Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):m384–m385. doi: 10.1107/S1600536811006878

(2,2′-Bipyridyl-κ2 N,N′)bis­(N-butyl-N-methyl­dithio­carbamato-κ2 S,S′)cadmium(II)

Nur Amirah Jamaluddin a, Ibrahim Baba a,, Mohamed Ibrahim Mohamed Tahir b, Edward R T Tiekink c,*
PMCID: PMC3052129  PMID: 21522303

Abstract

The CdII atom in the title compound, [Cd(C6H12NS2)2(C10H8N2)], is hexa­coordinated by two dithio­carbamate ligands and the N atoms from a bidentate 2,2′-bipyridyl mol­ecule. The coordination geometry is based on a distorted trigonal–prismatic arrangement of the N2S4 donor set. Supra­molecular chains, aligned along the a-axis direction, are mediated by C—H⋯S inter­actions and these are connected into layers that stack along the c axis via π–π inter­actions [Cg(pyrid­yl)⋯Cg(pyrid­yl) = 3.6587 (13) Å].

Related literature

For background to supra­molecular polymers of zinc-triad 1,1-dithiol­ates, including dithio­carbamates, see: Chen et al. (2006); Benson et al. (2007). For a closely related 2,2′-bipyridyl adduct, see: Song & Tiekink (2009). graphic file with name e-67-0m384-scheme1.jpg

Experimental

Crystal data

  • [Cd(C6H12NS2)2(C10H8N2)]

  • M r = 593.16

  • Triclinic, Inline graphic

  • a = 10.3215 (4) Å

  • b = 10.6465 (4) Å

  • c = 12.4546 (5) Å

  • α = 81.566 (3)°

  • β = 74.790 (3)°

  • γ = 83.641 (3)°

  • V = 1302.64 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 150 K

  • 0.27 × 0.16 × 0.01 mm

Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.829, T max = 0.990

  • 15837 measured reflections

  • 5393 independent reflections

  • 4623 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.066

  • S = 1.06

  • 5393 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006878/pk2304sup1.cif

e-67-0m384-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006878/pk2304Isup2.hkl

e-67-0m384-Isup2.hkl (258.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd—S1 2.6104 (7)
Cd—S2 2.7685 (7)
Cd—S3 2.6468 (7)
Cd—S4 2.6783 (7)
Cd—N3 2.379 (2)
Cd—N4 2.441 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯S3i 0.95 2.74 3.685 (3) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010), UPM and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Adducts related to the title compound, (I), attract attention in crystal engineering studies (Chen et al., 2006; Benson et al., 2007). The CdII atom in (I) is six-coordinated, being chelated by two almost symmetrically coordinating dithiocarbamate ligands, and the N donor atoms of 2,2'-bipyridyl ligand, Fig. 1 and Table 1. The coordination geometry is intermediate between trigonal prismatic and octahedral with a leaning towards the former. The angle between the triangular faces defined by the S1,S3,N4 and S2,S4,N3 atoms is 5.36 (9) °, and these are twisted by approximately 13 ° about the axis through them, compared to 0 ° for an an ideal trigonal prism and 60 ° for an ideal octahedron. The symmetric mode of coordination of the dithiocarbamate ligands is reflected in the associated C≐S bond distances which lie in the narrow range of 1.721 (2) to 1.733 (3) Å. The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry observed for (I) matches a literature precedent (Song & Tiekink, 2009).

Linear supramolecular chains along the a axis are formed in the crystal structure via C—H···S interactions, Table 2 and Fig. 2. These are consolidated into layers in the ab plane by π–π interactions formed between the pyridyl rings [Cg(N3,C14–C18)···Cg(N4,C19–C23)i = 3.6587 (13) Å with angle between rings = 5.35 (11) ° for i: 2 - x, 1 - y, 1 - z]. Supramolecular layers stack along the c axis, Fig. 3.

Experimental

The title compound was prepared using an in situ method. The first step was the addition of carbon disulfide (0.03 mol) to an ethanolic solution (20 ml) of butylmethylamine (0.03 mol) in ethanol (20 ml). The mixture was stirred for 1 h at 277 K. The resulting solution was added drop wise to a solution of cadmium(II) dichloride (0.015 mol) in ethanol (20 ml) followed by stirring for 4 h. A white precipitate was formed, filtered and washed with cold ethanol. The precipitate, Cd(C6H12NS2)2 (0.01 mol), and 2,2'-bipyridyl (0.01 mol) were dissolved together in chloroform (20 ml) and stirred for 1 h. A yellowish precipitate was formed, filtered and dried in a desiccator. Crystallization was from its ethanol:chloroform (1:2) solution. Yield 86%; M.pt. 424–426 K. Elemental analysis. Found (calculated) for C22H32CdN4S4: C, 44.21 (44.156); H 5.32 (5.40); Cd 18.54 (18.96); N 9.23 (9.40); S 21.45 (21.63) %. UV (CHCl3) λmax 284 (L(π) →L(π*)). IR (KBr): ν(C—H) 2929m; ν(C≐N) 1485m; ν(N—C) 1158 s; ν(C≐S) 974 s; ν(Cd—S) 354 s cm-1.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the linear supramolecular chain along the a axis in (I) showing C—H···S contacts shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents for (I) showing supramolecular layers stacking along the c axis. The intermolecular C–H···S and π–π contacts are shown as orange and purple dashed lines, respectively.

Crystal data

[Cd(C6H12NS2)2(C10H8N2)] Z = 2
Mr = 593.16 F(000) = 608
Triclinic, P1 Dx = 1.512 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.3215 (4) Å Cell parameters from 8976 reflections
b = 10.6465 (4) Å θ = 2.0–29.0°
c = 12.4546 (5) Å µ = 1.18 mm1
α = 81.566 (3)° T = 150 K
β = 74.790 (3)° Plate, colourless
γ = 83.641 (3)° 0.27 × 0.16 × 0.01 mm
V = 1302.64 (9) Å3

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer 5393 independent reflections
Radiation source: fine-focus sealed tube 4623 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 16.1952 pixels mm-1 θmax = 26.5°, θmin = 2.3°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.829, Tmax = 0.990 l = −15→15
15837 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.0565P] where P = (Fo2 + 2Fc2)/3
5393 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 0.90 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.669262 (17) 0.668974 (17) 0.664886 (14) 0.02060 (7)
S1 0.60096 (7) 0.69901 (6) 0.47470 (5) 0.02501 (15)
S2 0.73388 (7) 0.90040 (6) 0.53865 (5) 0.02474 (15)
S3 0.47202 (7) 0.54259 (7) 0.80306 (6) 0.02816 (16)
S4 0.56208 (7) 0.77897 (6) 0.85175 (5) 0.02633 (15)
N1 0.6294 (2) 0.93184 (19) 0.36194 (16) 0.0217 (5)
N2 0.3637 (2) 0.6493 (2) 0.98885 (17) 0.0274 (5)
N3 0.8838 (2) 0.62383 (19) 0.70520 (15) 0.0188 (4)
N4 0.7756 (2) 0.46118 (19) 0.61699 (16) 0.0220 (5)
C1 0.6525 (2) 0.8525 (2) 0.44916 (19) 0.0208 (5)
C2 0.6688 (3) 1.0633 (2) 0.3422 (2) 0.0274 (6)
H2A 0.6156 1.1102 0.4032 0.041*
H2B 0.6525 1.1048 0.2708 0.041*
H2C 0.7647 1.0626 0.3393 0.041*
C3 0.5565 (3) 0.9003 (2) 0.2837 (2) 0.0261 (6)
H3A 0.4858 0.9693 0.2754 0.031*
H3B 0.5114 0.8209 0.3156 0.031*
C4 0.6490 (3) 0.8829 (3) 0.1684 (2) 0.0286 (6)
H4A 0.5930 0.8765 0.1162 0.034*
H4B 0.7002 0.9593 0.1401 0.034*
C5 0.7477 (3) 0.7662 (3) 0.1679 (2) 0.0300 (6)
H5A 0.6968 0.6893 0.1940 0.036*
H5B 0.8026 0.7713 0.2212 0.036*
C6 0.8409 (3) 0.7531 (3) 0.0524 (2) 0.0453 (8)
H6A 0.7872 0.7466 −0.0006 0.068*
H6B 0.9021 0.6764 0.0565 0.068*
H6C 0.8933 0.8280 0.0269 0.068*
C7 0.4562 (2) 0.6567 (2) 0.8919 (2) 0.0232 (6)
C8 0.2758 (3) 0.5432 (3) 1.0244 (2) 0.0350 (7)
H8A 0.2020 0.5592 0.9870 0.053*
H8B 0.2387 0.5358 1.1058 0.053*
H8C 0.3281 0.4638 1.0041 0.053*
C9 0.3423 (3) 0.7429 (3) 1.0687 (2) 0.0329 (7)
H9A 0.4118 0.8051 1.0410 0.039*
H9B 0.3536 0.6986 1.1417 0.039*
C11 0.2043 (3) 0.8137 (3) 1.0860 (2) 0.0350 (7)
H11A 0.1347 0.7521 1.1166 0.042*
H11B 0.1916 0.8560 1.0128 0.042*
C12 0.1862 (3) 0.9133 (3) 1.1660 (2) 0.0400 (7)
H12A 0.2177 0.8748 1.2328 0.048*
H12B 0.2427 0.9843 1.1285 0.048*
C13 0.0408 (3) 0.9657 (3) 1.2032 (3) 0.0484 (9)
H13A 0.0119 1.0120 1.1383 0.073*
H13B 0.0329 1.0237 1.2592 0.073*
H13C −0.0165 0.8953 1.2361 0.073*
C14 0.9307 (3) 0.7054 (2) 0.7554 (2) 0.0249 (6)
H14 0.8736 0.7775 0.7797 0.030*
C15 1.0578 (3) 0.6896 (3) 0.7734 (2) 0.0299 (6)
H15 1.0872 0.7486 0.8106 0.036*
C16 1.1413 (3) 0.5869 (3) 0.7364 (2) 0.0327 (7)
H16 1.2303 0.5749 0.7459 0.039*
C17 1.0942 (3) 0.5005 (2) 0.6848 (2) 0.0257 (6)
H17 1.1504 0.4285 0.6590 0.031*
C18 0.9638 (2) 0.5211 (2) 0.67166 (18) 0.0185 (5)
C19 0.9038 (2) 0.4298 (2) 0.62209 (19) 0.0190 (5)
C20 0.9733 (3) 0.3185 (2) 0.5849 (2) 0.0243 (6)
H20 1.0649 0.2995 0.5867 0.029*
C21 0.9076 (3) 0.2359 (2) 0.5453 (2) 0.0299 (6)
H21 0.9535 0.1592 0.5200 0.036*
C22 0.7746 (3) 0.2662 (3) 0.5428 (2) 0.0304 (6)
H22 0.7265 0.2101 0.5177 0.037*
C23 0.7136 (3) 0.3805 (3) 0.5781 (2) 0.0287 (6)
H23 0.6231 0.4030 0.5744 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.01478 (10) 0.02502 (11) 0.02106 (10) 0.00349 (7) −0.00428 (8) −0.00391 (7)
S1 0.0271 (4) 0.0231 (3) 0.0261 (3) −0.0007 (3) −0.0104 (3) −0.0012 (3)
S2 0.0229 (3) 0.0269 (4) 0.0250 (3) 0.0008 (3) −0.0077 (3) −0.0042 (3)
S3 0.0179 (3) 0.0379 (4) 0.0285 (4) −0.0019 (3) −0.0040 (3) −0.0068 (3)
S4 0.0222 (3) 0.0264 (4) 0.0254 (3) 0.0025 (3) 0.0001 (3) −0.0016 (3)
N1 0.0219 (12) 0.0217 (11) 0.0210 (11) 0.0041 (9) −0.0064 (9) −0.0031 (9)
N2 0.0221 (12) 0.0335 (13) 0.0215 (11) −0.0001 (10) −0.0003 (10) 0.0018 (9)
N3 0.0158 (11) 0.0228 (11) 0.0161 (10) −0.0001 (9) −0.0010 (9) −0.0037 (8)
N4 0.0172 (11) 0.0250 (12) 0.0240 (11) −0.0005 (9) −0.0045 (9) −0.0050 (9)
C1 0.0137 (12) 0.0230 (13) 0.0221 (13) 0.0065 (10) 0.0000 (10) −0.0050 (10)
C2 0.0314 (15) 0.0216 (14) 0.0284 (14) 0.0027 (11) −0.0085 (12) −0.0022 (11)
C3 0.0248 (14) 0.0284 (15) 0.0270 (14) 0.0011 (12) −0.0123 (12) −0.0009 (11)
C4 0.0344 (16) 0.0305 (15) 0.0232 (13) −0.0031 (12) −0.0128 (13) 0.0002 (11)
C5 0.0317 (16) 0.0310 (15) 0.0271 (14) −0.0011 (12) −0.0055 (13) −0.0069 (12)
C6 0.048 (2) 0.054 (2) 0.0311 (16) 0.0015 (16) −0.0035 (15) −0.0122 (14)
C7 0.0152 (13) 0.0302 (14) 0.0215 (13) 0.0075 (11) −0.0060 (11) 0.0014 (11)
C8 0.0290 (16) 0.0405 (17) 0.0288 (15) −0.0032 (13) −0.0003 (13) 0.0053 (12)
C9 0.0273 (15) 0.0460 (18) 0.0215 (13) 0.0018 (13) −0.0010 (12) −0.0041 (12)
C11 0.0304 (16) 0.0350 (16) 0.0338 (16) 0.0017 (13) −0.0018 (13) −0.0003 (13)
C12 0.0358 (18) 0.0343 (17) 0.0392 (17) −0.0016 (14) 0.0066 (15) −0.0009 (13)
C13 0.0395 (19) 0.0323 (18) 0.061 (2) 0.0016 (15) 0.0080 (17) −0.0069 (15)
C14 0.0211 (14) 0.0278 (14) 0.0253 (13) 0.0004 (11) −0.0039 (11) −0.0073 (11)
C15 0.0240 (15) 0.0383 (17) 0.0312 (15) −0.0058 (13) −0.0098 (13) −0.0086 (12)
C16 0.0184 (14) 0.0440 (18) 0.0383 (16) −0.0010 (13) −0.0133 (13) −0.0032 (13)
C17 0.0200 (14) 0.0277 (14) 0.0282 (14) 0.0059 (11) −0.0071 (12) −0.0036 (11)
C18 0.0153 (12) 0.0236 (13) 0.0136 (11) −0.0004 (10) −0.0012 (10) 0.0022 (10)
C19 0.0173 (13) 0.0191 (13) 0.0172 (12) 0.0008 (10) −0.0007 (10) 0.0005 (9)
C20 0.0189 (13) 0.0248 (14) 0.0242 (13) 0.0002 (11) 0.0009 (11) 0.0003 (11)
C21 0.0354 (16) 0.0219 (14) 0.0283 (14) −0.0002 (12) −0.0004 (13) −0.0054 (11)
C22 0.0337 (16) 0.0295 (15) 0.0290 (14) −0.0090 (13) −0.0048 (13) −0.0064 (12)
C23 0.0217 (14) 0.0325 (16) 0.0325 (15) −0.0020 (12) −0.0057 (12) −0.0075 (12)

Geometric parameters (Å, °)

Cd—S1 2.6104 (7) C6—H6C 0.9800
Cd—S2 2.7685 (7) C8—H8A 0.9800
Cd—S3 2.6468 (7) C8—H8B 0.9800
Cd—S4 2.6783 (7) C8—H8C 0.9800
Cd—N3 2.379 (2) C9—C11 1.514 (4)
Cd—N4 2.441 (2) C9—H9A 0.9900
S1—C1 1.733 (3) C9—H9B 0.9900
S2—C1 1.721 (2) C11—C12 1.522 (4)
S3—C7 1.727 (3) C11—H11A 0.9900
S4—C7 1.725 (3) C11—H11B 0.9900
N1—C1 1.332 (3) C12—C13 1.518 (4)
N1—C2 1.469 (3) C12—H12A 0.9900
N1—C3 1.471 (3) C12—H12B 0.9900
N2—C7 1.327 (3) C13—H13A 0.9800
N2—C9 1.469 (3) C13—H13B 0.9800
N2—C8 1.472 (3) C13—H13C 0.9800
N3—C14 1.338 (3) C14—C15 1.377 (4)
N3—C18 1.344 (3) C14—H14 0.9500
N4—C23 1.337 (3) C15—C16 1.372 (4)
N4—C19 1.344 (3) C15—H15 0.9500
C2—H2A 0.9800 C16—C17 1.389 (4)
C2—H2B 0.9800 C16—H16 0.9500
C2—H2C 0.9800 C17—C18 1.388 (3)
C3—C4 1.526 (3) C17—H17 0.9500
C3—H3A 0.9900 C18—C19 1.489 (3)
C3—H3B 0.9900 C19—C20 1.390 (3)
C4—C5 1.516 (4) C20—C21 1.382 (4)
C4—H4A 0.9900 C20—H20 0.9500
C4—H4B 0.9900 C21—C22 1.383 (4)
C5—C6 1.522 (4) C21—H21 0.9500
C5—H5A 0.9900 C22—C23 1.383 (4)
C5—H5B 0.9900 C22—H22 0.9500
C6—H6A 0.9800 C23—H23 0.9500
C6—H6B 0.9800
N3—Cd—N4 67.00 (7) N2—C7—S4 121.3 (2)
N3—Cd—S1 130.89 (5) N2—C7—S3 119.9 (2)
N4—Cd—S1 87.19 (5) S4—C7—S3 118.79 (14)
N3—Cd—S3 115.46 (5) N2—C8—H8A 109.5
N4—Cd—S3 86.24 (5) N2—C8—H8B 109.5
S1—Cd—S3 102.91 (2) H8A—C8—H8B 109.5
N3—Cd—S4 93.32 (5) N2—C8—H8C 109.5
N4—Cd—S4 137.16 (5) H8A—C8—H8C 109.5
S1—Cd—S4 130.38 (2) H8B—C8—H8C 109.5
S3—Cd—S4 67.82 (2) N2—C9—C11 112.8 (2)
N3—Cd—S2 94.02 (5) N2—C9—H9A 109.0
N4—Cd—S2 125.32 (5) C11—C9—H9A 109.0
S1—Cd—S2 67.03 (2) N2—C9—H9B 109.0
S3—Cd—S2 144.43 (2) C11—C9—H9B 109.0
S4—Cd—S2 92.26 (2) H9A—C9—H9B 107.8
C1—S1—Cd 89.21 (8) C9—C11—C12 111.9 (3)
C1—S2—Cd 84.39 (8) C9—C11—H11A 109.2
C7—S3—Cd 87.18 (9) C12—C11—H11A 109.2
C7—S4—Cd 86.21 (9) C9—C11—H11B 109.2
C1—N1—C2 120.7 (2) C12—C11—H11B 109.2
C1—N1—C3 124.2 (2) H11A—C11—H11B 107.9
C2—N1—C3 114.95 (19) C13—C12—C11 112.5 (3)
C7—N2—C9 123.5 (2) C13—C12—H12A 109.1
C7—N2—C8 121.3 (2) C11—C12—H12A 109.1
C9—N2—C8 115.2 (2) C13—C12—H12B 109.1
C14—N3—C18 118.6 (2) C11—C12—H12B 109.1
C14—N3—Cd 120.22 (16) H12A—C12—H12B 107.8
C18—N3—Cd 121.00 (15) C12—C13—H13A 109.5
C23—N4—C19 118.4 (2) C12—C13—H13B 109.5
C23—N4—Cd 122.04 (16) H13A—C13—H13B 109.5
C19—N4—Cd 119.35 (15) C12—C13—H13C 109.5
N1—C1—S2 120.62 (19) H13A—C13—H13C 109.5
N1—C1—S1 120.58 (19) H13B—C13—H13C 109.5
S2—C1—S1 118.80 (14) N3—C14—C15 123.0 (2)
N1—C2—H2A 109.5 N3—C14—H14 118.5
N1—C2—H2B 109.5 C15—C14—H14 118.5
H2A—C2—H2B 109.5 C16—C15—C14 118.6 (2)
N1—C2—H2C 109.5 C16—C15—H15 120.7
H2A—C2—H2C 109.5 C14—C15—H15 120.7
H2B—C2—H2C 109.5 C15—C16—C17 119.3 (2)
N1—C3—C4 112.5 (2) C15—C16—H16 120.3
N1—C3—H3A 109.1 C17—C16—H16 120.3
C4—C3—H3A 109.1 C18—C17—C16 118.9 (2)
N1—C3—H3B 109.1 C18—C17—H17 120.6
C4—C3—H3B 109.1 C16—C17—H17 120.6
H3A—C3—H3B 107.8 N3—C18—C17 121.5 (2)
C5—C4—C3 113.9 (2) N3—C18—C19 116.3 (2)
C5—C4—H4A 108.8 C17—C18—C19 122.1 (2)
C3—C4—H4A 108.8 N4—C19—C20 121.6 (2)
C5—C4—H4B 108.8 N4—C19—C18 115.3 (2)
C3—C4—H4B 108.8 C20—C19—C18 123.1 (2)
H4A—C4—H4B 107.7 C21—C20—C19 119.2 (2)
C4—C5—C6 112.7 (2) C21—C20—H20 120.4
C4—C5—H5A 109.1 C19—C20—H20 120.4
C6—C5—H5A 109.1 C20—C21—C22 119.3 (2)
C4—C5—H5B 109.1 C20—C21—H21 120.3
C6—C5—H5B 109.1 C22—C21—H21 120.3
H5A—C5—H5B 107.8 C21—C22—C23 118.0 (2)
C5—C6—H6A 109.5 C21—C22—H22 121.0
C5—C6—H6B 109.5 C23—C22—H22 121.0
H6A—C6—H6B 109.5 N4—C23—C22 123.4 (2)
C5—C6—H6C 109.5 N4—C23—H23 118.3
H6A—C6—H6C 109.5 C22—C23—H23 118.3
H6B—C6—H6C 109.5
N3—Cd—S1—C1 −78.98 (10) Cd—S2—C1—S1 −7.09 (13)
N4—Cd—S1—C1 −134.92 (9) Cd—S1—C1—N1 −172.43 (19)
S3—Cd—S1—C1 139.60 (8) Cd—S1—C1—S2 7.49 (13)
S4—Cd—S1—C1 67.87 (8) C1—N1—C3—C4 −108.9 (3)
S2—Cd—S1—C1 −4.42 (8) C2—N1—C3—C4 75.2 (3)
N3—Cd—S2—C1 137.55 (9) N1—C3—C4—C5 68.0 (3)
N4—Cd—S2—C1 73.04 (10) C3—C4—C5—C6 −178.6 (2)
S1—Cd—S2—C1 4.47 (8) C9—N2—C7—S4 0.6 (3)
S3—Cd—S2—C1 −75.42 (9) C8—N2—C7—S4 −178.37 (19)
S4—Cd—S2—C1 −128.96 (8) C9—N2—C7—S3 −179.28 (19)
N3—Cd—S3—C7 82.82 (10) C8—N2—C7—S3 1.8 (3)
N4—Cd—S3—C7 145.11 (9) Cd—S4—C7—N2 −179.9 (2)
S1—Cd—S3—C7 −128.65 (8) Cd—S4—C7—S3 −0.02 (13)
S4—Cd—S3—C7 −0.01 (8) Cd—S3—C7—N2 179.86 (19)
S2—Cd—S3—C7 −60.22 (9) Cd—S3—C7—S4 0.02 (13)
N3—Cd—S4—C7 −116.17 (9) C7—N2—C9—C11 116.6 (3)
N4—Cd—S4—C7 −57.04 (11) C8—N2—C9—C11 −64.4 (3)
S1—Cd—S4—C7 88.29 (8) N2—C9—C11—C12 −178.0 (2)
S3—Cd—S4—C7 0.01 (8) C9—C11—C12—C13 −168.1 (3)
S2—Cd—S4—C7 149.67 (8) C18—N3—C14—C15 0.6 (4)
N4—Cd—N3—C14 −176.21 (19) Cd—N3—C14—C15 −174.99 (19)
S1—Cd—N3—C14 119.77 (16) N3—C14—C15—C16 1.2 (4)
S3—Cd—N3—C14 −102.54 (17) C14—C15—C16—C17 −1.7 (4)
S4—Cd—N3—C14 −35.56 (17) C15—C16—C17—C18 0.3 (4)
S2—Cd—N3—C14 56.94 (17) C14—N3—C18—C17 −2.1 (3)
N4—Cd—N3—C18 8.28 (16) Cd—N3—C18—C17 173.52 (17)
S1—Cd—N3—C18 −55.74 (19) C14—N3—C18—C19 176.7 (2)
S3—Cd—N3—C18 81.95 (17) Cd—N3—C18—C19 −7.7 (3)
S4—Cd—N3—C18 148.92 (16) C16—C17—C18—N3 1.6 (4)
S2—Cd—N3—C18 −118.57 (16) C16—C17—C18—C19 −177.1 (2)
N3—Cd—N4—C23 176.6 (2) C23—N4—C19—C20 2.0 (3)
S1—Cd—N4—C23 −46.31 (18) Cd—N4—C19—C20 −173.34 (17)
S3—Cd—N4—C23 56.83 (18) C23—N4—C19—C18 −177.0 (2)
S4—Cd—N4—C23 107.98 (18) Cd—N4—C19—C18 7.6 (3)
S2—Cd—N4—C23 −105.41 (18) N3—C18—C19—N4 −0.2 (3)
N3—Cd—N4—C19 −8.27 (16) C17—C18—C19—N4 178.6 (2)
S1—Cd—N4—C19 128.86 (17) N3—C18—C19—C20 −179.2 (2)
S3—Cd—N4—C19 −128.00 (17) C17—C18—C19—C20 −0.4 (4)
S4—Cd—N4—C19 −76.85 (19) N4—C19—C20—C21 −2.3 (4)
S2—Cd—N4—C19 69.76 (18) C18—C19—C20—C21 176.7 (2)
C2—N1—C1—S2 −2.0 (3) C19—C20—C21—C22 0.4 (4)
C3—N1—C1—S2 −177.74 (18) C20—C21—C22—C23 1.5 (4)
C2—N1—C1—S1 177.93 (18) C19—N4—C23—C22 0.1 (4)
C3—N1—C1—S1 2.2 (3) Cd—N4—C23—C22 175.32 (19)
Cd—S2—C1—N1 172.83 (19) C21—C22—C23—N4 −1.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16···S3i 0.95 2.74 3.685 (3) 172

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2304).

References

  1. Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Song, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669–m1670. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006878/pk2304sup1.cif

e-67-0m384-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006878/pk2304Isup2.hkl

e-67-0m384-Isup2.hkl (258.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES