Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 2;67(Pt 3):o546. doi: 10.1107/S1600536811003552

2,3-Dibromo-3-(5-nitro-2-fur­yl)-1-phenyl­propan-1-one

Tara Shahani a, Hoong-Kun Fun a,*,, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3052152  PMID: 21522313

Abstract

In the title compound, C13H9Br2NO4, the phenyl and 2-nitro­furan rings are linked by a 2,3-dibromo­propanal group, six atoms of which, including a furyl C atom, are disordered over two positions with a site-occupancy ratio of 0.733 (11):0.267 (11). The dihedral angle between the furan [maximum deviation = 0.028 (4) Å] and phenyl rings in the major component is 16.9 (3)°. In the minor component, the corresponding values are 0.87 (4) Å and 23.3 (5)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into two-dimensional arrays parallel to the ab plane.

Related literature

For the biological activity of sydnones, see: Holla et al. (1986, 1987, 1992); Rai et al. (2008). For related structures, see: Fun et al. (2010, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o546-scheme1.jpg

Experimental

Crystal data

  • C13H9Br2NO4

  • M r = 403.03

  • Triclinic, Inline graphic

  • a = 8.6939 (7) Å

  • b = 8.7834 (8) Å

  • c = 10.4722 (9) Å

  • α = 89.334 (2)°

  • β = 69.846 (2)°

  • γ = 68.114 (2)°

  • V = 690.32 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.88 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.292, T max = 0.644

  • 10644 measured reflections

  • 4015 independent reflections

  • 3390 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.100

  • S = 1.33

  • 4015 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003552/sj5095sup1.cif

e-67-0o546-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003552/sj5095Isup2.hkl

e-67-0o546-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H9AA⋯O1i 0.98 2.25 3.098 (6) 145
C4—H4A⋯O4ii 0.93 2.46 3.200 (6) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Nitrofurans belong to a class of synthetic compounds characterized by the presence of the 5-nitro-2-furyl group. The presence of a nitro group at the 5-position of the molecule conferred antibacterial activity (Holla et al.1986). A large number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla & Kalluraya et al.1992; Holla et al. 1987). Dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones known as chalcones (Rai et al., 2008).

The title compound, C13H9Br2NO4, (Fig. 1), consist of phenyl (C1–C6) and 2-nitrofuran (C10–C13/O2–O4/N1) rings linked by a 2,3-dibromopropanal group (O1/C7–C9/Br1/Br2). Six atoms (C8–C10/Br1/Br2/O2) of this linking group including a furyl C atom are disordered over two positions with a site-occupancy ratio of 0.733 (11): 0.267 (11). The dihedral angle between the furan (C11–C13/O2/C10) (maximum deviation of 0.028 (4) Å of at atom C12) and phenyl rings in the major component is 16.9 (3)°. In the minor component, the corresponding values are 0.87 (4) Å at atom C12 and 23.3 (5)°. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those in related structures (Fun et al., 2010, 2011).

In the crystal packing (Fig. 2), intermolecular C9A—H9AA···O1 and C4—H4A···O4 hydrogen bonds (Table 1) link the molecules into two-dimensional arrays parallel to the ab plane.

Experimental

1-Phenyl-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanone that separated out were collected by filtration and washed with petroleum ether and dried. They were then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All the H atoms were positioned geometrically [C–H = 0.9300 or 0.9800 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq (C). Six atoms are disordered over two positions with a refined occupany ratio of 0.733 (11):0.267 (11).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both major and minor components are shown with bonds to atoms of the minor component drawn as open lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Only the major disordered component is shown.

Crystal data

C13H9Br2NO4 Z = 2
Mr = 403.03 F(000) = 392
Triclinic, P1 Dx = 1.939 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6939 (7) Å Cell parameters from 4381 reflections
b = 8.7834 (8) Å θ = 2.7–29.9°
c = 10.4722 (9) Å µ = 5.88 mm1
α = 89.334 (2)° T = 100 K
β = 69.846 (2)° Block, colourless
γ = 68.114 (2)° 0.28 × 0.18 × 0.08 mm
V = 690.32 (10) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4015 independent reflections
Radiation source: fine-focus sealed tube 3390 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.292, Tmax = 0.644 k = −12→12
10644 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.P)2 + 1.8339P] where P = (Fo2 + 2Fc2)/3
4015 reflections (Δ/σ)max = 0.004
216 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1A 0.5867 (5) −0.0270 (6) 0.3027 (5) 0.0390 (6) 0.733 (11)
Br2A 0.3391 (5) 0.3650 (6) 0.0580 (4) 0.0351 (7) 0.733 (11)
Br1B 0.3448 (12) 0.3749 (13) 0.0447 (8) 0.0197 (10) 0.267 (11)
Br2B 0.5581 (11) −0.0069 (17) 0.3178 (13) 0.0296 (14) 0.267 (11)
O1 0.2667 (4) 0.0406 (4) 0.1625 (3) 0.0338 (7)
O2A 0.6226 (6) 0.3610 (7) 0.2085 (5) 0.0189 (9) 0.733 (11)
O2B 0.6469 (19) 0.3223 (18) 0.2302 (15) 0.018 (3)* 0.267 (11)
O3 0.6434 (4) 0.5677 (4) 0.3755 (3) 0.0325 (6)
O4 0.8888 (4) 0.5635 (4) 0.2207 (3) 0.0415 (8)
N1 0.7672 (4) 0.5148 (4) 0.2642 (3) 0.0249 (6)
C1 −0.0571 (5) 0.1488 (5) 0.3829 (4) 0.0212 (7)
H1A −0.0479 0.0924 0.3043 0.025*
C2 −0.2122 (5) 0.1970 (5) 0.4979 (4) 0.0253 (7)
H2A −0.3084 0.1755 0.4960 0.030*
C3 −0.2236 (5) 0.2777 (5) 0.6167 (4) 0.0294 (8)
H3A −0.3274 0.3095 0.6943 0.035*
C4 −0.0827 (5) 0.3104 (6) 0.6197 (4) 0.0323 (9)
H4A −0.0907 0.3625 0.7000 0.039*
C5 0.0721 (5) 0.2667 (5) 0.5041 (4) 0.0292 (8)
H5A 0.1662 0.2918 0.5062 0.035*
C6 0.0856 (5) 0.1849 (5) 0.3846 (4) 0.0228 (7)
C7 0.2483 (5) 0.1296 (5) 0.2579 (4) 0.0247 (7)
C8A 0.4061 (7) 0.1730 (7) 0.2557 (5) 0.0216 (12) 0.733 (11)
H8AA 0.3645 0.2723 0.3204 0.026* 0.733 (11)
C9A 0.5127 (6) 0.1929 (6) 0.1129 (5) 0.0193 (12) 0.733 (11)
H9AA 0.5601 0.0895 0.0515 0.023* 0.733 (11)
C10A 0.6591 (8) 0.2419 (8) 0.1058 (6) 0.0203 (11) 0.733 (11)
C8B 0.3734 (19) 0.229 (2) 0.2179 (16) 0.021 (3)* 0.267 (11)
H8BA 0.3511 0.3022 0.2981 0.025* 0.267 (11)
C9B 0.5672 (17) 0.1115 (16) 0.1590 (13) 0.018 (3)* 0.267 (11)
H9BA 0.5921 0.0391 0.0776 0.022* 0.267 (11)
C10B 0.688 (2) 0.200 (2) 0.1295 (18) 0.019 (4)* 0.267 (11)
C11 0.8299 (5) 0.1960 (5) 0.0144 (4) 0.0253 (8)
H11A 0.8883 0.1133 −0.0605 0.030*
C12 0.9001 (5) 0.2992 (5) 0.0562 (4) 0.0240 (7)
H12A 1.0104 0.3042 0.0109 0.029*
C13 0.7741 (5) 0.3889 (5) 0.1753 (4) 0.0214 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.0594 (17) 0.0360 (9) 0.0387 (12) −0.0285 (13) −0.0276 (13) 0.0186 (8)
Br2A 0.0317 (11) 0.0294 (7) 0.0539 (16) −0.0122 (6) −0.0269 (10) 0.0123 (8)
Br1B 0.0144 (15) 0.026 (2) 0.0159 (13) −0.0064 (14) −0.0040 (10) 0.0003 (13)
Br2B 0.0210 (13) 0.049 (4) 0.0275 (18) −0.0201 (15) −0.0118 (11) 0.017 (2)
O1 0.0328 (15) 0.0468 (19) 0.0237 (14) −0.0266 (14) 0.0000 (12) −0.0101 (12)
O2A 0.0164 (18) 0.022 (2) 0.018 (2) −0.0095 (17) −0.0035 (16) −0.0004 (17)
O3 0.0296 (14) 0.0340 (16) 0.0319 (15) −0.0137 (13) −0.0073 (12) −0.0056 (12)
O4 0.0337 (16) 0.053 (2) 0.0443 (18) −0.0308 (16) −0.0064 (14) −0.0062 (15)
N1 0.0224 (14) 0.0256 (16) 0.0300 (17) −0.0107 (13) −0.0117 (13) 0.0014 (13)
C1 0.0196 (15) 0.0248 (18) 0.0199 (16) −0.0109 (14) −0.0055 (13) 0.0004 (13)
C2 0.0197 (16) 0.029 (2) 0.0276 (19) −0.0124 (15) −0.0056 (14) 0.0034 (15)
C3 0.0229 (18) 0.034 (2) 0.029 (2) −0.0116 (16) −0.0062 (15) −0.0009 (16)
C4 0.0281 (19) 0.042 (2) 0.0228 (19) −0.0168 (18) −0.0010 (15) −0.0096 (16)
C5 0.0233 (17) 0.039 (2) 0.0235 (18) −0.0166 (17) −0.0010 (14) −0.0095 (16)
C6 0.0211 (16) 0.0255 (18) 0.0207 (17) −0.0118 (14) −0.0033 (13) −0.0018 (13)
C7 0.0212 (16) 0.0291 (19) 0.0222 (17) −0.0146 (15) −0.0008 (14) −0.0042 (14)
C8A 0.020 (2) 0.024 (3) 0.022 (2) −0.012 (2) −0.0047 (19) 0.001 (2)
C9A 0.018 (2) 0.021 (3) 0.018 (2) −0.0080 (18) −0.0042 (17) −0.0023 (17)
C10A 0.022 (3) 0.019 (3) 0.021 (3) −0.008 (2) −0.008 (2) 0.002 (2)
C11 0.0210 (17) 0.029 (2) 0.0205 (17) −0.0097 (15) −0.0014 (14) −0.0038 (14)
C12 0.0154 (15) 0.029 (2) 0.0251 (18) −0.0089 (14) −0.0039 (13) 0.0019 (14)
C13 0.0183 (15) 0.0254 (18) 0.0239 (17) −0.0126 (14) −0.0074 (13) 0.0026 (13)

Geometric parameters (Å, °)

Br1A—C8A 2.061 (7) C4—H4A 0.9300
Br2A—C9A 1.942 (7) C5—C6 1.398 (5)
Br1B—C8B 2.24 (2) C5—H5A 0.9300
Br2B—C9B 1.944 (18) C6—C7 1.485 (5)
O1—C7 1.205 (5) C7—C8A 1.547 (6)
O2A—C13 1.356 (5) C7—C8B 1.586 (15)
O2A—C10A 1.376 (7) C8A—C9A 1.512 (7)
O2B—C10B 1.37 (2) C8A—H8AA 0.9800
O2B—C13 1.390 (15) C9A—C10A 1.468 (7)
O3—N1 1.228 (4) C9A—H9AA 0.9800
O4—N1 1.229 (4) C10A—C11 1.366 (6)
N1—C13 1.424 (5) C8B—C9B 1.513 (19)
C1—C2 1.384 (5) C8B—H8BA 0.9800
C1—C6 1.396 (5) C9B—C10B 1.48 (2)
C1—H1A 0.9300 C9B—H9BA 0.9800
C2—C3 1.394 (6) C10B—C11 1.382 (17)
C2—H2A 0.9300 C11—C12 1.411 (5)
C3—C4 1.369 (6) C11—H11A 0.9300
C3—H3A 0.9300 C12—C13 1.347 (5)
C4—C5 1.388 (5) C12—H12A 0.9300
C13—O2A—C10A 104.7 (4) C8A—C9A—Br2A 104.1 (3)
C10B—O2B—C13 103.9 (12) C10A—C9A—H9AA 109.5
O3—N1—O4 124.8 (3) C8A—C9A—H9AA 109.5
O3—N1—C13 119.5 (3) Br2A—C9A—H9AA 109.5
O4—N1—C13 115.7 (3) C11—C10A—O2A 110.5 (4)
C2—C1—C6 120.1 (3) C11—C10A—C9A 133.2 (5)
C2—C1—H1A 119.9 O2A—C10A—C9A 116.3 (4)
C6—C1—H1A 119.9 C9B—C8B—C7 110.4 (11)
C1—C2—C3 119.8 (3) C9B—C8B—Br1B 102.2 (9)
C1—C2—H2A 120.1 C7—C8B—Br1B 112.9 (9)
C3—C2—H2A 120.1 C9B—C8B—H8BA 110.4
C4—C3—C2 120.3 (4) C7—C8B—H8BA 110.4
C4—C3—H3A 119.8 Br1B—C8B—H8BA 110.4
C2—C3—H3A 119.8 C10B—C9B—C8B 111.8 (12)
C3—C4—C5 120.7 (4) C10B—C9B—Br2B 114.8 (11)
C3—C4—H4A 119.7 C8B—C9B—Br2B 95.2 (9)
C5—C4—H4A 119.7 C10B—C9B—H9BA 111.3
C4—C5—C6 119.6 (4) C8B—C9B—H9BA 111.3
C4—C5—H5A 120.2 Br2B—C9B—H9BA 111.3
C6—C5—H5A 120.2 O2B—C10B—C11 111.1 (14)
C1—C6—C5 119.6 (3) O2B—C10B—C9B 115.5 (14)
C1—C6—C7 117.5 (3) C11—C10B—C9B 133.2 (15)
C5—C6—C7 123.0 (3) C10A—C11—C10B 20.1 (6)
O1—C7—C6 122.0 (3) C10A—C11—C12 106.3 (4)
O1—C7—C8A 119.2 (3) C10B—C11—C12 105.3 (8)
C6—C7—C8A 118.5 (3) C10A—C11—H11A 126.8
O1—C7—C8B 113.5 (6) C10B—C11—H11A 124.3
C6—C7—C8B 121.2 (6) C12—C11—H11A 126.8
C8A—C7—C8B 24.7 (5) C13—C12—C11 105.7 (3)
C9A—C8A—C7 111.9 (4) C13—C12—H12A 127.1
C9A—C8A—Br1A 103.2 (3) C11—C12—H12A 127.1
C7—C8A—Br1A 108.7 (4) C12—C13—O2A 112.5 (4)
C9A—C8A—H8AA 110.9 C12—C13—O2B 111.5 (7)
C7—C8A—H8AA 110.9 O2A—C13—O2B 18.2 (5)
Br1A—C8A—H8AA 110.9 C12—C13—N1 131.7 (3)
C10A—C9A—C8A 114.2 (4) O2A—C13—N1 115.6 (3)
C10A—C9A—Br2A 109.9 (4) O2B—C13—N1 115.6 (7)
C6—C1—C2—C3 −1.7 (6) C7—C8B—C9B—C10B −176.0 (12)
C1—C2—C3—C4 0.4 (6) Br1B—C8B—C9B—C10B 63.7 (13)
C2—C3—C4—C5 1.2 (7) C7—C8B—C9B—Br2B −56.6 (11)
C3—C4—C5—C6 −1.6 (7) Br1B—C8B—C9B—Br2B −176.9 (7)
C2—C1—C6—C5 1.3 (6) C13—O2B—C10B—C11 −2.7 (15)
C2—C1—C6—C7 179.9 (4) C13—O2B—C10B—C9B −177.7 (12)
C4—C5—C6—C1 0.3 (6) C8B—C9B—C10B—O2B 45.3 (18)
C4—C5—C6—C7 −178.2 (4) Br2B—C9B—C10B—O2B −61.8 (16)
C1—C6—C7—O1 −8.5 (6) C8B—C9B—C10B—C11 −128.2 (19)
C5—C6—C7—O1 170.0 (4) Br2B—C9B—C10B—C11 124.7 (17)
C1—C6—C7—C8A 178.1 (4) O2A—C10A—C11—C10B 86 (3)
C5—C6—C7—C8A −3.4 (6) C9A—C10A—C11—C10B −96 (3)
C1—C6—C7—C8B 149.7 (8) O2A—C10A—C11—C12 −4.1 (7)
C5—C6—C7—C8B −31.8 (9) C9A—C10A—C11—C12 174.2 (7)
O1—C7—C8A—C9A 36.3 (6) O2B—C10B—C11—C10A −84 (3)
C6—C7—C8A—C9A −150.1 (4) C9B—C10B—C11—C10A 89 (3)
C8B—C7—C8A—C9A −46.6 (14) O2B—C10B—C11—C12 11.5 (14)
O1—C7—C8A—Br1A −77.1 (5) C9B—C10B—C11—C12 −174.8 (16)
C6—C7—C8A—Br1A 96.5 (4) C10A—C11—C12—C13 5.3 (5)
C8B—C7—C8A—Br1A −159.9 (15) C10B—C11—C12—C13 −15.6 (9)
C7—C8A—C9A—C10A 177.2 (5) C11—C12—C13—O2A −4.7 (5)
Br1A—C8A—C9A—C10A −66.1 (5) C11—C12—C13—O2B 14.9 (7)
C7—C8A—C9A—Br2A 57.4 (5) C11—C12—C13—N1 −178.8 (4)
Br1A—C8A—C9A—Br2A 174.0 (3) C10A—O2A—C13—C12 2.2 (6)
C13—O2A—C10A—C11 1.3 (7) C10A—O2A—C13—O2B −88 (3)
C13—O2A—C10A—C9A −177.3 (5) C10A—O2A—C13—N1 177.3 (4)
C8A—C9A—C10A—C11 139.8 (8) C10B—O2B—C13—C12 −7.8 (12)
Br2A—C9A—C10A—C11 −103.6 (8) C10B—O2B—C13—O2A 89 (3)
C8A—C9A—C10A—O2A −41.9 (7) C10B—O2B—C13—N1 −176.6 (9)
Br2A—C9A—C10A—O2A 74.7 (6) O3—N1—C13—C12 −172.8 (4)
O1—C7—C8B—C9B −59.4 (13) O4—N1—C13—C12 7.9 (6)
C6—C7—C8B—C9B 140.8 (9) O3—N1—C13—O2A 13.3 (6)
C8A—C7—C8B—C9B 49.9 (13) O4—N1—C13—O2A −166.0 (4)
O1—C7—C8B—Br1B 54.3 (9) O3—N1—C13—O2B −6.9 (8)
C6—C7—C8B—Br1B −105.5 (7) O4—N1—C13—O2B 173.8 (7)
C8A—C7—C8B—Br1B 163.6 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9A—H9AA···O1i 0.98 2.25 3.098 (6) 145
C4—H4A···O4ii 0.93 2.46 3.200 (6) 136

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5095).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Fun, H.-K., Shahani, T., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o2818–o2819. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o79. [DOI] [PMC free article] [PubMed]
  6. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.
  7. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.
  8. Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.
  9. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811003552/sj5095sup1.cif

e-67-0o546-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811003552/sj5095Isup2.hkl

e-67-0o546-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES