0119 (11)

Geometric parameters (Å, °)

Zn—O1 1.9470 (11) C14—H14C 0.9800
Zn—O2 1.9390 (11) C15—H15 0.9500
Zn—O3 2.0467 (12) C16—C18 1.377 (2)
Zn—N1 2.0939 (14) C16—C17 1.439 (2)
Zn—N2 2.1001 (13) C18—C19 1.439 (2)
S1—O3 1.5155 (12) C20—C21 1.421 (2)
S1—C35 1.7803 (19) C20—H20 0.9500
S1—C36 1.7826 (18) C21—C22 1.422 (2)
O1—C1 1.2919 (19) C21—C26 1.440 (2)
O2—C26 1.2950 (19) C22—C23 1.369 (2)
N1—C15 1.317 (2) C22—H22 0.9500
N1—C16 1.386 (2) C23—C24 1.412 (2)
N2—C20 1.310 (2) C23—C27 1.535 (2)
N2—C18 1.382 (2) C24—C25 1.379 (2)
N3—C17 1.146 (2) C24—H24 0.9500
N4—C19 1.147 (2) C25—C26 1.436 (2)
N5—C37 1.131 (3) C25—C31 1.538 (2)
C1—C6 1.439 (2) C27—C28 1.519 (3)
C1—C2 1.446 (2) C27—C29 1.529 (2)
C2—C3 1.380 (2) C27—C30 1.546 (3)
C2—C7 1.535 (2) C28—H28A 0.9800
C3—C4 1.421 (2) C28—H28B 0.9800
C3—H3 0.9500 C28—H28C 0.9800
C4—C5 1.367 (2) C29—H29A 0.9800
C4—C11 1.533 (2) C29—H29B 0.9800
C5—C6 1.428 (2) C29—H29C 0.9800
C5—H5 0.9500 C30—H30A 0.9800
C6—C15 1.421 (2) C30—H30B 0.9800
C7—C8 1.533 (2) C30—H30C 0.9800
C7—C9 1.536 (2) C31—C32 1.530 (2)
C7—C10 1.539 (2) C31—C33 1.535 (2)
C8—H8A 0.9800 C31—C34 1.540 (3)
C8—H8B 0.9800 C32—H32A 0.9800
C8—H8C 0.9800 C32—H32B 0.9800
C9—H9A 0.9800 C32—H32C 0.9800
C9—H9B 0.9800 C33—H33A 0.9800
C9—H9C 0.9800 C33—H33B 0.9800
C10—H10A 0.9800 C33—H33C 0.9800
C10—H10B 0.9800 C34—H34A 0.9800
C10—H10C 0.9800 C34—H34B 0.9800
C11—C13 1.528 (2) C34—H34C 0.9800
C11—C12 1.540 (2) C35—H35A 0.9800
C11—C14 1.542 (2) C35—H35B 0.9800
C12—H12A 0.9800 C35—H35C 0.9800
C12—H12B 0.9800 C36—H36A 0.9800
C12—H12C 0.9800 C36—H36B 0.9800
C13—H13A 0.9800 C36—H36C 0.9800
C13—H13B 0.9800 C37—C38 1.450 (3)
C13—H13C 0.9800 C38—H38A 0.9800
C14—H14A 0.9800 C38—H38B 0.9800
C14—H14B 0.9800 C38—H38C 0.9800
O2—Zn—O1 97.38 (5) N3—C17—C16 176.04 (18)
O2—Zn—O3 103.71 (5) C16—C18—N2 117.53 (14)
O1—Zn—O3 109.57 (5) C16—C18—C19 121.55 (14)
O2—Zn—N1 150.43 (5) N2—C18—C19 120.86 (14)
O1—Zn—N1 88.26 (5) N4—C19—C18 174.84 (17)
O3—Zn—N1 101.60 (5) N2—C20—C21 124.94 (14)
O2—Zn—N2 87.04 (5) N2—C20—H20 117.5
O1—Zn—N2 159.88 (5) C21—C20—H20 117.5
O3—Zn—N2 88.21 (5) C20—C21—C22 116.52 (14)
N1—Zn—N2 78.69 (5) C20—C21—C26 123.51 (14)
O3—S1—C35 106.31 (8) C22—C21—C26 119.97 (14)
O3—S1—C36 106.12 (8) C23—C22—C21 122.24 (15)
C35—S1—C36 98.09 (9) C23—C22—H22 118.9
C1—O1—Zn 132.84 (10) C21—C22—H22 118.9
C26—O2—Zn 128.42 (10) C22—C23—C24 116.77 (15)
S1—O3—Zn 138.77 (7) C22—C23—C27 121.18 (15)
C15—N1—C16 122.47 (14) C24—C23—C27 122.00 (14)
C15—N1—Zn 125.65 (11) C25—C24—C23 124.81 (15)
C16—N1—Zn 111.62 (10) C25—C24—H24 117.6
C20—N2—C18 122.86 (14) C23—C24—H24 117.6
C20—N2—Zn 123.57 (11) C24—C25—C26 118.56 (15)
C18—N2—Zn 111.52 (10) C24—C25—C31 121.73 (14)
O1—C1—C6 123.11 (14) C26—C25—C31 119.71 (14)
O1—C1—C2 119.20 (14) O2—C26—C25 119.29 (14)
C6—C1—C2 117.68 (14) O2—C26—C21 123.08 (14)
C3—C2—C1 118.19 (14) C25—C26—C21 117.63 (14)
C3—C2—C7 121.84 (14) C28—C27—C29 109.03 (16)
C1—C2—C7 119.93 (14) C28—C27—C23 110.91 (15)
C2—C3—C4 124.96 (15) C29—C27—C23 112.83 (14)
C2—C3—H3 117.5 C28—C27—C30 108.11 (16)
C4—C3—H3 117.5 C29—C27—C30 107.01 (15)
C5—C4—C3 116.58 (14) C23—C27—C30 108.77 (14)
C5—C4—C11 124.38 (14) C27—C28—H28A 109.5
C3—C4—C11 119.00 (14) C27—C28—H28B 109.5
C4—C5—C6 122.44 (15) H28A—C28—H28B 109.5
C4—C5—H5 118.8 C27—C28—H28C 109.5
C6—C5—H5 118.8 H28A—C28—H28C 109.5
C15—C6—C5 116.26 (14) H28B—C28—H28C 109.5
C15—C6—C1 123.81 (14) C27—C29—H29A 109.5
C5—C6—C1 119.87 (14) C27—C29—H29B 109.5
C8—C7—C2 111.26 (13) H29A—C29—H29B 109.5
C8—C7—C9 107.46 (14) C27—C29—H29C 109.5
C2—C7—C9 110.91 (13) H29A—C29—H29C 109.5
C8—C7—C10 107.55 (14) H29B—C29—H29C 109.5
C2—C7—C10 110.07 (13) C27—C30—H30A 109.5
C9—C7—C10 109.50 (14) C27—C30—H30B 109.5
C7—C8—H8A 109.5 H30A—C30—H30B 109.5
C7—C8—H8B 109.5 C27—C30—H30C 109.5
H8A—C8—H8B 109.5 H30A—C30—H30C 109.5
C7—C8—H8C 109.5 H30B—C30—H30C 109.5
H8A—C8—H8C 109.5 C32—C31—C33 107.50 (15)
H8B—C8—H8C 109.5 C32—C31—C25 111.81 (14)
C7—C9—H9A 109.5 C33—C31—C25 109.75 (14)
C7—C9—H9B 109.5 C32—C31—C34 107.25 (15)
H9A—C9—H9B 109.5 C33—C31—C34 110.41 (14)
C7—C9—H9C 109.5 C25—C31—C34 110.06 (14)
H9A—C9—H9C 109.5 C31—C32—H32A 109.5
H9B—C9—H9C 109.5 C31—C32—H32B 109.5
C7—C10—H10A 109.5 H32A—C32—H32B 109.5
C7—C10—H10B 109.5 C31—C32—H32C 109.5
H10A—C10—H10B 109.5 H32A—C32—H32C 109.5
C7—C10—H10C 109.5 H32B—C32—H32C 109.5
H10A—C10—H10C 109.5 C31—C33—H33A 109.5
H10B—C10—H10C 109.5 C31—C33—H33B 109.5
C13—C11—C4 111.82 (13) H33A—C33—H33B 109.5
C13—C11—C12 108.83 (14) C31—C33—H33C 109.5
C4—C11—C12 109.44 (13) H33A—C33—H33C 109.5
C13—C11—C14 107.92 (14) H33B—C33—H33C 109.5
C4—C11—C14 109.64 (13) C31—C34—H34A 109.5
C12—C11—C14 109.13 (14) C31—C34—H34B 109.5
C11—C12—H12A 109.5 H34A—C34—H34B 109.5
C11—C12—H12B 109.5 C31—C34—H34C 109.5
H12A—C12—H12B 109.5 H34A—C34—H34C 109.5
C11—C12—H12C 109.5 H34B—C34—H34C 109.5
H12A—C12—H12C 109.5 S1—C35—H35A 109.5
H12B—C12—H12C 109.5 S1—C35—H35B 109.5
C11—C13—H13A 109.5 H35A—C35—H35B 109.5
C11—C13—H13B 109.5 S1—C35—H35C 109.5
H13A—C13—H13B 109.5 H35A—C35—H35C 109.5
C11—C13—H13C 109.5 H35B—C35—H35C 109.5
H13A—C13—H13C 109.5 S1—C36—H36A 109.5
H13B—C13—H13C 109.5 S1—C36—H36B 109.5
C11—C14—H14A 109.5 H36A—C36—H36B 109.5
C11—C14—H14B 109.5 S1—C36—H36C 109.5
H14A—C14—H14B 109.5 H36A—C36—H36C 109.5
C11—C14—H14C 109.5 H36B—C36—H36C 109.5
H14A—C14—H14C 109.5 N5—C37—C38 179.9 (3)
H14B—C14—H14C 109.5 C37—C38—H38A 109.5
N1—C15—C6 125.57 (15) C37—C38—H38B 109.5
N1—C15—H15 117.2 H38A—C38—H38B 109.5
C6—C15—H15 117.2 C37—C38—H38C 109.5
C18—C16—N1 117.67 (14) H38A—C38—H38C 109.5
C18—C16—C17 121.36 (14) H38B—C38—H38C 109.5
N1—C16—C17 120.90 (14)
O2—Zn—O1—C1 150.82 (15) C3—C4—C11—C12 −69.76 (19)
O3—Zn—O1—C1 −101.74 (15) C5—C4—C11—C14 −127.48 (17)
N1—Zn—O1—C1 −0.04 (15) C3—C4—C11—C14 49.91 (19)
N2—Zn—O1—C1 49.2 (2) C16—N1—C15—C6 −178.57 (15)
O1—Zn—O2—C26 166.41 (14) Zn—N1—C15—C6 7.9 (2)
O3—Zn—O2—C26 54.13 (14) C5—C6—C15—N1 177.20 (15)
N1—Zn—O2—C26 −94.02 (16) C1—C6—C15—N1 0.0 (3)
N2—Zn—O2—C26 −33.31 (14) C15—N1—C16—C18 173.74 (15)
C35—S1—O3—Zn −60.18 (14) Zn—N1—C16—C18 −11.89 (17)
C36—S1—O3—Zn 43.54 (14) C15—N1—C16—C17 −9.4 (2)
O2—Zn—O3—S1 119.64 (12) Zn—N1—C16—C17 164.96 (12)
O1—Zn—O3—S1 16.51 (13) C18—C16—C17—N3 142 (2)
N1—Zn—O3—S1 −75.78 (12) N1—C16—C17—N3 −34 (3)
N2—Zn—O3—S1 −153.85 (12) N1—C16—C18—N2 −1.0 (2)
O2—Zn—N1—C15 −108.97 (15) C17—C16—C18—N2 −177.83 (14)
O1—Zn—N1—C15 −7.03 (13) N1—C16—C18—C19 176.23 (14)
O3—Zn—N1—C15 102.59 (13) C17—C16—C18—C19 −0.6 (2)
N2—Zn—N1—C15 −171.63 (14) C20—N2—C18—C16 177.49 (14)
O2—Zn—N1—C16 76.88 (14) Zn—N2—C18—C16 13.30 (17)
O1—Zn—N1—C16 178.82 (11) C20—N2—C18—C19 0.2 (2)
O3—Zn—N1—C16 −71.56 (11) Zn—N2—C18—C19 −163.95 (12)
N2—Zn—N1—C16 14.22 (10) C16—C18—C19—N4 −144 (2)
O2—Zn—N2—C20 27.25 (13) N2—C18—C19—N4 33 (2)
O1—Zn—N2—C20 130.72 (15) C18—N2—C20—C21 −178.19 (15)
O3—Zn—N2—C20 −76.57 (13) Zn—N2—C20—C21 −15.9 (2)
N1—Zn—N2—C20 −178.78 (13) N2—C20—C21—C22 177.32 (15)
O2—Zn—N2—C18 −168.69 (11) N2—C20—C21—C26 −2.7 (3)
O1—Zn—N2—C18 −65.23 (19) C20—C21—C22—C23 −178.94 (15)
O3—Zn—N2—C18 87.48 (11) C26—C21—C22—C23 1.0 (2)
N1—Zn—N2—C18 −14.73 (10) C21—C22—C23—C24 −0.9 (2)
Zn—O1—C1—C6 6.6 (2) C21—C22—C23—C27 176.69 (15)
Zn—O1—C1—C2 −173.09 (11) C22—C23—C24—C25 0.5 (2)
O1—C1—C2—C3 −174.06 (15) C27—C23—C24—C25 −176.99 (16)
C6—C1—C2—C3 6.2 (2) C23—C24—C25—C26 −0.4 (3)
O1—C1—C2—C7 8.2 (2) C23—C24—C25—C31 179.57 (15)
C6—C1—C2—C7 −171.50 (14) Zn—O2—C26—C25 −153.79 (12)
C1—C2—C3—C4 −3.7 (2) Zn—O2—C26—C21 26.7 (2)
C7—C2—C3—C4 173.99 (15) C24—C25—C26—O2 −179.06 (15)
C2—C3—C4—C5 −0.4 (2) C31—C25—C26—O2 1.0 (2)
C2—C3—C4—C11 −177.95 (15) C24—C25—C26—C21 0.5 (2)
C3—C4—C5—C6 1.7 (2) C31—C25—C26—C21 −179.45 (14)
C11—C4—C5—C6 179.12 (15) C20—C21—C26—O2 −1.3 (2)
C4—C5—C6—C15 −176.22 (15) C22—C21—C26—O2 178.71 (15)
C4—C5—C6—C1 1.1 (2) C20—C21—C26—C25 179.17 (15)
O1—C1—C6—C15 −7.7 (3) C22—C21—C26—C25 −0.8 (2)
C2—C1—C6—C15 172.05 (15) C22—C23—C27—C28 50.7 (2)
O1—C1—C6—C5 175.20 (15) C24—C23—C27—C28 −131.85 (18)
C2—C1—C6—C5 −5.1 (2) C22—C23—C27—C29 173.39 (16)
C3—C2—C7—C8 −2.6 (2) C24—C23—C27—C29 −9.2 (2)
C1—C2—C7—C8 175.02 (15) C22—C23—C27—C30 −68.0 (2)
C3—C2—C7—C9 116.96 (17) C24—C23—C27—C30 109.38 (18)
C1—C2—C7—C9 −65.43 (19) C24—C25—C31—C32 −1.6 (2)
C3—C2—C7—C10 −121.71 (17) C26—C25—C31—C32 178.31 (16)
C1—C2—C7—C10 55.90 (19) C24—C25—C31—C33 117.58 (17)
C5—C4—C11—C13 −7.8 (2) C26—C25—C31—C33 −62.5 (2)
C3—C4—C11—C13 169.57 (15) C24—C25—C31—C34 −120.71 (17)
C5—C4—C11—C12 112.85 (18) C26—C25—C31—C34 59.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5794).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, L., Qiao, J., Xie, J., Duan, L., Zhang, D., Wang, L. & Qiu, Y. (2009). Inorg. Chim. Acta, 362, 2327–2333.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Liuzzo, V., Oberhauser, W. & Pucci, A. (2010). Inorg. Chem. Commun. 13, 686–688.
  7. MacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492–5499. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shirai, K., Matsuoka, M. & Fukunishi, K. (2000). Dyes Pigments, 47, 107–115.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100359X/hb5794sup1.cif

e-67-0m314-sup1.cif (32.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100359X/hb5794Isup2.hkl

e-67-0m314-Isup2.hkl (416.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES