Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 2;67(Pt 3):o548. doi: 10.1107/S1600536811003394

4-Bromo-1-nitro­benzene

Qamar Ali a, M Raza Shah a, Seik Weng Ng b,*
PMCID: PMC3052147  PMID: 21522315

Abstract

The non-H atoms of the title mol­ecule, C6H4BrNO2, are essentially coplanar with an r.m.s. deviation of 0.040 Å. In the crystal, π–π stacking occurs between parallel benzene rings of adjacent mol­ecules with centroid–centroid distances of 3.643 (3) and 3.741 (3) Å. Weak inter­molecular C—H⋯O hydrogen bonding and short Br⋯O contacts [3.227 (4) 3.401 (4) Å] are also observed in the crystal structure. The crystal studied was a non-morohedral twin with a 26.1 (6)% minor component.

Related literature

For the structure of 2-bromo­nitro­benzene, see: Fronczek (2006). For the structure of 3-bromo­nitro­benzene, see: Charlton & Trotter (1963).graphic file with name e-67-0o548-scheme1.jpg

Experimental

Crystal data

  • C6H4BrNO2

  • M r = 202.01

  • Triclinic, Inline graphic

  • a = 6.3676 (6) Å

  • b = 7.3635 (7) Å

  • c = 7.6798 (7) Å

  • α = 65.554 (9)°

  • β = 87.705 (8)°

  • γ = 88.884 (8)°

  • V = 327.54 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.20 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.414, T max = 1.000

  • 2142 measured reflections

  • 1443 independent reflections

  • 1365 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 1.07

  • 1443 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.58 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003394/xu5150sup1.cif

e-67-0o548-sup1.cif (12.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003394/xu5150Isup2.hkl

e-67-0o548-Isup2.hkl (71.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.52 3.359 (6) 147
C5—H5⋯O2ii 0.95 2.54 3.276 (6) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

4-Bromo-1-nitrobenzene (Scheme I) was synthesized as a precursor that will be used in the synthesis of 4,4'-bis(aminophenoxy)biphenyl (the compound is also commercially available: http://www.chemindustry.com/chemicals/815494.html). The molecule is flat (Fig. 1) as the nitro substituent is co-planar with the aromatic ring. π-π stacking occrs between parallel benzene rings of adjacent molecules, centroids distance between C1-ring and C1i-ring (symmetry code: (i) 1-x, -5, 1-z) is 3.643 (3) Å and that between C1-ring and C1ii-ring (symmetry code: (ii) 1-x, 1-y, 1-z) is 3.741 (3) Å. Intermolecular weak C—H···O hydrogen bonding (Table 1) and the short Br···O contacts [3.227 (4), 3.401 (4) Å] are observed in the crystal structure.

Experimental

The nitrating mixture cosisted of 5 ml conc. HNO3 and 5 ml conc. H2SO4 kept at 273 K. Bromobenzene (2.6 ml) was added. The temperature was then raised to about 333 K for 3 h. The mixture was added to water (200 ml); the organic compound was extracted by using dichloromethane. The solvent was dried and then alllowed to evaporate to yield the product in 70% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The crystal is a non-merohedral twin; the separation of the two domains was effected by CrysAlis PRO (Agilent, 2010).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C6H4BrNO2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C6H4BrNO2 Z = 2
Mr = 202.01 F(000) = 196
Triclinic, P1 Dx = 2.048 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.3676 (6) Å Cell parameters from 1590 reflections
b = 7.3635 (7) Å θ = 2.9–28.3°
c = 7.6798 (7) Å µ = 6.20 mm1
α = 65.554 (9)° T = 100 K
β = 87.705 (8)° Block, colorless
γ = 88.884 (8)° 0.20 × 0.10 × 0.05 mm
V = 327.54 (5) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1443 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1365 reflections with I > 2σ(I)
Mirror Rint = 0.052
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.9°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −9→9
Tmin = 0.414, Tmax = 1.000 l = −9→9
2142 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.4717P] where P = (Fo2 + 2Fc2)/3
1443 reflections (Δ/σ)max = 0.001
92 parameters Δρmax = 0.91 e Å3
0 restraints Δρmin = −1.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.83556 (7) 0.24763 (7) 0.14671 (6) 0.01978 (19)
O1 0.0573 (5) 0.3167 (6) 0.7390 (5) 0.0238 (8)
O2 0.3071 (6) 0.2117 (6) 0.9389 (5) 0.0245 (8)
N1 0.2383 (6) 0.2623 (6) 0.7787 (5) 0.0151 (7)
C6 0.7151 (7) 0.1751 (7) 0.5288 (7) 0.0173 (9)
H6 0.8526 0.1212 0.5575 0.021*
C5 0.5810 (7) 0.1811 (7) 0.6722 (6) 0.0146 (9)
H5 0.6251 0.1326 0.8004 0.018*
C2 0.4465 (7) 0.3256 (7) 0.2969 (7) 0.0173 (9)
H2 0.4024 0.3750 0.1687 0.021*
C3 0.3121 (7) 0.3291 (7) 0.4408 (6) 0.0159 (9)
H3 0.1731 0.3792 0.4130 0.019*
C1 0.6478 (7) 0.2483 (6) 0.3429 (6) 0.0157 (9)
C4 0.3809 (7) 0.2594 (6) 0.6254 (6) 0.0125 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0204 (3) 0.0213 (3) 0.0206 (3) −0.00244 (19) 0.00662 (18) −0.0122 (2)
O1 0.0149 (16) 0.038 (2) 0.0232 (18) 0.0024 (15) 0.0001 (13) −0.0174 (16)
O2 0.0299 (19) 0.032 (2) 0.0131 (16) 0.0028 (16) −0.0003 (14) −0.0107 (15)
N1 0.0173 (18) 0.0152 (18) 0.0156 (18) −0.0013 (14) 0.0010 (14) −0.0093 (15)
C6 0.015 (2) 0.017 (2) 0.021 (2) −0.0008 (17) 0.0000 (17) −0.0089 (19)
C5 0.016 (2) 0.015 (2) 0.014 (2) 0.0014 (16) −0.0023 (16) −0.0076 (17)
C2 0.020 (2) 0.018 (2) 0.016 (2) −0.0004 (18) 0.0001 (17) −0.0094 (18)
C3 0.018 (2) 0.016 (2) 0.015 (2) 0.0020 (17) −0.0041 (17) −0.0072 (17)
C1 0.019 (2) 0.014 (2) 0.019 (2) −0.0005 (18) 0.0015 (18) −0.0113 (19)
C4 0.0133 (19) 0.015 (2) 0.012 (2) −0.0005 (16) 0.0005 (15) −0.0090 (17)

Geometric parameters (Å, °)

Br1—C1 1.887 (4) C5—C4 1.387 (6)
O1—N1 1.220 (5) C5—H5 0.9500
O2—N1 1.226 (5) C2—C3 1.379 (6)
N1—C4 1.464 (5) C2—C1 1.390 (6)
C6—C1 1.384 (6) C2—H2 0.9500
C6—C5 1.381 (6) C3—C4 1.380 (6)
C6—H6 0.9500 C3—H3 0.9500
O1—N1—O2 123.6 (4) C1—C2—H2 120.6
O1—N1—C4 117.9 (4) C4—C3—C2 119.6 (4)
O2—N1—C4 118.4 (4) C4—C3—H3 120.2
C1—C6—C5 119.5 (4) C2—C3—H3 120.2
C1—C6—H6 120.2 C6—C1—C2 121.5 (4)
C5—C6—H6 120.2 C6—C1—Br1 119.2 (3)
C4—C5—C6 118.7 (4) C2—C1—Br1 119.3 (3)
C4—C5—H5 120.6 C3—C4—C5 121.8 (4)
C6—C5—H5 120.6 C3—C4—N1 119.7 (4)
C3—C2—C1 118.8 (4) C5—C4—N1 118.4 (4)
C3—C2—H2 120.6
C1—C6—C5—C4 0.5 (7) C2—C3—C4—N1 −179.8 (4)
C1—C2—C3—C4 1.1 (7) C6—C5—C4—C3 0.7 (7)
C5—C6—C1—C2 −0.9 (7) C6—C5—C4—N1 179.0 (4)
C5—C6—C1—Br1 177.9 (3) O1—N1—C4—C3 4.1 (6)
C3—C2—C1—C6 0.1 (7) O2—N1—C4—C3 −175.3 (4)
C3—C2—C1—Br1 −178.7 (3) O1—N1—C4—C5 −174.3 (4)
C2—C3—C4—C5 −1.5 (7) O2—N1—C4—C5 6.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.95 2.52 3.359 (6) 147
C5—H5···O2ii 0.95 2.54 3.276 (6) 135

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5150).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Charlton, T. L. & Trotter, J. (1963). Acta Cryst. 16, 313.
  4. Fronczek, F. R. (2006). Private communication (refcode 264855). CCDC, Cambridge, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003394/xu5150sup1.cif

e-67-0o548-sup1.cif (12.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003394/xu5150Isup2.hkl

e-67-0o548-Isup2.hkl (71.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES