Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 5;67(Pt 3):o566. doi: 10.1107/S1600536811003825

4-Carbamoylpiperidinium 2-carb­oxy­benzoate–benzene-1,2-dicarb­oxy­lic acid (1/1)

Graham Smith a,*, Urs D Wermuth b
PMCID: PMC3052136  PMID: 21522329

Abstract

The asymmetric unit of the title salt adduct, C6H13N2O+·C8H5O4 ·C8H6O4, comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct mol­ecule. These form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct mol­ecule inter­actions which include a cyclic heteromolecular amide–carboxyl­ate motif [graph set R 2 2(8)], conjoint cyclic R 2 2(6) and R 3 3(10) piperidinium N—H⋯Ocarbox­yl associations, as well as strong carboxyl O—H⋯Ocarbox­yl hydrogen bonds.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a ,b ,c ,d , 2011). For the crystal structure of o-phthalic acid, see: Ermer (1981). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990).graphic file with name e-67-0o566-scheme1.jpg

Experimental

Crystal data

  • C6H13N2O+·C8H5O4 ·C8H6O4

  • M r = 460.43

  • Triclinic, Inline graphic

  • a = 8.7857 (4) Å

  • b = 11.7907 (6) Å

  • c = 12.3188 (6) Å

  • α = 62.496 (5)°

  • β = 85.916 (4)°

  • γ = 82.604 (4)°

  • V = 1122.36 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.923, T max = 0.980

  • 13586 measured reflections

  • 4401 independent reflections

  • 3444 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.094

  • S = 1.07

  • 4401 reflections

  • 326 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003825/wn2419sup1.cif

e-67-0o566-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003825/wn2419Isup2.hkl

e-67-0o566-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H11C⋯O21A 0.932 (19) 1.911 (19) 2.8287 (18) 167.7 (16)
N1C—H12C⋯O12Ai 0.953 (18) 2.077 (17) 2.8519 (16) 137.4 (14)
N1C—H12C⋯O12Bi 0.953 (18) 2.204 (17) 2.9606 (16) 135.6 (14)
N41C—H41C⋯O22Bii 0.979 (19) 1.994 (19) 2.9494 (17) 164.5 (16)
N41C—H42C⋯O11Biii 0.930 (18) 2.120 (19) 3.0122 (17) 160.3 (16)
O11A—H11A⋯O12B 1.00 (2) 1.57 (2) 2.5635 (15) 173 (2)
O21B—H21B⋯O41Civ 0.99 (2) 1.58 (2) 2.5644 (14) 171 (2)
O22A—H22A⋯O11Bi 0.90 (2) 1.65 (2) 2.5363 (17) 170.8 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has provided the structures of proton-transfer compounds with a range of organic acids, mainly aromatic (Smith & Wermuth, 2010a,b,c,d, 2011; Smith et al., 2010). The title compound, the salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, was obtained from the 1:1 stoichiometric reaction of phthalic acid with INIPA in methanol and the crystal structure is reported here; it represents the first example of a salt–adduct of INIPA.

The asymmetric unit (Fig. 1) comprises an isonipecotamide cation, (C), a hydrogen phthalate anion (B) and a phthalic acid adduct molecule (A), which together form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct molecule interactions (Table 1). These include a cyclic heteromolecular amide–carboxylate motif [graph set R22(8) (Etter et al., 1990)], conjoint cyclic R22(6) and R33(10) piperidinium N—H···Ocarboxyl associations, as well as strong carboxylic acid O—H···Ocarboxyl hydrogen bonds (Fig. 2). There is no occurrence of the cyclic homomolecular amide–amide dimer motif association, such as is found in the INIPA salts of the 2-nitro-, 4-nitro- and 3,5-dinitrobenzoic acids (Smith & Wermuth, 2010b) or of biphenyl-4,4'-disulfonic acid (Smith et al., 2010).

In the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A), the carboxyl substituent groups are rotated by differing degrees out of the planes of the benzene rings [torsion angles C1—C2—C21—O22 and C2—C1—C11—O11: -147.67 (6) and 52.9 (2)° [for B)] and -117.75 (15) and -157.57 (14)° [for A)], which compare with 20.3 (1)° for the parent acid molecule which has two-fold rotational symmetry (Ermer, 1981).

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and phthalic acid in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless plates of the title compound, from which a specimen was cleaved for the X-ray crystallographic analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions using a riding-model approximation [C—H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular conformation for the INIPA cation (C), the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A) in the asymmetric unit. The inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The hydrogen-bonded chain structure, showing the cyclic R22(8) amide–carboxyl and R22(6) piperidinium–carboxyl cation–anion associations. Non-associative H atoms have been omitted and hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.

Crystal data

C6H13N2O+·C8H5O4·C8H6O4 Z = 2
Mr = 460.43 F(000) = 484
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7857 (4) Å Cell parameters from 6939 reflections
b = 11.7907 (6) Å θ = 3.2–28.7°
c = 12.3188 (6) Å µ = 0.11 mm1
α = 62.496 (5)° T = 200 K
β = 85.916 (4)° Plate, colourless
γ = 82.604 (4)° 0.40 × 0.30 × 0.18 mm
V = 1122.36 (11) Å3

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 4401 independent reflections
Radiation source: Enhance (Mo) X-ray source 3444 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −14→14
Tmin = 0.923, Tmax = 0.980 l = −15→15
13586 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3
4401 reflections (Δ/σ)max = 0.001
326 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O41C 0.74423 (12) 0.61632 (11) −0.02736 (9) 0.0416 (3)
N1C 1.00683 (14) 0.42772 (13) 0.35653 (11) 0.0325 (4)
N41C 0.52124 (15) 0.58014 (14) 0.08017 (12) 0.0383 (4)
C2C 0.85240 (17) 0.48482 (14) 0.37702 (12) 0.0316 (5)
C3C 0.77366 (16) 0.56671 (13) 0.25569 (12) 0.0279 (4)
C4C 0.75894 (15) 0.48525 (13) 0.19015 (12) 0.0255 (4)
C5C 0.91666 (17) 0.42485 (15) 0.17252 (13) 0.0352 (5)
C6C 0.99655 (17) 0.34593 (15) 0.29489 (13) 0.0355 (5)
C41C 0.67380 (16) 0.56532 (14) 0.07155 (12) 0.0287 (4)
O11A 0.80799 (12) 0.85845 (10) 0.30180 (10) 0.0382 (3)
O12A 1.01504 (12) 0.71996 (11) 0.38418 (9) 0.0457 (4)
O21A 1.15402 (13) 0.64611 (10) 0.19609 (10) 0.0428 (4)
O22A 1.34884 (12) 0.66738 (10) 0.28975 (10) 0.0350 (3)
C1A 1.04746 (16) 0.90657 (13) 0.19787 (11) 0.0257 (4)
C2A 1.18683 (15) 0.85461 (13) 0.16830 (12) 0.0273 (4)
C3A 1.28238 (18) 0.93696 (15) 0.07974 (14) 0.0388 (5)
C4A 1.2394 (2) 1.06857 (16) 0.02235 (15) 0.0456 (5)
C5A 1.10150 (19) 1.11900 (15) 0.05043 (14) 0.0402 (5)
C6A 1.00445 (17) 1.03847 (13) 0.13774 (12) 0.0321 (4)
C11A 0.95520 (16) 0.81938 (13) 0.30320 (12) 0.0270 (4)
C21A 1.22700 (16) 0.71181 (14) 0.22139 (12) 0.0285 (4)
O11B 0.55460 (12) 0.56551 (9) 0.65124 (9) 0.0375 (3)
O12B 0.70819 (11) 0.67951 (10) 0.49932 (9) 0.0365 (3)
O21B 0.62518 (11) 0.72888 (11) 0.75928 (9) 0.0380 (3)
O22B 0.39403 (12) 0.75761 (11) 0.83676 (9) 0.0443 (4)
C1B 0.47554 (15) 0.78671 (12) 0.53468 (12) 0.0234 (4)
C2B 0.41733 (15) 0.82601 (12) 0.62266 (12) 0.0250 (4)
C3B 0.30225 (17) 0.92762 (14) 0.59082 (14) 0.0332 (5)
C4B 0.24536 (18) 0.99166 (14) 0.47329 (15) 0.0400 (5)
C5B 0.30399 (18) 0.95471 (14) 0.38598 (14) 0.0380 (5)
C6B 0.41770 (17) 0.85304 (13) 0.41663 (13) 0.0309 (4)
C11B 0.58924 (15) 0.66926 (13) 0.56461 (12) 0.0251 (4)
C21B 0.47720 (16) 0.76662 (13) 0.75001 (12) 0.0282 (4)
H4C 0.69780 0.41540 0.24300 0.0310*
H11C 1.068 (2) 0.4933 (17) 0.3102 (16) 0.051 (5)*
H12C 1.0542 (19) 0.3761 (16) 0.4339 (16) 0.048 (5)*
H21C 0.86350 0.53720 0.41730 0.0380*
H22C 0.79060 0.41670 0.42960 0.0380*
H31C 0.83260 0.63760 0.20490 0.0330*
H32C 0.67250 0.60230 0.26930 0.0330*
H41C 0.461 (2) 0.6370 (17) 0.0071 (17) 0.058 (5)*
H42C 0.475 (2) 0.5356 (17) 0.1562 (17) 0.054 (5)*
H51C 0.90570 0.36990 0.13500 0.0420*
H52C 0.97860 0.49200 0.11810 0.0420*
H61C 0.93950 0.27400 0.34670 0.0430*
H62C 1.09880 0.31190 0.28190 0.0430*
H3A 1.37520 0.90370 0.05900 0.0470*
H4A 1.30450 1.12320 −0.03570 0.0550*
H5A 1.07320 1.20730 0.01080 0.0480*
H6A 0.91060 1.07260 0.15610 0.0380*
H11A 0.762 (2) 0.793 (2) 0.3786 (19) 0.078 (6)*
H22A 1.374 (2) 0.583 (2) 0.3154 (18) 0.072 (6)*
H3B 0.26280 0.95300 0.64920 0.0400*
H4B 0.16780 1.05940 0.45310 0.0480*
H5B 0.26690 0.99830 0.30660 0.0460*
H6B 0.45630 0.82850 0.35750 0.0370*
H21B 0.664 (2) 0.691 (2) 0.844 (2) 0.081 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O41C 0.0306 (6) 0.0590 (7) 0.0233 (5) −0.0098 (5) 0.0002 (4) −0.0077 (5)
N1C 0.0310 (7) 0.0316 (7) 0.0255 (6) −0.0079 (6) −0.0069 (6) −0.0032 (6)
N41C 0.0285 (7) 0.0545 (9) 0.0257 (7) −0.0019 (6) −0.0009 (6) −0.0138 (7)
C2C 0.0382 (9) 0.0315 (8) 0.0255 (7) −0.0033 (7) −0.0024 (6) −0.0133 (6)
C3C 0.0290 (8) 0.0272 (7) 0.0255 (7) −0.0033 (6) −0.0021 (6) −0.0101 (6)
C4C 0.0256 (7) 0.0278 (7) 0.0216 (7) −0.0058 (6) 0.0004 (5) −0.0093 (6)
C5C 0.0340 (8) 0.0430 (9) 0.0282 (8) 0.0018 (7) −0.0001 (6) −0.0175 (7)
C6C 0.0301 (8) 0.0360 (9) 0.0356 (8) 0.0038 (7) −0.0007 (6) −0.0141 (7)
C41C 0.0280 (8) 0.0351 (8) 0.0256 (7) −0.0061 (6) −0.0006 (6) −0.0155 (6)
O11A 0.0307 (6) 0.0306 (6) 0.0376 (6) 0.0049 (5) 0.0092 (5) −0.0057 (5)
O12A 0.0312 (6) 0.0454 (7) 0.0307 (6) 0.0011 (5) 0.0005 (5) 0.0063 (5)
O21A 0.0453 (7) 0.0335 (6) 0.0459 (6) −0.0133 (5) −0.0085 (5) −0.0116 (5)
O22A 0.0294 (6) 0.0271 (6) 0.0485 (6) 0.0029 (5) −0.0075 (5) −0.0178 (5)
C1A 0.0279 (7) 0.0259 (7) 0.0211 (7) −0.0046 (6) −0.0022 (6) −0.0083 (6)
C2A 0.0253 (7) 0.0283 (8) 0.0249 (7) −0.0062 (6) −0.0011 (6) −0.0083 (6)
C3A 0.0290 (8) 0.0378 (9) 0.0386 (8) −0.0059 (7) 0.0051 (7) −0.0083 (7)
C4A 0.0402 (10) 0.0367 (9) 0.0403 (9) −0.0137 (8) 0.0060 (7) 0.0005 (8)
C5A 0.0446 (10) 0.0242 (8) 0.0376 (8) −0.0041 (7) −0.0045 (7) −0.0016 (7)
C6A 0.0342 (8) 0.0277 (8) 0.0289 (7) 0.0005 (7) −0.0034 (6) −0.0089 (6)
C11A 0.0287 (8) 0.0271 (8) 0.0237 (7) −0.0024 (6) −0.0004 (6) −0.0106 (6)
C21A 0.0242 (7) 0.0302 (8) 0.0282 (7) −0.0058 (6) 0.0049 (6) −0.0110 (6)
O11B 0.0377 (6) 0.0231 (5) 0.0381 (6) 0.0013 (5) 0.0143 (5) −0.0056 (5)
O12B 0.0278 (6) 0.0373 (6) 0.0324 (5) 0.0012 (5) 0.0100 (4) −0.0083 (5)
O21B 0.0281 (6) 0.0522 (7) 0.0244 (5) −0.0004 (5) −0.0019 (4) −0.0104 (5)
O22B 0.0407 (7) 0.0563 (8) 0.0295 (6) 0.0060 (6) 0.0030 (5) −0.0175 (5)
C1B 0.0209 (7) 0.0206 (7) 0.0265 (7) −0.0045 (6) 0.0001 (5) −0.0085 (6)
C2B 0.0244 (7) 0.0214 (7) 0.0281 (7) −0.0050 (6) 0.0007 (6) −0.0099 (6)
C3B 0.0347 (8) 0.0274 (8) 0.0377 (8) 0.0014 (7) 0.0010 (7) −0.0165 (7)
C4B 0.0372 (9) 0.0265 (8) 0.0493 (10) 0.0096 (7) −0.0118 (7) −0.0132 (7)
C5B 0.0420 (9) 0.0306 (8) 0.0355 (8) 0.0016 (7) −0.0176 (7) −0.0092 (7)
C6B 0.0345 (8) 0.0299 (8) 0.0292 (7) −0.0024 (7) −0.0057 (6) −0.0139 (6)
C11B 0.0238 (7) 0.0266 (7) 0.0232 (7) −0.0022 (6) 0.0017 (6) −0.0103 (6)
C21B 0.0308 (8) 0.0245 (7) 0.0273 (7) −0.0033 (6) 0.0017 (6) −0.0103 (6)

Geometric parameters (Å, °)

O41C—C41C 1.2413 (17) C5C—H51C 0.9700
O11A—C11A 1.3144 (18) C5C—H52C 0.9700
O12A—C11A 1.2172 (19) C6C—H61C 0.9700
O21A—C21A 1.220 (2) C6C—H62C 0.9700
O22A—C21A 1.3062 (18) C1A—C11A 1.4934 (19)
O11A—H11A 1.00 (2) C1A—C2A 1.399 (2)
O22A—H22A 0.90 (2) C1A—C6A 1.391 (2)
O11B—C11B 1.2537 (18) C2A—C21A 1.500 (2)
O12B—C11B 1.2557 (17) C2A—C3A 1.392 (2)
O21B—C21B 1.3140 (18) C3A—C4A 1.387 (3)
O22B—C21B 1.2211 (17) C4A—C5A 1.373 (3)
O21B—H21B 0.99 (2) C5A—C6A 1.386 (2)
N1C—C6C 1.491 (2) C3A—H3A 0.9300
N1C—C2C 1.494 (2) C4A—H4A 0.9300
N41C—C41C 1.332 (2) C5A—H5A 0.9300
N1C—H12C 0.953 (18) C6A—H6A 0.9300
N1C—H11C 0.932 (19) C1B—C2B 1.405 (2)
N41C—H42C 0.930 (18) C1B—C11B 1.509 (2)
N41C—H41C 0.979 (19) C1B—C6B 1.3918 (19)
C2C—C3C 1.5123 (19) C2B—C3B 1.386 (2)
C3C—C4C 1.534 (2) C2B—C21B 1.4954 (19)
C4C—C5C 1.523 (2) C3B—C4B 1.383 (2)
C4C—C41C 1.5117 (19) C4B—C5B 1.381 (2)
C5C—C6C 1.523 (2) C5B—C6B 1.380 (2)
C2C—H21C 0.9700 C3B—H3B 0.9300
C2C—H22C 0.9700 C4B—H4B 0.9300
C3C—H31C 0.9700 C5B—H5B 0.9300
C3C—H32C 0.9700 C6B—H6B 0.9300
C4C—H4C 0.9800
C11A—O11A—H11A 106.6 (12) C2A—C1A—C11A 118.40 (13)
C21A—O22A—H22A 112.4 (12) C3A—C2A—C21A 119.76 (14)
C21B—O21B—H21B 113.9 (11) C1A—C2A—C3A 119.05 (15)
C2C—N1C—C6C 112.01 (12) C1A—C2A—C21A 120.92 (12)
H11C—N1C—H12C 107.8 (15) C2A—C3A—C4A 120.14 (16)
C6C—N1C—H11C 110.2 (12) C3A—C4A—C5A 120.62 (16)
C2C—N1C—H11C 109.5 (12) C4A—C5A—C6A 120.06 (17)
C2C—N1C—H12C 108.5 (11) C1A—C6A—C5A 119.96 (15)
C6C—N1C—H12C 108.8 (13) O12A—C11A—C1A 121.18 (13)
H41C—N41C—H42C 121.8 (16) O11A—C11A—O12A 123.45 (13)
C41C—N41C—H42C 118.5 (11) O11A—C11A—C1A 115.38 (13)
C41C—N41C—H41C 119.7 (11) O22A—C21A—C2A 114.51 (14)
N1C—C2C—C3C 109.73 (11) O21A—C21A—C2A 121.23 (13)
C2C—C3C—C4C 110.03 (13) O21A—C21A—O22A 124.16 (16)
C5C—C4C—C41C 113.04 (12) C2A—C3A—H3A 120.00
C3C—C4C—C5C 110.14 (12) C4A—C3A—H3A 120.00
C3C—C4C—C41C 110.15 (13) C5A—C4A—H4A 120.00
C4C—C5C—C6C 110.52 (12) C3A—C4A—H4A 120.00
N1C—C6C—C5C 110.09 (14) C4A—C5A—H5A 120.00
O41C—C41C—C4C 120.98 (13) C6A—C5A—H5A 120.00
N41C—C41C—C4C 116.38 (12) C5A—C6A—H6A 120.00
O41C—C41C—N41C 122.62 (13) C1A—C6A—H6A 120.00
N1C—C2C—H21C 110.00 C2B—C1B—C6B 118.78 (14)
H21C—C2C—H22C 108.00 C6B—C1B—C11B 118.11 (13)
C3C—C2C—H21C 110.00 C2B—C1B—C11B 122.94 (12)
C3C—C2C—H22C 110.00 C1B—C2B—C21B 123.27 (13)
N1C—C2C—H22C 110.00 C3B—C2B—C21B 117.17 (13)
C4C—C3C—H31C 110.00 C1B—C2B—C3B 119.52 (13)
C2C—C3C—H32C 110.00 C2B—C3B—C4B 120.84 (15)
H31C—C3C—H32C 108.00 C3B—C4B—C5B 119.83 (16)
C4C—C3C—H32C 110.00 C4B—C5B—C6B 119.96 (14)
C2C—C3C—H31C 110.00 C1B—C6B—C5B 121.06 (14)
C41C—C4C—H4C 108.00 O11B—C11B—C1B 116.96 (12)
C5C—C4C—H4C 108.00 O12B—C11B—C1B 118.86 (13)
C3C—C4C—H4C 108.00 O11B—C11B—O12B 124.11 (15)
C4C—C5C—H51C 110.00 O21B—C21B—C2B 114.59 (12)
C4C—C5C—H52C 110.00 O22B—C21B—C2B 121.76 (13)
C6C—C5C—H51C 110.00 O21B—C21B—O22B 123.64 (13)
C6C—C5C—H52C 110.00 C2B—C3B—H3B 120.00
H51C—C5C—H52C 108.00 C4B—C3B—H3B 120.00
C5C—C6C—H61C 110.00 C3B—C4B—H4B 120.00
H61C—C6C—H62C 108.00 C5B—C4B—H4B 120.00
C5C—C6C—H62C 110.00 C4B—C5B—H5B 120.00
N1C—C6C—H61C 110.00 C6B—C5B—H5B 120.00
N1C—C6C—H62C 110.00 C1B—C6B—H6B 119.00
C2A—C1A—C6A 120.16 (13) C5B—C6B—H6B 119.00
C6A—C1A—C11A 121.15 (13)
C6C—N1C—C2C—C3C −59.45 (17) C1A—C2A—C21A—O22A −117.75 (15)
C2C—N1C—C6C—C5C 58.30 (15) C3A—C2A—C21A—O21A −108.28 (17)
N1C—C2C—C3C—C4C 58.11 (16) C3A—C2A—C21A—O22A 68.28 (18)
C2C—C3C—C4C—C5C −57.23 (15) C2A—C3A—C4A—C5A −1.1 (3)
C2C—C3C—C4C—C41C 177.41 (11) C3A—C4A—C5A—C6A 0.7 (3)
C3C—C4C—C5C—C6C 56.17 (17) C4A—C5A—C6A—C1A 0.7 (2)
C41C—C4C—C5C—C6C 179.86 (14) C6B—C1B—C2B—C3B 1.3 (2)
C3C—C4C—C41C—O41C 97.27 (18) C6B—C1B—C2B—C21B −176.43 (14)
C3C—C4C—C41C—N41C −81.09 (18) C11B—C1B—C2B—C3B −173.80 (14)
C5C—C4C—C41C—O41C −26.4 (2) C11B—C1B—C2B—C21B 8.5 (2)
C5C—C4C—C41C—N41C 155.23 (16) C2B—C1B—C6B—C5B −0.8 (2)
C4C—C5C—C6C—N1C −56.27 (17) C11B—C1B—C6B—C5B 174.56 (14)
C6A—C1A—C2A—C3A 1.1 (2) C2B—C1B—C11B—O11B 52.9 (2)
C6A—C1A—C2A—C21A −172.89 (13) C2B—C1B—C11B—O12B −130.04 (15)
C11A—C1A—C2A—C3A −172.71 (14) C6B—C1B—C11B—O11B −122.25 (15)
C11A—C1A—C2A—C21A 13.3 (2) C6B—C1B—C11B—O12B 54.86 (19)
C2A—C1A—C6A—C5A −1.6 (2) C1B—C2B—C3B—C4B −0.8 (2)
C11A—C1A—C6A—C5A 172.11 (14) C21B—C2B—C3B—C4B 177.07 (14)
C2A—C1A—C11A—O11A −157.57 (14) C1B—C2B—C21B—O21B 34.0 (2)
C2A—C1A—C11A—O12A 23.0 (2) C1B—C2B—C21B—O22B −147.67 (16)
C6A—C1A—C11A—O11A 28.7 (2) C3B—C2B—C21B—O21B −143.76 (15)
C6A—C1A—C11A—O12A −150.80 (15) C3B—C2B—C21B—O22B 34.6 (2)
C1A—C2A—C3A—C4A 0.2 (2) C2B—C3B—C4B—C5B −0.3 (2)
C21A—C2A—C3A—C4A 174.29 (15) C3B—C4B—C5B—C6B 0.8 (3)
C1A—C2A—C21A—O21A 65.69 (19) C4B—C5B—C6B—C1B −0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1C—H11C···O21A 0.932 (19) 1.911 (19) 2.8287 (18) 167.7 (16)
N1C—H12C···O12Ai 0.953 (18) 2.077 (17) 2.8519 (16) 137.4 (14)
N1C—H12C···O12Bi 0.953 (18) 2.204 (17) 2.9606 (16) 135.6 (14)
N41C—H41C···O22Bii 0.979 (19) 1.994 (19) 2.9494 (17) 164.5 (16)
N41C—H42C···O11Biii 0.930 (18) 2.120 (19) 3.0122 (17) 160.3 (16)
O11A—H11A···O12B 1.00 (2) 1.57 (2) 2.5635 (15) 173 (2)
O21B—H21B···O41Civ 0.99 (2) 1.58 (2) 2.5644 (14) 171 (2)
O22A—H22A···O11Bi 0.90 (2) 1.65 (2) 2.5363 (17) 170.8 (18)
C3B—H3B···O11Av 0.93 2.55 3.365 (2) 146
C4C—H4C···O11Biii 0.98 2.53 3.2159 (17) 127
C2C—H21C···O12A 0.97 2.54 3.317 (2) 137
C2C—H21C···O12B 0.97 2.55 3.364 (2) 142
C6C—H62C···O21Bi 0.97 2.47 3.4265 (19) 168

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2419).

References

  1. Ermer, O. (1981). Helv. Chim. Acta, 64, 1902–1909.
  2. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609–o613. [DOI] [PubMed]
  7. Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614–o618. [DOI] [PubMed]
  8. Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162. [DOI] [PMC free article] [PubMed]
  9. Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260. [DOI] [PMC free article] [PubMed]
  10. Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122. [DOI] [PMC free article] [PubMed]
  11. Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161. [DOI] [PMC free article] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003825/wn2419sup1.cif

e-67-0o566-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003825/wn2419Isup2.hkl

e-67-0o566-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES