Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 19;67(Pt 3):o666–o667. doi: 10.1107/S1600536811005071

2-{2-[4-(4-Fluoro­phen­yl)piperazin-1-yl]-2-oxoeth­yl}-6-(morpholin-4-yl)-4-phenyl­pyridazin-3(2H)-one

Abdullah Aydın a,*, Murat Şüküroğlu b, Mehmet Akkurt c, Orhan Büyükgüngör d
PMCID: PMC3052151  PMID: 21522416

Abstract

In the title compound, C26H28FN5O3, the morpholine ring adopts a chair conformation. The piperazine ring is puckered [Q T = 0.5437 (15) Å, θ = 8.89 (15) and ϕ = 357.2 (11)°]. The 1,6-dihydro­pyridazine ring makes dihedral angles of 28.03 (7) and 77.46 (7)° with the phenyl and benzene rings, respectively. In the crystal, mol­ecules are linked along the c axis by C—H⋯O inter­actions and are flattened parallel to the ac plane. C–H⋯π inter­actions also contribute to the stability of the structure.

Related literature

For the pharmacological effects, biological activity and synthesis of 3(2H)-pyridazinones, see: Şüküroğlu et al. 2006; Brogden 1986. For bond-length data, see: Allen et al. (1987). For ring conformational analysis, see: Cremer & Pople (1975). For the quantum mechanical CNDO/2 approximation, see: Pople & Beveridge (1970).graphic file with name e-67-0o666-scheme1.jpg

Experimental

Crystal data

  • C26H28FN5O3

  • M r = 477.53

  • Triclinic, Inline graphic

  • a = 8.9168 (5) Å

  • b = 10.7106 (6) Å

  • c = 13.5147 (8) Å

  • α = 73.489 (4)°

  • β = 71.309 (4)°

  • γ = 83.486 (4)°

  • V = 1171.87 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.60 × 0.49 × 0.20 mm

Data collection

  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.945, T max = 0.981

  • 13273 measured reflections

  • 4861 independent reflections

  • 3479 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.091

  • S = 1.03

  • 4861 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005071/ez2227sup1.cif

e-67-0o666-sup1.cif (30.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005071/ez2227Isup2.hkl

e-67-0o666-Isup2.hkl (238.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7–C10, C1–C6 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O3i 0.97 2.41 3.3306 (18) 159
C5—H5⋯Cg5ii 0.93 2.86 3.4941 (18) 127
C13—H13BCg4i 0.97 2.92 3.7395 (19) 143
C18—H18ACg2iii 0.97 2.73 3.5079 (16) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

In recent years, the 3(2H)-pyridazinone system has aroused a great deal of attention due to its structural relationship to pyrazolone derivatives such as aminopyrine and dipyrone in view of the ring enlargement of pyrazolone to pyridazinone. These drugs possess analgesic and anti-inflammatory activities although they have limitations for their clinical use due to serious side effects such as blood dyscrasias (Şüküroğlu et al., 2006; Brogden, 1986).

A series of 6-morpholino-4-aryl-3(2H)-pyridazinone alkanoic acids, their ester and amide derivatives were prepared and tested for their in vivo analgesic activity by using the p-benzoquinone-induced writhing test. The title compound, C26H28FN5O3, generally showed higher activity but caused gastric ulceration in the animals (Şüküroğlu et al., 2006).

In the title molecule (I), Fig. 1, the morpholine ring (N3/O2/C11–C14) adopts a chair conformation. The piperazine ring (N4/N5/C17–C20) is puckered. The conformation of this ring is described by three puckering parameters: QT = 0.5437 (15) Å, θ = 8.89 (15) ° and, φ = 357.2 (11) ° (Cremer & Pople, 1975). The 1,6-dihydropyridazine ring (N1/N2/C7–C10) makes dihedral angles of 28.03 (7) and 77.46 (7) ° with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The phenyl and benzene rings make a dihedral angle of 50.17 (8) ° with each other. In the crystal structure, molecules are linked along the c-axis direction and are flattened parallel to the plane containing the a and c axes. Furthermore, C–H···π interactions contribute to the stability of the structure (Table 1). Fig. 2 shows the packing diagram of (I) down the b axis.

Theoretical calculations were carried out using the semiempirical quantum-mechanical CNDO/2 (Complete Neglect of Differential Overlap) method (Pople and Beveridge, 1970). The spatial view of the single molecule calculated as closed-shell in a vacuum is shown in Fig. 3 with atomic labels. The calculated dipole moment of (I) is about 2.795 Debye. The HOMO and LUMO energy levels are -10.013 and 0.832 eV, respectively.

According to the theoretical CNDO/2 and experimental X-ray structural results, the values of the geometric parameters of (I) are almost comparable within the experimental error interval (Allen et al., 1987).

The 1,6-dihydropyridazine ring (N1/N2/C7–C10) forms dihedral angles of 2.24 and 60.48° with the C1–C6 phenyl and C21–C26 benzene rings, respectively. The dihedral angle between the phenyl and benzene rings is 62.62°. The orientations of the planes of the rings are however, slightly different in the CNDO/2 and X-ray results. That is, intermolecular interactions play an important role in determining the crystal state conformation of (I).

Experimental

A reaction mixture containing 2-[4-phenyl-6-(morpholin-4-yl)-3(2H)- pyridazinone-2-yl]acetic acid (0.01 mole) and triethylamine (0.011 mole) in 20 ml dichloromethane at 273 K (ice-bath) was treated with ethyl chloroformate (0,01 mole). After stirring the reaction mixture at 273 K for 15 min, 0.011 mole of 4-(4-fluorophenyl)-piperazine derivative was added to this solution. The final mixture was stirred at room temperature for 24 h and evaporated to dryness and then acetone was added. All undissolved salts were filtered off, the filtrate was evaporated to dryness and the residue was recrystallized from acetone-water (1:1) to yield 62%, [m.p.: 457 K].

1H-NMR (CDCl3), δ 7.75 (m, 2H, phenyl-H2, H6), 7.43 (m, 3H, phenyl-H3, H4, H5), 7.23 (s, 1H, pyridazinone-H5), 6.99 (m, 4H, 4-fluorophenyl-H2, H3, H5, H6), 4.98 (s, 2H, N—CH2—CO), 3.82 (m, 6H, morpholine-H2, H6, piperazine- H2(6)), 3.71 (m, 2H, piperazine-H6(2)), 3.31 (t, 8H, morpholine-H3, H5), 3.15 (m, 4H, piperazine-H3, H5) p.p.m.. IR vmax cm-1 (KBr): 2845, 1661, 1643. Anal. C, H, N (C26H28FN5O3) (Şüküroğlu et al., 2006). Elemental analysis: C26H28FN5O3, Calc.(%) / Found (%): C: 65.39/65.54, H: 5.91/5.49, N: 14.67/14.28.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding interactions of (I) down the b axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

The spatial view of the title molecule (I), calculated by the CNDO/2 aproximation.

Crystal data

C26H28FN5O3 Z = 2
Mr = 477.53 F(000) = 504
Triclinic, P1 Dx = 1.353 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9168 (5) Å Cell parameters from 19046 reflections
b = 10.7106 (6) Å θ = 1.7–28.2°
c = 13.5147 (8) Å µ = 0.10 mm1
α = 73.489 (4)° T = 296 K
β = 71.309 (4)° Prism, yellow
γ = 83.486 (4)° 0.60 × 0.49 × 0.20 mm
V = 1171.87 (12) Å3

Data collection

STOE IPDS 2 diffractometer 4861 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3479 reflections with I > 2σ(I)
plane graphite Rint = 0.029
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.7°
ω scans h = −11→11
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −13→13
Tmin = 0.945, Tmax = 0.981 l = −16→16
13273 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.0141P] where P = (Fo2 + 2Fc2)/3
4861 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.31808 (14) 0.32221 (10) 1.12298 (8) 0.0875 (4)
O1 0.65668 (12) 0.66791 (10) 0.43998 (8) 0.0635 (4)
O2 0.02122 (12) 1.05391 (10) 0.84902 (8) 0.0626 (3)
O3 0.84333 (12) 0.78850 (9) 0.56875 (9) 0.0627 (3)
N1 0.44450 (12) 0.78805 (9) 0.66593 (8) 0.0437 (3)
N2 0.54428 (12) 0.72130 (10) 0.59688 (8) 0.0438 (3)
N3 0.25440 (13) 0.94880 (10) 0.69277 (8) 0.0471 (3)
N4 0.93182 (13) 0.58003 (10) 0.61148 (9) 0.0473 (4)
N5 1.09333 (13) 0.46726 (10) 0.76728 (8) 0.0459 (3)
C1 0.43486 (15) 0.84428 (12) 0.33963 (10) 0.0425 (4)
C2 0.38220 (17) 0.96206 (13) 0.28338 (11) 0.0530 (5)
C3 0.3712 (2) 0.97650 (17) 0.18124 (13) 0.0668 (6)
C4 0.4089 (2) 0.87442 (18) 0.13408 (12) 0.0671 (6)
C5 0.46053 (19) 0.75785 (16) 0.18863 (12) 0.0622 (6)
C6 0.47474 (17) 0.74228 (13) 0.29017 (11) 0.0523 (5)
C7 0.44320 (14) 0.82808 (11) 0.45042 (10) 0.0402 (4)
C8 0.55601 (15) 0.73397 (12) 0.49132 (10) 0.0445 (4)
C9 0.35078 (14) 0.87626 (11) 0.62510 (10) 0.0406 (4)
C10 0.34782 (15) 0.89739 (11) 0.51700 (10) 0.0429 (4)
C11 0.10441 (17) 1.00413 (13) 0.67498 (11) 0.0546 (5)
C12 0.04171 (18) 1.10537 (13) 0.73676 (12) 0.0615 (5)
C13 0.17058 (19) 1.00733 (16) 0.86405 (13) 0.0641 (6)
C14 0.24172 (18) 0.90257 (14) 0.80774 (11) 0.0533 (5)
C15 0.64791 (15) 0.62509 (12) 0.64412 (11) 0.0462 (4)
C16 0.81643 (16) 0.67228 (12) 0.60443 (10) 0.0444 (4)
C17 1.09342 (16) 0.61613 (15) 0.59093 (11) 0.0578 (5)
C18 1.12789 (17) 0.59830 (13) 0.69637 (12) 0.0553 (5)
C19 0.93822 (16) 0.42227 (12) 0.78027 (11) 0.0460 (4)
C20 0.90918 (17) 0.44392 (12) 0.67254 (11) 0.0484 (4)
C21 1.14574 (15) 0.43318 (12) 0.85944 (10) 0.0446 (4)
C22 1.24267 (18) 0.51424 (13) 0.87566 (12) 0.0532 (5)
C23 1.2999 (2) 0.47658 (15) 0.96358 (13) 0.0611 (6)
C24 1.26051 (19) 0.35931 (15) 1.03610 (12) 0.0599 (5)
C25 1.16453 (19) 0.27695 (15) 1.02480 (12) 0.0596 (5)
C26 1.10713 (17) 0.31386 (13) 0.93713 (11) 0.0530 (5)
H2 0.35420 1.03140 0.31490 0.0640*
H3 0.33800 1.05620 0.14380 0.0800*
H4 0.39940 0.88440 0.06570 0.0810*
H5 0.48620 0.68860 0.15690 0.0750*
H6 0.51130 0.66300 0.32590 0.0630*
H10 0.27860 0.96040 0.49140 0.0510*
H11A 0.02810 0.93570 0.69910 0.0660*
H11B 0.12070 1.04350 0.59830 0.0660*
H12A 0.11470 1.17670 0.70830 0.0740*
H12B −0.05910 1.13980 0.72630 0.0740*
H13A 0.15730 0.97320 0.94090 0.0770*
H13B 0.24260 1.07930 0.83630 0.0770*
H14A 0.34600 0.87750 0.81590 0.0640*
H14B 0.17600 0.82650 0.84070 0.0640*
H15A 0.64680 0.54450 0.62510 0.0550*
H15B 0.60890 0.60740 0.72240 0.0550*
H17A 1.10820 0.70640 0.54920 0.0690*
H17B 1.16660 0.56240 0.54900 0.0690*
H18A 1.23860 0.61530 0.68140 0.0660*
H18B 1.06480 0.66110 0.73320 0.0660*
H19A 0.85690 0.46850 0.82480 0.0550*
H19B 0.93100 0.33020 0.81730 0.0550*
H20A 0.98170 0.38910 0.63140 0.0580*
H20B 0.80200 0.41990 0.68420 0.0580*
H22 1.26910 0.59500 0.82640 0.0640*
H23 1.36500 0.53130 0.97310 0.0730*
H25 1.13830 0.19710 1.07550 0.0720*
H26 1.04120 0.25820 0.92940 0.0630*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1156 (9) 0.0924 (7) 0.0722 (6) 0.0160 (6) −0.0589 (6) −0.0215 (5)
O1 0.0598 (7) 0.0678 (6) 0.0611 (6) 0.0271 (5) −0.0168 (5) −0.0268 (5)
O2 0.0534 (6) 0.0630 (6) 0.0617 (6) 0.0020 (5) 0.0024 (5) −0.0255 (5)
O3 0.0606 (6) 0.0408 (5) 0.0794 (7) −0.0021 (4) −0.0271 (5) 0.0026 (5)
N1 0.0414 (6) 0.0417 (5) 0.0441 (6) 0.0032 (4) −0.0094 (5) −0.0111 (5)
N2 0.0391 (6) 0.0427 (5) 0.0463 (6) 0.0082 (4) −0.0124 (5) −0.0108 (5)
N3 0.0453 (6) 0.0442 (6) 0.0463 (6) 0.0071 (5) −0.0075 (5) −0.0140 (5)
N4 0.0395 (6) 0.0438 (6) 0.0548 (7) 0.0038 (5) −0.0182 (5) −0.0045 (5)
N5 0.0445 (6) 0.0450 (6) 0.0459 (6) −0.0017 (5) −0.0163 (5) −0.0053 (5)
C1 0.0356 (7) 0.0440 (7) 0.0459 (7) −0.0017 (5) −0.0097 (5) −0.0114 (5)
C2 0.0543 (9) 0.0500 (8) 0.0552 (8) 0.0054 (6) −0.0206 (7) −0.0127 (6)
C3 0.0701 (11) 0.0693 (10) 0.0592 (9) 0.0068 (8) −0.0283 (8) −0.0077 (8)
C4 0.0657 (11) 0.0914 (12) 0.0465 (8) −0.0052 (9) −0.0193 (7) −0.0179 (8)
C5 0.0626 (10) 0.0713 (10) 0.0561 (9) −0.0032 (8) −0.0116 (7) −0.0288 (8)
C6 0.0543 (9) 0.0508 (8) 0.0516 (8) 0.0003 (6) −0.0137 (6) −0.0166 (6)
C7 0.0357 (7) 0.0375 (6) 0.0452 (7) −0.0016 (5) −0.0101 (5) −0.0095 (5)
C8 0.0389 (7) 0.0434 (7) 0.0497 (7) 0.0048 (5) −0.0112 (6) −0.0145 (6)
C9 0.0371 (7) 0.0360 (6) 0.0450 (7) −0.0004 (5) −0.0082 (5) −0.0100 (5)
C10 0.0388 (7) 0.0386 (6) 0.0492 (7) 0.0048 (5) −0.0136 (5) −0.0102 (5)
C11 0.0529 (9) 0.0497 (7) 0.0521 (8) 0.0148 (6) −0.0100 (6) −0.0122 (6)
C12 0.0565 (9) 0.0448 (7) 0.0671 (10) 0.0079 (6) −0.0004 (7) −0.0142 (7)
C13 0.0578 (10) 0.0736 (10) 0.0607 (9) −0.0014 (8) −0.0060 (7) −0.0310 (8)
C14 0.0518 (8) 0.0563 (8) 0.0478 (8) 0.0018 (6) −0.0088 (6) −0.0158 (6)
C15 0.0420 (7) 0.0415 (6) 0.0503 (7) 0.0058 (5) −0.0156 (6) −0.0057 (6)
C16 0.0471 (8) 0.0411 (7) 0.0432 (7) 0.0035 (5) −0.0178 (6) −0.0053 (5)
C17 0.0400 (8) 0.0661 (9) 0.0545 (8) −0.0036 (6) −0.0137 (6) 0.0039 (7)
C18 0.0478 (8) 0.0533 (8) 0.0591 (9) −0.0096 (6) −0.0200 (7) 0.0015 (7)
C19 0.0476 (8) 0.0372 (6) 0.0512 (7) 0.0004 (5) −0.0142 (6) −0.0100 (5)
C20 0.0513 (8) 0.0384 (6) 0.0588 (8) 0.0083 (5) −0.0240 (6) −0.0131 (6)
C21 0.0442 (7) 0.0434 (7) 0.0448 (7) 0.0072 (5) −0.0134 (6) −0.0126 (5)
C22 0.0596 (9) 0.0455 (7) 0.0574 (8) 0.0032 (6) −0.0224 (7) −0.0144 (6)
C23 0.0685 (10) 0.0594 (9) 0.0690 (10) 0.0083 (7) −0.0328 (8) −0.0282 (8)
C24 0.0682 (10) 0.0666 (9) 0.0525 (8) 0.0179 (8) −0.0302 (7) −0.0213 (7)
C25 0.0634 (10) 0.0571 (8) 0.0518 (8) 0.0062 (7) −0.0197 (7) −0.0045 (7)
C26 0.0534 (9) 0.0490 (7) 0.0551 (8) 0.0000 (6) −0.0203 (7) −0.0077 (6)

Geometric parameters (Å, °)

F1—C24 1.369 (2) C21—C26 1.3999 (19)
O1—C8 1.2343 (17) C22—C23 1.380 (2)
O2—C12 1.4173 (18) C23—C24 1.357 (2)
O2—C13 1.424 (2) C24—C25 1.366 (2)
O3—C16 1.2215 (17) C25—C26 1.378 (2)
N1—N2 1.3698 (15) C2—H2 0.9300
N1—C9 1.3098 (17) C3—H3 0.9300
N2—C8 1.3646 (16) C4—H4 0.9300
N2—C15 1.4531 (18) C5—H5 0.9300
N3—C9 1.3883 (16) C6—H6 0.9300
N3—C11 1.464 (2) C10—H10 0.9300
N3—C14 1.4612 (17) C11—H11A 0.9700
N4—C16 1.3501 (18) C11—H11B 0.9700
N4—C17 1.4532 (19) C12—H12A 0.9700
N4—C20 1.4571 (17) C12—H12B 0.9700
N5—C18 1.4586 (18) C13—H13A 0.9700
N5—C19 1.4572 (19) C13—H13B 0.9700
N5—C21 1.4067 (17) C14—H14A 0.9700
C1—C2 1.393 (2) C14—H14B 0.9700
C1—C6 1.3933 (19) C15—H15A 0.9700
C1—C7 1.4827 (18) C15—H15B 0.9700
C2—C3 1.379 (2) C17—H17A 0.9700
C3—C4 1.375 (3) C17—H17B 0.9700
C4—C5 1.371 (3) C18—H18A 0.9700
C5—C6 1.380 (2) C18—H18B 0.9700
C7—C8 1.4639 (19) C19—H19A 0.9700
C7—C10 1.3528 (18) C19—H19B 0.9700
C9—C10 1.4219 (18) C20—H20A 0.9700
C11—C12 1.504 (2) C20—H20B 0.9700
C13—C14 1.502 (2) C22—H22 0.9300
C15—C16 1.518 (2) C23—H23 0.9300
C17—C18 1.508 (2) C25—H25 0.9300
C19—C20 1.509 (2) C26—H26 0.9300
C21—C22 1.396 (2)
F1···H3i 2.7700 H2···H10 2.1900
F1···H15Bii 2.6900 H2···O3iii 2.9100
F1···H19Aii 2.7100 H2···N1iii 2.9000
O1···C6 2.8742 (19) H3···F1xii 2.7700
O1···C16 3.0123 (18) H3···C25xii 3.0300
O2···N3 2.8383 (15) H3···H25xii 2.4400
O3···N2 2.7209 (16) H5···C22iv 3.0700
O3···C11iii 3.3306 (18) H5···C23iv 2.8800
O3···C8 3.2257 (18) H5···C24iv 2.9800
O1···H12Aiii 2.6800 H6···O1 2.3200
O1···H15A 2.4500 H6···C8 2.7100
O1···H6 2.3200 H6···H15Axi 2.5800
O1···H17Biv 2.7700 H10···C2 2.6600
O2···H13Av 2.7200 H10···C11 2.6100
O2···H26vi 2.7500 H10···H2 2.1900
O3···H17A 2.3800 H10···H11B 2.0000
O3···H2iii 2.9100 H10···O3iii 2.7800
O3···H10iii 2.7800 H11B···C10 2.5700
O3···H11Biii 2.4100 H11B···H10 2.0000
N2···O3 2.7209 (16) H11B···O3iii 2.4100
N3···O2 2.8383 (15) H12A···H13B 2.3100
N4···N5 2.8407 (16) H12A···H20Avi 2.5500
N5···N4 2.8407 (16) H12A···O1iii 2.6800
N1···H22vii 2.7300 H12B···C3x 2.9200
N1···H2iii 2.9000 H12B···C4x 3.0800
N1···H18Avii 2.6700 H13A···O2v 2.7200
N1···H14A 2.3600 H13B···H12A 2.3100
N1···H14B 2.8600 H13B···C6iii 3.0700
N2···H18Avii 2.8300 H14A···N1 2.3600
C2···C14iii 3.508 (2) H14A···C2iii 2.8600
C6···O1 2.8742 (19) H14B···N1 2.8600
C7···C9iii 3.5673 (18) H14B···H22vii 2.5600
C8···O3 3.2257 (18) H15A···O1 2.4500
C9···C7iii 3.5673 (18) H15A···C20 2.6500
C9···C18vii 3.497 (2) H15A···H20B 2.0000
C9···C10iii 3.5089 (18) H15A···H6xi 2.5800
C10···C9iii 3.5089 (18) H15B···C20 3.0200
C10···C10iii 3.5197 (19) H15B···H20B 2.5500
C11···O3iii 3.3306 (18) H15B···F1ii 2.6900
C12···C19vi 3.577 (2) H17A···O3 2.3800
C14···C2iii 3.508 (2) H17A···C10viii 2.9700
C16···O1 3.0123 (18) H17B···H20A 2.4000
C18···C9viii 3.497 (2) H17B···O1iv 2.7700
C19···C12ix 3.577 (2) H18A···N1viii 2.6700
C2···H14Aiii 2.8600 H18A···N2viii 2.8300
C2···H10 2.6600 H18A···C9viii 2.8900
C3···H12Bx 2.9200 H18A···C22 2.5500
C4···H12Bx 3.0800 H18A···H22 2.0100
C5···H20Bxi 2.9400 H18B···C22 2.8900
C6···H20Bxi 3.0500 H18B···H22 2.4700
C6···H13Biii 3.0700 H19A···F1ii 2.7100
C8···H6 2.7100 H19A···C23ii 2.9500
C9···H18Avii 2.8900 H19A···C24ii 2.8800
C10···H17Avii 2.9700 H19B···C12ix 2.8700
C10···H2 2.6900 H19B···C26 2.5500
C10···H11B 2.5700 H19B···H26 1.9900
C11···H10 2.6100 H20A···C12ix 3.0300
C12···H20Avi 3.0300 H20A···H12Aix 2.5500
C12···H19Bvi 2.8700 H20A···H17B 2.4000
C13···H26vi 3.0500 H20B···C15 2.4800
C15···H20B 2.4800 H20B···H15A 2.0000
C18···H22 2.4600 H20B···H15B 2.5500
C19···H26 2.6100 H20B···C5xi 2.9400
C20···H15A 2.6500 H20B···C6xi 3.0500
C20···H15B 3.0200 H22···N1viii 2.7300
C22···H18A 2.5500 H22···C18 2.4600
C22···H18B 2.8900 H22···H14Bviii 2.5600
C22···H5iv 3.0700 H22···H18A 2.0100
C23···H5iv 2.8800 H22···H18B 2.4700
C23···H19Aii 2.9500 H25···H3i 2.4400
C24···H5iv 2.9800 H26···O2ix 2.7500
C24···H19Aii 2.8800 H26···C13ix 3.0500
C25···H3i 3.0300 H26···C19 2.6100
C26···H19B 2.5500 H26···H19B 1.9900
H2···C10 2.6900
C12—O2—C13 108.95 (12) C4—C5—H5 120.00
N2—N1—C9 116.01 (10) C6—C5—H5 120.00
N1—N2—C8 127.91 (11) C1—C6—H6 120.00
N1—N2—C15 114.75 (10) C5—C6—H6 120.00
C8—N2—C15 117.34 (11) C7—C10—H10 119.00
C9—N3—C11 119.14 (11) C9—C10—H10 119.00
C9—N3—C14 117.13 (11) N3—C11—H11A 110.00
C11—N3—C14 112.25 (11) N3—C11—H11B 110.00
C16—N4—C17 120.60 (12) C12—C11—H11A 110.00
C16—N4—C20 126.08 (12) C12—C11—H11B 110.00
C17—N4—C20 110.06 (12) H11A—C11—H11B 108.00
C18—N5—C19 114.00 (11) O2—C12—H12A 109.00
C18—N5—C21 116.78 (11) O2—C12—H12B 109.00
C19—N5—C21 117.13 (10) C11—C12—H12A 109.00
C2—C1—C6 118.22 (12) C11—C12—H12B 109.00
C2—C1—C7 120.29 (12) H12A—C12—H12B 108.00
C6—C1—C7 121.46 (12) O2—C13—H13A 109.00
C1—C2—C3 120.40 (14) O2—C13—H13B 109.00
C2—C3—C4 120.71 (16) C14—C13—H13A 109.00
C3—C4—C5 119.50 (15) C14—C13—H13B 109.00
C4—C5—C6 120.59 (15) H13A—C13—H13B 108.00
C1—C6—C5 120.57 (14) N3—C14—H14A 110.00
C1—C7—C8 120.11 (11) N3—C14—H14B 110.00
C1—C7—C10 122.01 (12) C13—C14—H14A 110.00
C8—C7—C10 117.88 (11) C13—C14—H14B 110.00
O1—C8—N2 119.12 (12) H14A—C14—H14B 108.00
O1—C8—C7 126.40 (12) N2—C15—H15A 109.00
N2—C8—C7 114.49 (11) N2—C15—H15B 109.00
N1—C9—N3 116.54 (11) C16—C15—H15A 109.00
N1—C9—C10 121.96 (11) C16—C15—H15B 109.00
N3—C9—C10 121.49 (11) H15A—C15—H15B 108.00
C7—C10—C9 121.60 (12) N4—C17—H17A 110.00
N3—C11—C12 109.61 (12) N4—C17—H17B 110.00
O2—C12—C11 112.03 (12) C18—C17—H17A 110.00
O2—C13—C14 112.09 (14) C18—C17—H17B 110.00
N3—C14—C13 110.40 (12) H17A—C17—H17B 108.00
N2—C15—C16 111.27 (11) N5—C18—H18A 109.00
O3—C16—N4 122.80 (14) N5—C18—H18B 109.00
O3—C16—C15 120.54 (13) C17—C18—H18A 109.00
N4—C16—C15 116.67 (11) C17—C18—H18B 109.00
N4—C17—C18 110.23 (12) H18A—C18—H18B 108.00
N5—C18—C17 112.17 (12) N5—C19—H19A 109.00
N5—C19—C20 111.62 (11) N5—C19—H19B 109.00
N4—C20—C19 110.40 (11) C20—C19—H19A 109.00
N5—C21—C22 121.73 (12) C20—C19—H19B 109.00
N5—C21—C26 121.14 (12) H19A—C19—H19B 108.00
C22—C21—C26 117.10 (13) N4—C20—H20A 110.00
C21—C22—C23 121.10 (14) N4—C20—H20B 110.00
C22—C23—C24 119.61 (16) C19—C20—H20A 110.00
F1—C24—C23 119.38 (15) C19—C20—H20B 110.00
F1—C24—C25 118.95 (14) H20A—C20—H20B 108.00
C23—C24—C25 121.67 (15) C21—C22—H22 119.00
C24—C25—C26 119.02 (14) C23—C22—H22 119.00
C21—C26—C25 121.49 (14) C22—C23—H23 120.00
C1—C2—H2 120.00 C24—C23—H23 120.00
C3—C2—H2 120.00 C24—C25—H25 121.00
C2—C3—H3 120.00 C26—C25—H25 120.00
C4—C3—H3 120.00 C21—C26—H26 119.00
C3—C4—H4 120.00 C25—C26—H26 119.00
C5—C4—H4 120.00
C13—O2—C12—C11 60.78 (16) C6—C1—C7—C10 −151.12 (14)
C12—O2—C13—C14 −59.74 (16) C6—C1—C7—C8 28.3 (2)
C9—N1—N2—C8 −1.23 (19) C6—C1—C2—C3 −0.4 (2)
N2—N1—C9—C10 2.71 (18) C7—C1—C2—C3 −178.64 (14)
C9—N1—N2—C15 179.39 (11) C2—C1—C7—C8 −153.52 (13)
N2—N1—C9—N3 −177.06 (11) C2—C1—C6—C5 −0.7 (2)
C15—N2—C8—O1 −2.74 (19) C7—C1—C6—C5 177.56 (14)
N1—N2—C8—C7 −2.13 (19) C2—C1—C7—C10 27.1 (2)
C15—N2—C8—C7 177.24 (11) C1—C2—C3—C4 1.3 (3)
N1—N2—C15—C16 −105.23 (12) C2—C3—C4—C5 −1.1 (3)
C8—N2—C15—C16 75.32 (14) C3—C4—C5—C6 0.1 (3)
N1—N2—C8—O1 177.89 (12) C4—C5—C6—C1 0.9 (3)
C14—N3—C11—C12 52.25 (15) C1—C7—C10—C9 176.59 (12)
C14—N3—C9—N1 −12.56 (18) C8—C7—C10—C9 −2.82 (19)
C14—N3—C9—C10 167.66 (13) C1—C7—C8—O1 4.6 (2)
C9—N3—C14—C13 165.09 (13) C10—C7—C8—N2 3.99 (18)
C11—N3—C14—C13 −51.70 (16) C1—C7—C8—N2 −175.43 (12)
C9—N3—C11—C12 −165.36 (11) C10—C7—C8—O1 −176.03 (14)
C11—N3—C9—N1 −153.17 (12) N1—C9—C10—C7 −0.7 (2)
C11—N3—C9—C10 27.06 (18) N3—C9—C10—C7 179.07 (12)
C16—N4—C20—C19 −98.68 (16) N3—C11—C12—O2 −57.26 (16)
C17—N4—C16—O3 8.9 (2) O2—C13—C14—N3 55.52 (17)
C17—N4—C16—C15 −170.73 (11) N2—C15—C16—N4 −158.32 (11)
C20—N4—C16—C15 −13.24 (19) N2—C15—C16—O3 22.07 (17)
C20—N4—C17—C18 −60.28 (15) N4—C17—C18—N5 53.86 (16)
C16—N4—C17—C18 100.50 (15) N5—C19—C20—N4 −54.43 (15)
C20—N4—C16—O3 166.37 (13) N5—C21—C22—C23 −176.61 (14)
C17—N4—C20—C19 60.79 (15) C26—C21—C22—C23 1.2 (2)
C19—N5—C18—C17 −48.75 (16) N5—C21—C26—C25 176.70 (14)
C21—N5—C19—C20 −169.67 (11) C22—C21—C26—C25 −1.1 (2)
C19—N5—C21—C26 34.26 (18) C21—C22—C23—C24 −0.5 (2)
C18—N5—C19—C20 48.87 (15) C22—C23—C24—F1 179.76 (15)
C18—N5—C21—C26 174.65 (13) C22—C23—C24—C25 −0.3 (3)
C18—N5—C21—C22 −7.63 (19) F1—C24—C25—C26 −179.68 (14)
C21—N5—C18—C17 169.65 (12) C23—C24—C25—C26 0.4 (3)
C19—N5—C21—C22 −148.02 (13) C24—C25—C26—C21 0.4 (2)

Symmetry codes: (i) x+1, y−1, z+1; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x, −y+2, −z+2; (vi) x−1, y+1, z; (vii) x−1, y, z; (viii) x+1, y, z; (ix) x+1, y−1, z; (x) −x, −y+2, −z+1; (xi) −x+1, −y+1, −z+1; (xii) x−1, y+1, z−1.

Hydrogen-bond geometry (Å, °)

Cg2, Cg4 and Cg5 are the centroids of the N1/N2/C7–C10, C1–C6 and C21–C26 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C6—H6···O1 0.93 2.32 2.8742 (19) 117
C11—H11B···O3iii 0.97 2.41 3.3306 (18) 159
C17—H17A···O3 0.97 2.38 2.7660 (19) 103
C5—H5···Cg5iv 0.93 2.86 3.4941 (18) 127
C13—H13B···Cg4iii 0.97 2.92 3.7395 (19) 143
C18—H18A···Cg2viii 0.97 2.73 3.5079 (16) 138

Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+1, −z+1; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2227).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brogden, R. N. (1986). Drugs, 32, 60–70. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw Hill.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  10. Şüküroğlu, M., Küpeli, E., Banoğlu, E., Ünlü, S., Yeşilada, E. & Şahin, M. F. (2006). Arzneim.-Forsch. Drug Res. 56, 337–345. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005071/ez2227sup1.cif

e-67-0o666-sup1.cif (30.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005071/ez2227Isup2.hkl

e-67-0o666-Isup2.hkl (238.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES