Abstract
The asymmetric unit of the title salt adduct, C6H13N2O+·C8H5O4 −·C8H6O4, comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct molecule. These form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct molecule interactions which include a cyclic heteromolecular amide–carboxylate motif [graph set R 2 2(8)], conjoint cyclic R 2 2(6) and R 3 3(10) piperidinium N—H⋯Ocarboxyl associations, as well as strong carboxyl O—H⋯Ocarboxyl hydrogen bonds.
Related literature
For structural data on isonipecotamide salts, see: Smith et al. (2010 ▶); Smith & Wermuth (2010a
▶,b
▶,c
▶,d
▶, 2011 ▶). For the crystal structure of o-phthalic acid, see: Ermer (1981 ▶). For hydrogen-bonding graph-set analysis, see: Etter et al. (1990 ▶).
Experimental
Crystal data
C6H13N2O+·C8H5O4 −·C8H6O4
M r = 460.43
Triclinic,
a = 8.7857 (4) Å
b = 11.7907 (6) Å
c = 12.3188 (6) Å
α = 62.496 (5)°
β = 85.916 (4)°
γ = 82.604 (4)°
V = 1122.36 (11) Å3
Z = 2
Mo Kα radiation
μ = 0.11 mm−1
T = 200 K
0.40 × 0.30 × 0.18 mm
Data collection
Oxford Diffraction Gemini-S CCD-detector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 ▶) T min = 0.923, T max = 0.980
13586 measured reflections
4401 independent reflections
3444 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.094
S = 1.07
4401 reflections
326 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.25 e Å−3
Δρmin = −0.22 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶) within WinGX (Farrugia, 1999 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003825/wn2419sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003825/wn2419Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1C—H11C⋯O21A | 0.932 (19) | 1.911 (19) | 2.8287 (18) | 167.7 (16) |
| N1C—H12C⋯O12Ai | 0.953 (18) | 2.077 (17) | 2.8519 (16) | 137.4 (14) |
| N1C—H12C⋯O12Bi | 0.953 (18) | 2.204 (17) | 2.9606 (16) | 135.6 (14) |
| N41C—H41C⋯O22Bii | 0.979 (19) | 1.994 (19) | 2.9494 (17) | 164.5 (16) |
| N41C—H42C⋯O11Biii | 0.930 (18) | 2.120 (19) | 3.0122 (17) | 160.3 (16) |
| O11A—H11A⋯O12B | 1.00 (2) | 1.57 (2) | 2.5635 (15) | 173 (2) |
| O21B—H21B⋯O41Civ | 0.99 (2) | 1.58 (2) | 2.5644 (14) | 171 (2) |
| O22A—H22A⋯O11Bi | 0.90 (2) | 1.65 (2) | 2.5363 (17) | 170.8 (18) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.
supplementary crystallographic information
Comment
The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has provided the structures of proton-transfer compounds with a range of organic acids, mainly aromatic (Smith & Wermuth, 2010a,b,c,d, 2011; Smith et al., 2010). The title compound, the salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, was obtained from the 1:1 stoichiometric reaction of phthalic acid with INIPA in methanol and the crystal structure is reported here; it represents the first example of a salt–adduct of INIPA.
The asymmetric unit (Fig. 1) comprises an isonipecotamide cation, (C), a hydrogen phthalate anion (B) and a phthalic acid adduct molecule (A), which together form a two-dimensional hydrogen-bonded network through head-to-tail cation–anion–adduct molecule interactions (Table 1). These include a cyclic heteromolecular amide–carboxylate motif [graph set R22(8) (Etter et al., 1990)], conjoint cyclic R22(6) and R33(10) piperidinium N—H···Ocarboxyl associations, as well as strong carboxylic acid O—H···Ocarboxyl hydrogen bonds (Fig. 2). There is no occurrence of the cyclic homomolecular amide–amide dimer motif association, such as is found in the INIPA salts of the 2-nitro-, 4-nitro- and 3,5-dinitrobenzoic acids (Smith & Wermuth, 2010b) or of biphenyl-4,4'-disulfonic acid (Smith et al., 2010).
In the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A), the carboxyl substituent groups are rotated by differing degrees out of the planes of the benzene rings [torsion angles C1—C2—C21—O22 and C2—C1—C11—O11: -147.67 (6) and 52.9 (2)° [for B)] and -117.75 (15) and -157.57 (14)° [for A)], which compare with 20.3 (1)° for the parent acid molecule which has two-fold rotational symmetry (Ermer, 1981).
Experimental
The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and phthalic acid in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless plates of the title compound, from which a specimen was cleaved for the X-ray crystallographic analysis.
Refinement
Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions using a riding-model approximation [C—H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
Molecular conformation for the INIPA cation (C), the hydrogen phthalate anion (B) and the phthalic acid adduct molecule (A) in the asymmetric unit. The inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The hydrogen-bonded chain structure, showing the cyclic R22(8) amide–carboxyl and R22(6) piperidinium–carboxyl cation–anion associations. Non-associative H atoms have been omitted and hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.
Crystal data
| C6H13N2O+·C8H5O4−·C8H6O4 | Z = 2 |
| Mr = 460.43 | F(000) = 484 |
| Triclinic, P1 | Dx = 1.362 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.7857 (4) Å | Cell parameters from 6939 reflections |
| b = 11.7907 (6) Å | θ = 3.2–28.7° |
| c = 12.3188 (6) Å | µ = 0.11 mm−1 |
| α = 62.496 (5)° | T = 200 K |
| β = 85.916 (4)° | Plate, colourless |
| γ = 82.604 (4)° | 0.40 × 0.30 × 0.18 mm |
| V = 1122.36 (11) Å3 |
Data collection
| Oxford Diffraction Gemini-S CCD-detector diffractometer | 4401 independent reflections |
| Radiation source: Enhance (Mo) X-ray source | 3444 reflections with I > 2σ(I) |
| graphite | Rint = 0.024 |
| Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
| ω scans | h = −10→10 |
| Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −14→14 |
| Tmin = 0.923, Tmax = 0.980 | l = −15→15 |
| 13586 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3 |
| 4401 reflections | (Δ/σ)max = 0.001 |
| 326 parameters | Δρmax = 0.25 e Å−3 |
| 0 restraints | Δρmin = −0.22 e Å−3 |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O41C | 0.74423 (12) | 0.61632 (11) | −0.02736 (9) | 0.0416 (3) | |
| N1C | 1.00683 (14) | 0.42772 (13) | 0.35653 (11) | 0.0325 (4) | |
| N41C | 0.52124 (15) | 0.58014 (14) | 0.08017 (12) | 0.0383 (4) | |
| C2C | 0.85240 (17) | 0.48482 (14) | 0.37702 (12) | 0.0316 (5) | |
| C3C | 0.77366 (16) | 0.56671 (13) | 0.25569 (12) | 0.0279 (4) | |
| C4C | 0.75894 (15) | 0.48525 (13) | 0.19015 (12) | 0.0255 (4) | |
| C5C | 0.91666 (17) | 0.42485 (15) | 0.17252 (13) | 0.0352 (5) | |
| C6C | 0.99655 (17) | 0.34593 (15) | 0.29489 (13) | 0.0355 (5) | |
| C41C | 0.67380 (16) | 0.56532 (14) | 0.07155 (12) | 0.0287 (4) | |
| O11A | 0.80799 (12) | 0.85845 (10) | 0.30180 (10) | 0.0382 (3) | |
| O12A | 1.01504 (12) | 0.71996 (11) | 0.38418 (9) | 0.0457 (4) | |
| O21A | 1.15402 (13) | 0.64611 (10) | 0.19609 (10) | 0.0428 (4) | |
| O22A | 1.34884 (12) | 0.66738 (10) | 0.28975 (10) | 0.0350 (3) | |
| C1A | 1.04746 (16) | 0.90657 (13) | 0.19787 (11) | 0.0257 (4) | |
| C2A | 1.18683 (15) | 0.85461 (13) | 0.16830 (12) | 0.0273 (4) | |
| C3A | 1.28238 (18) | 0.93696 (15) | 0.07974 (14) | 0.0388 (5) | |
| C4A | 1.2394 (2) | 1.06857 (16) | 0.02235 (15) | 0.0456 (5) | |
| C5A | 1.10150 (19) | 1.11900 (15) | 0.05043 (14) | 0.0402 (5) | |
| C6A | 1.00445 (17) | 1.03847 (13) | 0.13774 (12) | 0.0321 (4) | |
| C11A | 0.95520 (16) | 0.81938 (13) | 0.30320 (12) | 0.0270 (4) | |
| C21A | 1.22700 (16) | 0.71181 (14) | 0.22139 (12) | 0.0285 (4) | |
| O11B | 0.55460 (12) | 0.56551 (9) | 0.65124 (9) | 0.0375 (3) | |
| O12B | 0.70819 (11) | 0.67951 (10) | 0.49932 (9) | 0.0365 (3) | |
| O21B | 0.62518 (11) | 0.72888 (11) | 0.75928 (9) | 0.0380 (3) | |
| O22B | 0.39403 (12) | 0.75761 (11) | 0.83676 (9) | 0.0443 (4) | |
| C1B | 0.47554 (15) | 0.78671 (12) | 0.53468 (12) | 0.0234 (4) | |
| C2B | 0.41733 (15) | 0.82601 (12) | 0.62266 (12) | 0.0250 (4) | |
| C3B | 0.30225 (17) | 0.92762 (14) | 0.59082 (14) | 0.0332 (5) | |
| C4B | 0.24536 (18) | 0.99166 (14) | 0.47329 (15) | 0.0400 (5) | |
| C5B | 0.30399 (18) | 0.95471 (14) | 0.38598 (14) | 0.0380 (5) | |
| C6B | 0.41770 (17) | 0.85304 (13) | 0.41663 (13) | 0.0309 (4) | |
| C11B | 0.58924 (15) | 0.66926 (13) | 0.56461 (12) | 0.0251 (4) | |
| C21B | 0.47720 (16) | 0.76662 (13) | 0.75001 (12) | 0.0282 (4) | |
| H4C | 0.69780 | 0.41540 | 0.24300 | 0.0310* | |
| H11C | 1.068 (2) | 0.4933 (17) | 0.3102 (16) | 0.051 (5)* | |
| H12C | 1.0542 (19) | 0.3761 (16) | 0.4339 (16) | 0.048 (5)* | |
| H21C | 0.86350 | 0.53720 | 0.41730 | 0.0380* | |
| H22C | 0.79060 | 0.41670 | 0.42960 | 0.0380* | |
| H31C | 0.83260 | 0.63760 | 0.20490 | 0.0330* | |
| H32C | 0.67250 | 0.60230 | 0.26930 | 0.0330* | |
| H41C | 0.461 (2) | 0.6370 (17) | 0.0071 (17) | 0.058 (5)* | |
| H42C | 0.475 (2) | 0.5356 (17) | 0.1562 (17) | 0.054 (5)* | |
| H51C | 0.90570 | 0.36990 | 0.13500 | 0.0420* | |
| H52C | 0.97860 | 0.49200 | 0.11810 | 0.0420* | |
| H61C | 0.93950 | 0.27400 | 0.34670 | 0.0430* | |
| H62C | 1.09880 | 0.31190 | 0.28190 | 0.0430* | |
| H3A | 1.37520 | 0.90370 | 0.05900 | 0.0470* | |
| H4A | 1.30450 | 1.12320 | −0.03570 | 0.0550* | |
| H5A | 1.07320 | 1.20730 | 0.01080 | 0.0480* | |
| H6A | 0.91060 | 1.07260 | 0.15610 | 0.0380* | |
| H11A | 0.762 (2) | 0.793 (2) | 0.3786 (19) | 0.078 (6)* | |
| H22A | 1.374 (2) | 0.583 (2) | 0.3154 (18) | 0.072 (6)* | |
| H3B | 0.26280 | 0.95300 | 0.64920 | 0.0400* | |
| H4B | 0.16780 | 1.05940 | 0.45310 | 0.0480* | |
| H5B | 0.26690 | 0.99830 | 0.30660 | 0.0460* | |
| H6B | 0.45630 | 0.82850 | 0.35750 | 0.0370* | |
| H21B | 0.664 (2) | 0.691 (2) | 0.844 (2) | 0.081 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O41C | 0.0306 (6) | 0.0590 (7) | 0.0233 (5) | −0.0098 (5) | 0.0002 (4) | −0.0077 (5) |
| N1C | 0.0310 (7) | 0.0316 (7) | 0.0255 (6) | −0.0079 (6) | −0.0069 (6) | −0.0032 (6) |
| N41C | 0.0285 (7) | 0.0545 (9) | 0.0257 (7) | −0.0019 (6) | −0.0009 (6) | −0.0138 (7) |
| C2C | 0.0382 (9) | 0.0315 (8) | 0.0255 (7) | −0.0033 (7) | −0.0024 (6) | −0.0133 (6) |
| C3C | 0.0290 (8) | 0.0272 (7) | 0.0255 (7) | −0.0033 (6) | −0.0021 (6) | −0.0101 (6) |
| C4C | 0.0256 (7) | 0.0278 (7) | 0.0216 (7) | −0.0058 (6) | 0.0004 (5) | −0.0093 (6) |
| C5C | 0.0340 (8) | 0.0430 (9) | 0.0282 (8) | 0.0018 (7) | −0.0001 (6) | −0.0175 (7) |
| C6C | 0.0301 (8) | 0.0360 (9) | 0.0356 (8) | 0.0038 (7) | −0.0007 (6) | −0.0141 (7) |
| C41C | 0.0280 (8) | 0.0351 (8) | 0.0256 (7) | −0.0061 (6) | −0.0006 (6) | −0.0155 (6) |
| O11A | 0.0307 (6) | 0.0306 (6) | 0.0376 (6) | 0.0049 (5) | 0.0092 (5) | −0.0057 (5) |
| O12A | 0.0312 (6) | 0.0454 (7) | 0.0307 (6) | 0.0011 (5) | 0.0005 (5) | 0.0063 (5) |
| O21A | 0.0453 (7) | 0.0335 (6) | 0.0459 (6) | −0.0133 (5) | −0.0085 (5) | −0.0116 (5) |
| O22A | 0.0294 (6) | 0.0271 (6) | 0.0485 (6) | 0.0029 (5) | −0.0075 (5) | −0.0178 (5) |
| C1A | 0.0279 (7) | 0.0259 (7) | 0.0211 (7) | −0.0046 (6) | −0.0022 (6) | −0.0083 (6) |
| C2A | 0.0253 (7) | 0.0283 (8) | 0.0249 (7) | −0.0062 (6) | −0.0011 (6) | −0.0083 (6) |
| C3A | 0.0290 (8) | 0.0378 (9) | 0.0386 (8) | −0.0059 (7) | 0.0051 (7) | −0.0083 (7) |
| C4A | 0.0402 (10) | 0.0367 (9) | 0.0403 (9) | −0.0137 (8) | 0.0060 (7) | 0.0005 (8) |
| C5A | 0.0446 (10) | 0.0242 (8) | 0.0376 (8) | −0.0041 (7) | −0.0045 (7) | −0.0016 (7) |
| C6A | 0.0342 (8) | 0.0277 (8) | 0.0289 (7) | 0.0005 (7) | −0.0034 (6) | −0.0089 (6) |
| C11A | 0.0287 (8) | 0.0271 (8) | 0.0237 (7) | −0.0024 (6) | −0.0004 (6) | −0.0106 (6) |
| C21A | 0.0242 (7) | 0.0302 (8) | 0.0282 (7) | −0.0058 (6) | 0.0049 (6) | −0.0110 (6) |
| O11B | 0.0377 (6) | 0.0231 (5) | 0.0381 (6) | 0.0013 (5) | 0.0143 (5) | −0.0056 (5) |
| O12B | 0.0278 (6) | 0.0373 (6) | 0.0324 (5) | 0.0012 (5) | 0.0100 (4) | −0.0083 (5) |
| O21B | 0.0281 (6) | 0.0522 (7) | 0.0244 (5) | −0.0004 (5) | −0.0019 (4) | −0.0104 (5) |
| O22B | 0.0407 (7) | 0.0563 (8) | 0.0295 (6) | 0.0060 (6) | 0.0030 (5) | −0.0175 (5) |
| C1B | 0.0209 (7) | 0.0206 (7) | 0.0265 (7) | −0.0045 (6) | 0.0001 (5) | −0.0085 (6) |
| C2B | 0.0244 (7) | 0.0214 (7) | 0.0281 (7) | −0.0050 (6) | 0.0007 (6) | −0.0099 (6) |
| C3B | 0.0347 (8) | 0.0274 (8) | 0.0377 (8) | 0.0014 (7) | 0.0010 (7) | −0.0165 (7) |
| C4B | 0.0372 (9) | 0.0265 (8) | 0.0493 (10) | 0.0096 (7) | −0.0118 (7) | −0.0132 (7) |
| C5B | 0.0420 (9) | 0.0306 (8) | 0.0355 (8) | 0.0016 (7) | −0.0176 (7) | −0.0092 (7) |
| C6B | 0.0345 (8) | 0.0299 (8) | 0.0292 (7) | −0.0024 (7) | −0.0057 (6) | −0.0139 (6) |
| C11B | 0.0238 (7) | 0.0266 (7) | 0.0232 (7) | −0.0022 (6) | 0.0017 (6) | −0.0103 (6) |
| C21B | 0.0308 (8) | 0.0245 (7) | 0.0273 (7) | −0.0033 (6) | 0.0017 (6) | −0.0103 (6) |
Geometric parameters (Å, °)
| O41C—C41C | 1.2413 (17) | C5C—H51C | 0.9700 |
| O11A—C11A | 1.3144 (18) | C5C—H52C | 0.9700 |
| O12A—C11A | 1.2172 (19) | C6C—H61C | 0.9700 |
| O21A—C21A | 1.220 (2) | C6C—H62C | 0.9700 |
| O22A—C21A | 1.3062 (18) | C1A—C11A | 1.4934 (19) |
| O11A—H11A | 1.00 (2) | C1A—C2A | 1.399 (2) |
| O22A—H22A | 0.90 (2) | C1A—C6A | 1.391 (2) |
| O11B—C11B | 1.2537 (18) | C2A—C21A | 1.500 (2) |
| O12B—C11B | 1.2557 (17) | C2A—C3A | 1.392 (2) |
| O21B—C21B | 1.3140 (18) | C3A—C4A | 1.387 (3) |
| O22B—C21B | 1.2211 (17) | C4A—C5A | 1.373 (3) |
| O21B—H21B | 0.99 (2) | C5A—C6A | 1.386 (2) |
| N1C—C6C | 1.491 (2) | C3A—H3A | 0.9300 |
| N1C—C2C | 1.494 (2) | C4A—H4A | 0.9300 |
| N41C—C41C | 1.332 (2) | C5A—H5A | 0.9300 |
| N1C—H12C | 0.953 (18) | C6A—H6A | 0.9300 |
| N1C—H11C | 0.932 (19) | C1B—C2B | 1.405 (2) |
| N41C—H42C | 0.930 (18) | C1B—C11B | 1.509 (2) |
| N41C—H41C | 0.979 (19) | C1B—C6B | 1.3918 (19) |
| C2C—C3C | 1.5123 (19) | C2B—C3B | 1.386 (2) |
| C3C—C4C | 1.534 (2) | C2B—C21B | 1.4954 (19) |
| C4C—C5C | 1.523 (2) | C3B—C4B | 1.383 (2) |
| C4C—C41C | 1.5117 (19) | C4B—C5B | 1.381 (2) |
| C5C—C6C | 1.523 (2) | C5B—C6B | 1.380 (2) |
| C2C—H21C | 0.9700 | C3B—H3B | 0.9300 |
| C2C—H22C | 0.9700 | C4B—H4B | 0.9300 |
| C3C—H31C | 0.9700 | C5B—H5B | 0.9300 |
| C3C—H32C | 0.9700 | C6B—H6B | 0.9300 |
| C4C—H4C | 0.9800 | ||
| C11A—O11A—H11A | 106.6 (12) | C2A—C1A—C11A | 118.40 (13) |
| C21A—O22A—H22A | 112.4 (12) | C3A—C2A—C21A | 119.76 (14) |
| C21B—O21B—H21B | 113.9 (11) | C1A—C2A—C3A | 119.05 (15) |
| C2C—N1C—C6C | 112.01 (12) | C1A—C2A—C21A | 120.92 (12) |
| H11C—N1C—H12C | 107.8 (15) | C2A—C3A—C4A | 120.14 (16) |
| C6C—N1C—H11C | 110.2 (12) | C3A—C4A—C5A | 120.62 (16) |
| C2C—N1C—H11C | 109.5 (12) | C4A—C5A—C6A | 120.06 (17) |
| C2C—N1C—H12C | 108.5 (11) | C1A—C6A—C5A | 119.96 (15) |
| C6C—N1C—H12C | 108.8 (13) | O12A—C11A—C1A | 121.18 (13) |
| H41C—N41C—H42C | 121.8 (16) | O11A—C11A—O12A | 123.45 (13) |
| C41C—N41C—H42C | 118.5 (11) | O11A—C11A—C1A | 115.38 (13) |
| C41C—N41C—H41C | 119.7 (11) | O22A—C21A—C2A | 114.51 (14) |
| N1C—C2C—C3C | 109.73 (11) | O21A—C21A—C2A | 121.23 (13) |
| C2C—C3C—C4C | 110.03 (13) | O21A—C21A—O22A | 124.16 (16) |
| C5C—C4C—C41C | 113.04 (12) | C2A—C3A—H3A | 120.00 |
| C3C—C4C—C5C | 110.14 (12) | C4A—C3A—H3A | 120.00 |
| C3C—C4C—C41C | 110.15 (13) | C5A—C4A—H4A | 120.00 |
| C4C—C5C—C6C | 110.52 (12) | C3A—C4A—H4A | 120.00 |
| N1C—C6C—C5C | 110.09 (14) | C4A—C5A—H5A | 120.00 |
| O41C—C41C—C4C | 120.98 (13) | C6A—C5A—H5A | 120.00 |
| N41C—C41C—C4C | 116.38 (12) | C5A—C6A—H6A | 120.00 |
| O41C—C41C—N41C | 122.62 (13) | C1A—C6A—H6A | 120.00 |
| N1C—C2C—H21C | 110.00 | C2B—C1B—C6B | 118.78 (14) |
| H21C—C2C—H22C | 108.00 | C6B—C1B—C11B | 118.11 (13) |
| C3C—C2C—H21C | 110.00 | C2B—C1B—C11B | 122.94 (12) |
| C3C—C2C—H22C | 110.00 | C1B—C2B—C21B | 123.27 (13) |
| N1C—C2C—H22C | 110.00 | C3B—C2B—C21B | 117.17 (13) |
| C4C—C3C—H31C | 110.00 | C1B—C2B—C3B | 119.52 (13) |
| C2C—C3C—H32C | 110.00 | C2B—C3B—C4B | 120.84 (15) |
| H31C—C3C—H32C | 108.00 | C3B—C4B—C5B | 119.83 (16) |
| C4C—C3C—H32C | 110.00 | C4B—C5B—C6B | 119.96 (14) |
| C2C—C3C—H31C | 110.00 | C1B—C6B—C5B | 121.06 (14) |
| C41C—C4C—H4C | 108.00 | O11B—C11B—C1B | 116.96 (12) |
| C5C—C4C—H4C | 108.00 | O12B—C11B—C1B | 118.86 (13) |
| C3C—C4C—H4C | 108.00 | O11B—C11B—O12B | 124.11 (15) |
| C4C—C5C—H51C | 110.00 | O21B—C21B—C2B | 114.59 (12) |
| C4C—C5C—H52C | 110.00 | O22B—C21B—C2B | 121.76 (13) |
| C6C—C5C—H51C | 110.00 | O21B—C21B—O22B | 123.64 (13) |
| C6C—C5C—H52C | 110.00 | C2B—C3B—H3B | 120.00 |
| H51C—C5C—H52C | 108.00 | C4B—C3B—H3B | 120.00 |
| C5C—C6C—H61C | 110.00 | C3B—C4B—H4B | 120.00 |
| H61C—C6C—H62C | 108.00 | C5B—C4B—H4B | 120.00 |
| C5C—C6C—H62C | 110.00 | C4B—C5B—H5B | 120.00 |
| N1C—C6C—H61C | 110.00 | C6B—C5B—H5B | 120.00 |
| N1C—C6C—H62C | 110.00 | C1B—C6B—H6B | 119.00 |
| C2A—C1A—C6A | 120.16 (13) | C5B—C6B—H6B | 119.00 |
| C6A—C1A—C11A | 121.15 (13) | ||
| C6C—N1C—C2C—C3C | −59.45 (17) | C1A—C2A—C21A—O22A | −117.75 (15) |
| C2C—N1C—C6C—C5C | 58.30 (15) | C3A—C2A—C21A—O21A | −108.28 (17) |
| N1C—C2C—C3C—C4C | 58.11 (16) | C3A—C2A—C21A—O22A | 68.28 (18) |
| C2C—C3C—C4C—C5C | −57.23 (15) | C2A—C3A—C4A—C5A | −1.1 (3) |
| C2C—C3C—C4C—C41C | 177.41 (11) | C3A—C4A—C5A—C6A | 0.7 (3) |
| C3C—C4C—C5C—C6C | 56.17 (17) | C4A—C5A—C6A—C1A | 0.7 (2) |
| C41C—C4C—C5C—C6C | 179.86 (14) | C6B—C1B—C2B—C3B | 1.3 (2) |
| C3C—C4C—C41C—O41C | 97.27 (18) | C6B—C1B—C2B—C21B | −176.43 (14) |
| C3C—C4C—C41C—N41C | −81.09 (18) | C11B—C1B—C2B—C3B | −173.80 (14) |
| C5C—C4C—C41C—O41C | −26.4 (2) | C11B—C1B—C2B—C21B | 8.5 (2) |
| C5C—C4C—C41C—N41C | 155.23 (16) | C2B—C1B—C6B—C5B | −0.8 (2) |
| C4C—C5C—C6C—N1C | −56.27 (17) | C11B—C1B—C6B—C5B | 174.56 (14) |
| C6A—C1A—C2A—C3A | 1.1 (2) | C2B—C1B—C11B—O11B | 52.9 (2) |
| C6A—C1A—C2A—C21A | −172.89 (13) | C2B—C1B—C11B—O12B | −130.04 (15) |
| C11A—C1A—C2A—C3A | −172.71 (14) | C6B—C1B—C11B—O11B | −122.25 (15) |
| C11A—C1A—C2A—C21A | 13.3 (2) | C6B—C1B—C11B—O12B | 54.86 (19) |
| C2A—C1A—C6A—C5A | −1.6 (2) | C1B—C2B—C3B—C4B | −0.8 (2) |
| C11A—C1A—C6A—C5A | 172.11 (14) | C21B—C2B—C3B—C4B | 177.07 (14) |
| C2A—C1A—C11A—O11A | −157.57 (14) | C1B—C2B—C21B—O21B | 34.0 (2) |
| C2A—C1A—C11A—O12A | 23.0 (2) | C1B—C2B—C21B—O22B | −147.67 (16) |
| C6A—C1A—C11A—O11A | 28.7 (2) | C3B—C2B—C21B—O21B | −143.76 (15) |
| C6A—C1A—C11A—O12A | −150.80 (15) | C3B—C2B—C21B—O22B | 34.6 (2) |
| C1A—C2A—C3A—C4A | 0.2 (2) | C2B—C3B—C4B—C5B | −0.3 (2) |
| C21A—C2A—C3A—C4A | 174.29 (15) | C3B—C4B—C5B—C6B | 0.8 (3) |
| C1A—C2A—C21A—O21A | 65.69 (19) | C4B—C5B—C6B—C1B | −0.3 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1C—H11C···O21A | 0.932 (19) | 1.911 (19) | 2.8287 (18) | 167.7 (16) |
| N1C—H12C···O12Ai | 0.953 (18) | 2.077 (17) | 2.8519 (16) | 137.4 (14) |
| N1C—H12C···O12Bi | 0.953 (18) | 2.204 (17) | 2.9606 (16) | 135.6 (14) |
| N41C—H41C···O22Bii | 0.979 (19) | 1.994 (19) | 2.9494 (17) | 164.5 (16) |
| N41C—H42C···O11Biii | 0.930 (18) | 2.120 (19) | 3.0122 (17) | 160.3 (16) |
| O11A—H11A···O12B | 1.00 (2) | 1.57 (2) | 2.5635 (15) | 173 (2) |
| O21B—H21B···O41Civ | 0.99 (2) | 1.58 (2) | 2.5644 (14) | 171 (2) |
| O22A—H22A···O11Bi | 0.90 (2) | 1.65 (2) | 2.5363 (17) | 170.8 (18) |
| C3B—H3B···O11Av | 0.93 | 2.55 | 3.365 (2) | 146 |
| C4C—H4C···O11Biii | 0.98 | 2.53 | 3.2159 (17) | 127 |
| C2C—H21C···O12A | 0.97 | 2.54 | 3.317 (2) | 137 |
| C2C—H21C···O12B | 0.97 | 2.55 | 3.364 (2) | 142 |
| C6C—H62C···O21Bi | 0.97 | 2.47 | 3.4265 (19) | 168 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1; (v) −x+1, −y+2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2419).
References
- Ermer, O. (1981). Helv. Chim. Acta, 64, 1902–1909.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609–o613. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614–o618. [DOI] [PubMed]
- Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162. [DOI] [PMC free article] [PubMed]
- Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260. [DOI] [PMC free article] [PubMed]
- Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122. [DOI] [PMC free article] [PubMed]
- Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003825/wn2419sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003825/wn2419Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


