Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 26;67(Pt 3):o708. doi: 10.1107/S1600536811006180

2-Chloro-1-[4-(2-fluoro­benz­yl)piperazin-1-yl]ethanone

Cunlong Zhang a,c, Xin Zhai a, Furen Wan b, Ping Gong a, Yuyang Jiang c,d,*
PMCID: PMC3052134  PMID: 21522451

Abstract

In the title compound, C13H16ClFN2O, the piperazine ring is flanked by 1-(2-fluoro­benz­yl)piperazine and adopts a chair conformation. The dihedral angle between the fluoro­phenyl ring and the four planar C atoms (r.m.s. = 0.0055 Å) of the piperazine chair is 78.27 (7)°, whereas the dihedral angle between the four planar C atoms of the piperazine chair and the ethanone plane is 55.21 (9) Å; the Cl atom displaced by1.589 (2) Å out of the plane.

Related literature

For the synthesis of related compounds, see: Contreras et al. (2001); Capuano et al. (2002). For their use as inter­mediates in the synthesis of anti-inflammatory agents or CCR1 antagonists, see: Rolland & Duhault (1989); Kaufmann (2005); Tanikawa et al. (1995); Xie et al. (2007).graphic file with name e-67-0o708-scheme1.jpg

Experimental

Crystal data

  • C13H16ClFN2O

  • M r = 270.73

  • Orthorhombic, Inline graphic

  • a = 7.9350 (5) Å

  • b = 8.4610 (4) Å

  • c = 19.0040 (11) Å

  • V = 1275.89 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 291 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.566, T max = 0.716

  • 12886 measured reflections

  • 3001 independent reflections

  • 2550 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.085

  • S = 1.01

  • 3001 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1255 Friedel pairs

  • Flack parameter: 0.03 (7)

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006180/si2316sup1.cif

e-67-0o708-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006180/si2316Isup2.hkl

e-67-0o708-Isup2.hkl (115.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Ministry of Science and Technology of China (2007AA02Z160, 2009ZX09501–004) and the Chinese National Natural Science Foundation (20872077, 90813013) for financial support.

supplementary crystallographic information

Comment

Piperazine derivatives similar to the title compound are well known as being useful for a variety of pharmaceutical indication, particularly as cardiotonic, neurotropic or anti-inflammatory agents (Kaufmann, 2005). The synthesis of related pyridazine compounds and their medicinal and pharmaceutical activity were reported (Contreras et al., 2001; Capuano et al., 2002). The use of related compounds as intermediates in the synthesis of antiinflammatory agents or CCRI antagonists can be studied in various patents (Rolland & Duhault, 1989; Kaufmann, 2005; Tanikawa et al., 1995) and medicinal journal (Xie et al., 2007). Moreover, we recently identified a series of compounds bearing various substituted benzylpiperazine moiety with potent antitumor activity by virtual screening approach (paper was being revised).

Herein, we report the synthesis of the title compound as one important representative of piperazine derivatives and its X-ray crystal structure. The molecule of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges. The piperazine ring in the molecule adopts a chair conformation. The dihedral angle between the fluorophenyl ring and the four planar C atoms (r.m.s. = 0.0055 Å) of the piperazine chair is 78.27 (7)°. Whereas the dihedral angle between the four planar C atoms of the piperazine chair and the ethanone plane is 55.21 (9)Å with the Cl atom about 1.589 (2) Å out of plane. In the crystal, there are no strong intermolecular hydrogen bonds to link the molecules.

Experimental

All chemicals and solvents were obtained from commercial supplies and used without purification. To a solution of chloroacetic chloride (0.58 ml, 7.15 mmol) in CH2Cl2 (10 ml) was added, at 0 °C, 1-(2-fluorobenzyl)piperazine(II) (1.15 g, 5.90 mmol) dissolved in CH2Cl2 (20 ml) which was prepared from the reaction of anhydrous piperazine(III) and 1-(chloromethyl)-2-fluorobenzene(IV). The reaction mixture was stirred at room temperature for about 30 min until no 1-(2-fluorobenzyl)piperazine remained, as monitored by TLC. The mixture was poured into cold H2O (50 ml) and rendered alkaline with a 10% NaHCO3 aqueous solution and separated. The organic layer, dried over Na2SO4, was evaporated under reduced pressure to give 1.44 g of pure title compound as a yellow oil. Yield 90%; 1H NMR (400 MHz, CDCl3) δ 7.35 (dd, J = 7.4, 1.4 Hz, 1H), δ 7.23–7.29 (m, 1H), δ 7.12 (t, J = 7.2 Hz, 1H), δ 7.04 (t, J = 9.2 Hz, 1H), δ 4.05 (s, 2H), δ 3.64 (d, J = 5.2 Hz, 2H), δ 3.62 (d, J = 4.4 Hz, 2H), 3.52 (t, J = 5.0 Hz, 2H), δ 2.51 (dt, J = 15.6, 4.8 Hz, 4H); 13C NMR (100.6 MHz, CDCl3) δ 161.16, 131.24, 128.88, 123.88, 123.75, 115.27, 115.05, 54.87, 52.41, 52.00, 46.06, 41.93, 40.67.

Refinement

All H atoms were positioned geometrically and refined using a riding model approximation with distances C—H = 0.93 Å for the benzene ring and 0.97 Å for Csp3 carbon atoms and Uiso(H) = 1.2 times Ueq(C). The absolute structure was determined by using the Flack parameter refinement with the TWIN/BASF instruction, and the coordinates of all atoms were inverted by instruction MOVE 1 1 1 - 1 in the final refinement with SHELXL97.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Synthesis of the title compound

Crystal data

C13H16ClFN2O F(000) = 568
Mr = 270.73 Dx = 1.409 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 7.9350 (5) Å θ = 7.5–15°
b = 8.4610 (4) Å µ = 0.30 mm1
c = 19.0040 (11) Å T = 291 K
V = 1275.89 (12) Å3 Block, colorless
Z = 4 0.30 × 0.30 × 0.20 mm

Data collection

Bruker APEXII CCD diffractometer 3001 independent reflections
Radiation source: fine-focus sealed tube 2550 reflections with I > 2σ(I)
graphite Rint = 0.033
ω scans θmax = 28.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.566, Tmax = 0.716 k = −10→10
12886 measured reflections l = −25→25

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.028P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.33 e Å3
3001 reflections Δρmin = −0.18 e Å3
165 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.077 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1255 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.03 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.51486 (16) 0.40256 (17) 0.67832 (8) 0.0512 (3)
Cl1 1.23456 (9) 0.09826 (6) 0.64207 (3) 0.06647 (19)
F1 0.6313 (2) 0.88072 (19) 0.64912 (8) 0.0801 (4)
N1 0.96049 (18) 0.62572 (16) 0.64509 (8) 0.0378 (3)
N2 1.2433 (2) 0.46187 (17) 0.70180 (8) 0.0437 (4)
C1 0.8356 (2) 0.8253 (2) 0.56706 (9) 0.0415 (4)
C2 0.7317 (3) 0.9332 (2) 0.59859 (10) 0.0492 (5)
C3 0.7224 (3) 1.0901 (3) 0.58058 (12) 0.0622 (6)
H3 0.6497 1.1582 0.6041 0.075*
C4 0.8215 (3) 1.1433 (3) 0.52783 (12) 0.0623 (6)
H4 0.8177 1.2491 0.5146 0.075*
C5 0.9276 (3) 1.0405 (3) 0.49380 (12) 0.0588 (6)
H5 0.9960 1.0766 0.4574 0.071*
C6 0.9328 (3) 0.8832 (3) 0.51363 (10) 0.0524 (5)
H6 1.0047 0.8148 0.4898 0.063*
C7 0.8427 (2) 0.6546 (2) 0.58860 (10) 0.0459 (4)
H7A 0.7312 0.6211 0.6034 0.055*
H7B 0.8746 0.5912 0.5482 0.055*
C8 1.1333 (2) 0.6613 (2) 0.62433 (10) 0.0424 (4)
H8A 1.1409 0.7723 0.6118 0.051*
H8B 1.1613 0.6000 0.5828 0.051*
C9 1.2590 (2) 0.6266 (2) 0.68052 (10) 0.0459 (4)
H9A 1.3719 0.6464 0.6631 0.055*
H9B 1.2395 0.6951 0.7207 0.055*
C10 1.0718 (2) 0.4225 (3) 0.72213 (11) 0.0500 (5)
H10A 1.0413 0.4821 0.7638 0.060*
H10B 1.0655 0.3109 0.7336 0.060*
C11 0.9506 (2) 0.4583 (2) 0.66487 (11) 0.0460 (5)
H11A 0.9758 0.3931 0.6242 0.055*
H11B 0.8372 0.4337 0.6804 0.055*
C12 1.3729 (2) 0.3613 (2) 0.69620 (9) 0.0388 (4)
C13 1.3417 (3) 0.1882 (2) 0.71208 (10) 0.0476 (5)
H13A 1.2753 0.1787 0.7547 0.057*
H13B 1.4484 0.1351 0.7197 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0326 (7) 0.0537 (8) 0.0671 (9) 0.0000 (6) −0.0001 (6) 0.0034 (7)
Cl1 0.0760 (4) 0.0506 (3) 0.0729 (3) −0.0109 (3) −0.0059 (3) −0.0099 (3)
F1 0.0805 (10) 0.0910 (10) 0.0688 (8) 0.0264 (8) 0.0272 (8) 0.0187 (8)
N1 0.0326 (7) 0.0339 (7) 0.0471 (8) 0.0024 (6) −0.0027 (6) 0.0003 (6)
N2 0.0343 (8) 0.0416 (7) 0.0552 (9) 0.0042 (7) 0.0010 (8) 0.0090 (6)
C1 0.0373 (9) 0.0480 (10) 0.0393 (9) 0.0030 (8) −0.0091 (7) −0.0007 (8)
C2 0.0465 (11) 0.0587 (12) 0.0423 (9) 0.0063 (10) −0.0002 (9) 0.0045 (8)
C3 0.0751 (15) 0.0544 (11) 0.0573 (12) 0.0190 (12) 0.0006 (12) −0.0014 (10)
C4 0.0801 (17) 0.0479 (12) 0.0590 (13) −0.0008 (11) −0.0167 (11) 0.0099 (10)
C5 0.0596 (14) 0.0677 (14) 0.0492 (11) −0.0068 (11) −0.0017 (10) 0.0128 (10)
C6 0.0502 (11) 0.0624 (13) 0.0447 (10) 0.0049 (10) −0.0006 (9) −0.0006 (10)
C7 0.0400 (10) 0.0464 (10) 0.0512 (10) −0.0017 (8) −0.0089 (9) −0.0047 (9)
C8 0.0363 (9) 0.0337 (8) 0.0570 (11) −0.0023 (7) −0.0006 (8) 0.0053 (8)
C9 0.0370 (9) 0.0362 (9) 0.0645 (11) −0.0006 (8) −0.0076 (9) 0.0016 (8)
C10 0.0393 (11) 0.0497 (11) 0.0610 (12) 0.0068 (8) 0.0094 (9) 0.0158 (10)
C11 0.0328 (9) 0.0397 (9) 0.0656 (13) −0.0015 (8) 0.0056 (9) 0.0061 (9)
C12 0.0364 (9) 0.0433 (9) 0.0366 (8) 0.0023 (8) −0.0050 (7) −0.0010 (7)
C13 0.0479 (11) 0.0442 (11) 0.0506 (11) 0.0067 (9) −0.0049 (9) 0.0071 (9)

Geometric parameters (Å, °)

O1—C12 1.228 (2) C5—H5 0.9300
Cl1—C13 1.753 (2) C6—H6 0.9300
F1—C2 1.324 (2) C7—H7A 0.9700
N1—C7 1.444 (2) C7—H7B 0.9700
N1—C8 1.459 (2) C8—C9 1.490 (3)
N1—C11 1.467 (2) C8—H8A 0.9700
N2—C12 1.339 (2) C8—H8B 0.9700
N2—C10 1.454 (2) C9—H9A 0.9700
N2—C9 1.457 (2) C9—H9B 0.9700
C1—C6 1.366 (3) C10—C11 1.483 (3)
C1—C2 1.369 (3) C10—H10A 0.9700
C1—C7 1.502 (3) C10—H10B 0.9700
C2—C3 1.373 (3) C11—H11A 0.9700
C3—C4 1.351 (3) C11—H11B 0.9700
C3—H3 0.9300 C12—C13 1.515 (3)
C4—C5 1.373 (3) C13—H13A 0.9700
C4—H4 0.9300 C13—H13B 0.9700
C5—C6 1.384 (3)
C7—N1—C8 111.87 (15) C9—C8—H8A 108.9
C7—N1—C11 108.62 (14) N1—C8—H8B 108.9
C8—N1—C11 108.59 (13) C9—C8—H8B 108.9
C12—N2—C10 126.45 (15) H8A—C8—H8B 107.7
C12—N2—C9 121.38 (16) N2—C9—C8 109.27 (15)
C10—N2—C9 111.92 (15) N2—C9—H9A 109.8
C6—C1—C2 115.21 (18) C8—C9—H9A 109.8
C6—C1—C7 121.77 (18) N2—C9—H9B 109.8
C2—C1—C7 123.02 (18) C8—C9—H9B 109.8
F1—C2—C1 117.11 (18) H9A—C9—H9B 108.3
F1—C2—C3 118.22 (19) N2—C10—C11 111.40 (16)
C1—C2—C3 124.7 (2) N2—C10—H10A 109.3
C4—C3—C2 118.4 (2) C11—C10—H10A 109.3
C4—C3—H3 120.8 N2—C10—H10B 109.3
C2—C3—H3 120.8 C11—C10—H10B 109.3
C3—C4—C5 119.7 (2) H10A—C10—H10B 108.0
C3—C4—H4 120.2 N1—C11—C10 110.55 (16)
C5—C4—H4 120.2 N1—C11—H11A 109.5
C4—C5—C6 120.0 (2) C10—C11—H11A 109.5
C4—C5—H5 120.0 N1—C11—H11B 109.5
C6—C5—H5 120.0 C10—C11—H11B 109.5
C1—C6—C5 122.1 (2) H11A—C11—H11B 108.1
C1—C6—H6 119.0 O1—C12—N2 123.07 (18)
C5—C6—H6 119.0 O1—C12—C13 118.68 (17)
N1—C7—C1 112.92 (15) N2—C12—C13 118.24 (17)
N1—C7—H7A 109.0 C12—C13—Cl1 110.34 (13)
C1—C7—H7A 109.0 C12—C13—H13A 109.6
N1—C7—H7B 109.0 Cl1—C13—H13A 109.6
C1—C7—H7B 109.0 C12—C13—H13B 109.6
H7A—C7—H7B 107.8 Cl1—C13—H13B 109.6
N1—C8—C9 113.25 (16) H13A—C13—H13B 108.1
N1—C8—H8A 108.9
C6—C1—C2—F1 177.86 (18) C11—N1—C8—C9 −57.8 (2)
C7—C1—C2—F1 −1.6 (3) C12—N2—C9—C8 120.59 (19)
C6—C1—C2—C3 −0.9 (3) C10—N2—C9—C8 −54.0 (2)
C7—C1—C2—C3 179.7 (2) N1—C8—C9—N2 56.1 (2)
F1—C2—C3—C4 −178.3 (2) C12—N2—C10—C11 −118.1 (2)
C1—C2—C3—C4 0.4 (3) C9—N2—C10—C11 56.2 (2)
C2—C3—C4—C5 0.1 (3) C7—N1—C11—C10 179.10 (16)
C3—C4—C5—C6 0.0 (3) C8—N1—C11—C10 57.2 (2)
C2—C1—C6—C5 0.9 (3) N2—C10—C11—N1 −57.6 (2)
C7—C1—C6—C5 −179.60 (19) C10—N2—C12—O1 179.59 (18)
C4—C5—C6—C1 −0.5 (3) C9—N2—C12—O1 5.8 (3)
C8—N1—C7—C1 −63.4 (2) C10—N2—C12—C13 0.2 (3)
C11—N1—C7—C1 176.72 (16) C9—N2—C12—C13 −173.64 (16)
C6—C1—C7—N1 93.1 (2) O1—C12—C13—Cl1 −103.48 (18)
C2—C1—C7—N1 −87.4 (2) N2—C12—C13—Cl1 75.97 (19)
C7—N1—C8—C9 −177.68 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2316).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem. 55, 565–576.
  5. Contreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. & Wermuth, C. G. (2001). J. Med. Chem. 44, 2707–2718. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Kaufmann, U. (2005). WO Patent No. 2005079769, 291 pp.
  8. Rolland, Y. & Duhault, J. (1989). EP Patent No. 319412, 44 pp.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tanikawa, K., Saito, A., Hirotsuka, M. & Shikada, K. (1995). WO Patent No. 9501343, 127 pp.
  11. Xie, Y. F., Lake, K., Ligsay, K., Komandla, M., Sircar, I., Nagarajan, G., Li, J., Xu, K., Parise, J., Schneider, L., Huang, D., Liu, J. P., Dines, K., Sakurai, N., Barbosa, M. & Jack, R. (2007). Bioorg. Med. Chem. Lett. 17, 3367–3372. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006180/si2316sup1.cif

e-67-0o708-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006180/si2316Isup2.hkl

e-67-0o708-Isup2.hkl (115.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES