Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 23;67(Pt 3):o686. doi: 10.1107/S1600536811005708

2-Meth­oxy­anilinium 3-hy­droxy-2,4,6-trinitro­phenolate

Doraisamyraja Kalaivani a,*, Rangasamy Malarvizhi a, Kaliyaperumal Thanigaimani b, Packianathan Thomas Muthiah c
PMCID: PMC3052155  PMID: 21522431

Abstract

The cation and anion of the title mol­ecular salt, C7H10NO+·C6H2N3O8 , are linked via an N—H⋯O hydrogen bond. An intra­molecular O—H⋯O hydrogen bond is also found in the anion. In the crystal, the anions self-assemble via O—H⋯O hydrogen bonds, forming a C(9) supra­molecular chain the b axis. Further inter­molecular N—H⋯O inter­actions also occur.

Related literature

For crystalline metal complexes of styphnic acid, see: Cui et al. (2008a,b ); Orbovic & Codoceo (2008); Zheng et al. (2006a ,b ); Zhu & Xiao (2009). For crystalline adducts of styphnic acid with organic bases, see: Abashev et al. (2001); Liu et al. (2008); Tenishev et al. (2002); For related mol­ecular salts, see: Kalaivani & Malarvizhi (2010); Vogel (1978). graphic file with name e-67-0o686-scheme1.jpg

Experimental

Crystal data

  • C7H10NO+·C6H2N3O8

  • M r = 368.27

  • Monoclinic, Inline graphic

  • a = 10.6957 (4) Å

  • b = 17.8368 (5) Å

  • c = 8.0527 (3) Å

  • β = 91.991 (2)°

  • V = 1535.34 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.978, T max = 0.988

  • 19208 measured reflections

  • 4930 independent reflections

  • 3539 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.142

  • S = 1.04

  • 4930 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005708/bv2174sup1.cif

e-67-0o686-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005708/bv2174Isup2.hkl

e-67-0o686-Isup2.hkl (236.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 1.89 2.7408 (16) 158
N1—H1C⋯O2i 0.89 1.87 2.7569 (16) 177
O5—H5⋯O6 0.82 1.95 2.6311 (18) 140
O5—H5⋯O9ii 0.82 2.29 2.9263 (17) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the DST-India (FIST programme) for the use of the Bruker SMART APEXII diffractometer at the School of Chemistry, Bharathidasan University.

supplementary crystallographic information

Comment

In spite of the fact that many crystalline complexes have been derived from styphnic acid and metals in recent years [(Cui et al., 2008a, 2008b), (Orbovic et al., 2008), (Zheng et al., 2006a, 2006b), (Zhu & Xiao, 2009)], only a few crystalline complexes are known from styphnic acid and organic molecules [(Abashev et al., 2001), (Liu et al., 2008), (Tenishev et al., 2002)]. It has also been pointed out that aromatic hydrocarbons (and also some amines) form 1:1 adducts with styphnic acid and these derivatives do not crystallize as well as the corresponding picrates (Vogel, 1978). In the present work an elegant method has been proposed to prepare a crystalline molecular salt from 2-methoxyaniline and styphnic acid.

The title compound (I), is shown in Fig 1. The adduct formation between styphnic acid and 2-methoxyaniline may involve two important types of charge-transfer interactions (i) π-π* transition and (ii) proton transfer. A view of the crystal packing is shown in Fig 2. The proton transfer from phenolic OH to amino group is the main contributing factor which stabilizes the title molecular salt. The same observation has been reported by us in a related molecular salt (Kalaivani & Malarvizhi, 2010). The 3-hydroxy-2,4,6-trinitrophenolate ions self-assemble via O—H···O hydrogen bonds to from a supramolecular chain the b axis, with the graph-set notation C(9); this is shown in Fig. 3.

Experimental

2,4,6-Trinitro-1,3-benzenediol (styphnic acid: 2.45 g, 0.01 mol) was dissolved in the minimum quantity of dimethyl sulphoxide. 2-Methoxyaniline (1.23 g, 0.01 mol) dissolved in the minimum amount of dimethyl sulphoxide was added to styphnic acid solution. The mixture was stirred well for 3 h and kept as such for another 12 h. The mixture was then poured into ice cold water with stirring. The molecular salt (adduct) formed was filtered and washed first with water and then with alcohol and dried. The dried adduct was washed several times with ether and recrystallized from ethanol (yield 70–75%, mp.455 K). Good pale yellow crystals of the molecular salt were obtained by slow evaporation of ethanol at room temperature. The same molecular salt was obtained when styphnic acid (0.01 mol) was mixed with excess of 2-methoxyaniline (0.03 mol).

Refinement

All hydrogen atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.89 Å, respectively [Uiso (H)=1.2 Ueq(parent atom)].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The packing view of 2-methoxyanilinium 3-hydroxy- 2,4,6-trinitrophenolate.Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (i) x, -y + 1/2, z + 1/2; (vi) -x + 1, y - 1/2, -z + 1/2].

Fig. 3.

Fig. 3.

Hydrogen-bonding patterns in the supramolecular chain in compound (I). Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (vi) -x + 1, y - 1/2, -z + 1/2].

Crystal data

C7H10NO+·C6H2N3O8 F(000) = 760
Mr = 368.27 Dx = 1.593 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4930 reflections
a = 10.6957 (4) Å θ = 1.9–31.8°
b = 17.8368 (5) Å µ = 0.14 mm1
c = 8.0527 (3) Å T = 293 K
β = 91.991 (2)° Prism, colourless
V = 1535.34 (9) Å3 0.22 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4930 independent reflections
Radiation source: fine-focus sealed tube 3539 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 31.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→15
Tmin = 0.978, Tmax = 0.988 k = −25→26
19208 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4547P] where P = (Fo2 + 2Fc2)/3
4930 reflections (Δ/σ)max < 0.001
238 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.00430 (12) 0.14533 (7) 0.45345 (16) 0.0536 (4)
N1 0.18296 (12) 0.21738 (7) 0.59909 (15) 0.0366 (3)
C1 0.08388 (13) 0.26071 (8) 0.51522 (17) 0.0344 (4)
C2 −0.01386 (14) 0.22085 (9) 0.43872 (19) 0.0400 (4)
C3 −0.10912 (16) 0.26008 (12) 0.3561 (2) 0.0529 (6)
C4 −0.10434 (19) 0.33740 (12) 0.3498 (3) 0.0592 (6)
C5 −0.0059 (2) 0.37645 (11) 0.4229 (3) 0.0580 (6)
C6 0.08921 (16) 0.33785 (9) 0.5076 (2) 0.0450 (5)
C7 −0.1013 (2) 0.10034 (13) 0.3781 (3) 0.0712 (8)
O2 0.30956 (10) 0.18764 (5) 0.31638 (13) 0.0372 (3)
O3 0.18239 (12) 0.01420 (9) 0.30014 (18) 0.0662 (5)
O4 0.26170 (13) 0.05325 (8) 0.53302 (15) 0.0569 (4)
O5 0.43465 (12) −0.06180 (6) 0.30043 (17) 0.0508 (4)
O6 0.64034 (12) −0.08887 (6) 0.14078 (16) 0.0519 (4)
O7 0.76246 (12) 0.00182 (7) 0.07391 (18) 0.0585 (4)
O8 0.63270 (16) 0.25143 (8) 0.0819 (3) 0.0929 (7)
O9 0.46083 (14) 0.28678 (7) 0.1770 (3) 0.0813 (7)
N2 0.26692 (12) 0.04141 (7) 0.38421 (16) 0.0376 (4)
N3 0.66485 (12) −0.02118 (7) 0.12862 (16) 0.0405 (4)
N4 0.53537 (12) 0.23793 (7) 0.14816 (19) 0.0428 (4)
C8 0.39391 (12) 0.14238 (7) 0.27345 (16) 0.0299 (3)
C9 0.38107 (13) 0.06399 (7) 0.30251 (17) 0.0323 (4)
C10 0.46368 (14) 0.00851 (7) 0.26041 (18) 0.0346 (4)
C11 0.57235 (13) 0.03198 (8) 0.17977 (18) 0.0346 (4)
C12 0.59200 (13) 0.10722 (8) 0.14638 (18) 0.0353 (4)
C13 0.50678 (13) 0.16065 (7) 0.19047 (17) 0.0326 (4)
H1A 0.23360 0.19870 0.52400 0.0550*
H1B 0.14930 0.18000 0.65560 0.0550*
H1C 0.22640 0.24700 0.66890 0.0550*
H3 −0.17580 0.23450 0.30530 0.0630*
H4 −0.16870 0.36360 0.29510 0.0710*
H5A −0.00330 0.42850 0.41560 0.0700*
H6 0.15570 0.36370 0.55850 0.0540*
H7A −0.17980 0.11290 0.42510 0.1070*
H7B −0.08320 0.04830 0.39790 0.1070*
H7C −0.10580 0.10960 0.26060 0.1070*
H5 0.49030 −0.09010 0.27160 0.0760*
H12 0.66400 0.12170 0.09330 0.0420*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0559 (7) 0.0422 (6) 0.0617 (8) −0.0173 (5) −0.0108 (6) −0.0007 (5)
N1 0.0394 (6) 0.0344 (6) 0.0360 (6) −0.0046 (5) 0.0009 (5) −0.0036 (5)
C1 0.0349 (7) 0.0371 (7) 0.0316 (6) −0.0025 (5) 0.0071 (5) −0.0028 (5)
C2 0.0382 (7) 0.0448 (8) 0.0372 (7) −0.0080 (6) 0.0054 (6) −0.0011 (6)
C3 0.0390 (8) 0.0708 (12) 0.0487 (9) −0.0041 (8) −0.0011 (7) 0.0013 (8)
C4 0.0530 (10) 0.0678 (12) 0.0567 (11) 0.0164 (9) 0.0010 (9) 0.0078 (9)
C5 0.0692 (12) 0.0435 (9) 0.0616 (11) 0.0104 (8) 0.0064 (10) 0.0029 (8)
C6 0.0491 (9) 0.0380 (8) 0.0484 (9) −0.0038 (6) 0.0070 (7) −0.0043 (6)
C7 0.0722 (13) 0.0657 (12) 0.0750 (14) −0.0377 (11) −0.0093 (11) −0.0021 (10)
O2 0.0427 (5) 0.0302 (5) 0.0391 (5) 0.0093 (4) 0.0059 (4) 0.0036 (4)
O3 0.0518 (7) 0.0849 (10) 0.0619 (9) −0.0254 (7) 0.0013 (6) −0.0089 (7)
O4 0.0685 (8) 0.0630 (8) 0.0397 (6) −0.0072 (6) 0.0112 (6) 0.0038 (5)
O5 0.0551 (7) 0.0250 (5) 0.0729 (8) 0.0048 (5) 0.0093 (6) 0.0032 (5)
O6 0.0591 (7) 0.0340 (6) 0.0626 (8) 0.0103 (5) 0.0011 (6) −0.0118 (5)
O7 0.0470 (7) 0.0551 (7) 0.0744 (9) 0.0086 (6) 0.0155 (6) −0.0091 (6)
O8 0.0737 (10) 0.0508 (8) 0.1580 (18) −0.0022 (7) 0.0568 (11) 0.0234 (10)
O9 0.0604 (8) 0.0281 (6) 0.1575 (17) 0.0013 (6) 0.0329 (10) 0.0079 (8)
N2 0.0429 (7) 0.0294 (5) 0.0407 (7) −0.0008 (5) 0.0036 (5) 0.0046 (5)
N3 0.0436 (7) 0.0376 (6) 0.0400 (7) 0.0088 (5) −0.0023 (5) −0.0090 (5)
N4 0.0378 (6) 0.0310 (6) 0.0595 (8) −0.0029 (5) 0.0004 (6) 0.0055 (5)
C8 0.0339 (6) 0.0269 (6) 0.0286 (6) 0.0017 (5) −0.0021 (5) −0.0003 (4)
C9 0.0346 (6) 0.0269 (6) 0.0353 (7) 0.0002 (5) 0.0018 (5) 0.0003 (5)
C10 0.0407 (7) 0.0257 (6) 0.0371 (7) 0.0021 (5) −0.0037 (6) −0.0022 (5)
C11 0.0355 (7) 0.0317 (6) 0.0363 (7) 0.0059 (5) −0.0017 (5) −0.0052 (5)
C12 0.0326 (6) 0.0359 (7) 0.0373 (7) 0.0010 (5) −0.0003 (5) −0.0026 (5)
C13 0.0338 (6) 0.0262 (6) 0.0375 (7) −0.0012 (5) −0.0020 (5) 0.0002 (5)

Geometric parameters (Å, °)

O1—C2 1.356 (2) C1—C6 1.379 (2)
O1—C7 1.430 (3) C2—C3 1.387 (2)
O2—C8 1.2676 (16) C3—C4 1.381 (3)
O3—N2 1.2119 (19) C4—C5 1.377 (3)
O4—N2 1.2200 (18) C5—C6 1.388 (3)
O5—C10 1.3342 (17) C3—H3 0.9300
O6—N3 1.2401 (17) C4—H4 0.9300
O7—N3 1.2183 (18) C5—H5A 0.9300
O8—N4 1.210 (2) C6—H6 0.9300
O9—N4 1.2090 (19) C7—H7C 0.9600
O5—H5 0.8200 C7—H7A 0.9600
N1—C1 1.4583 (19) C7—H7B 0.9600
N1—H1C 0.8900 C8—C13 1.4374 (19)
N1—H1A 0.8900 C8—C9 1.4251 (18)
N1—H1B 0.8900 C9—C10 1.3769 (19)
N2—C9 1.4634 (19) C10—C11 1.414 (2)
N3—C11 1.4408 (19) C11—C12 1.386 (2)
N4—C13 1.4550 (18) C12—C13 1.3739 (19)
C1—C2 1.390 (2) C12—H12 0.9300
O1···N1 2.6221 (18) N3···C10iii 3.3846 (19)
O1···C4i 3.415 (3) N4···O2 2.9496 (17)
O2···C1 3.2183 (17) N3···H5 2.5400
O2···N1ii 2.7569 (16) C1···O2 3.2183 (17)
O2···C6ii 3.397 (2) C1···C3i 3.511 (2)
O2···O4 3.0189 (17) C2···C3i 3.562 (2)
O2···O9 2.6703 (19) C3···C2ii 3.562 (2)
O2···N1 2.7408 (16) C3···O8xi 3.365 (3)
O2···N2 2.7068 (15) C3···C1ii 3.511 (2)
O2···N4 2.9496 (17) C4···O1ii 3.415 (3)
O3···O5 3.0194 (18) C6···O7ix 3.402 (2)
O3···O7iii 3.103 (2) C6···O2i 3.397 (2)
O4···N1 3.0974 (19) C7···O7xii 3.311 (3)
O4···O2 3.0189 (17) C7···O4v 3.324 (3)
O4···C11iv 3.2443 (19) C10···N3iii 3.3846 (19)
O4···C7v 3.324 (3) C11···C11iii 3.431 (2)
O4···N3iv 2.8670 (18) C11···O4iv 3.2443 (19)
O4···O6iv 2.8654 (18) C12···O6iii 3.3512 (19)
O5···N3 2.9560 (18) C13···O6iii 3.3074 (19)
O5···O6 2.6311 (18) C3···H7C 2.7900
O5···O9vi 2.9263 (17) C3···H7A 2.7900
O5···N2 2.6733 (17) C5···H7Ci 2.9700
O5···O3 3.0194 (18) C5···H1Bii 2.9400
O6···O9vi 2.890 (2) C6···H1Bii 2.9500
O6···C13iii 3.3074 (19) C7···H3 2.5800
O6···C12iii 3.3512 (19) C8···H6ii 3.0300
O6···O5 2.6311 (18) C8···H1A 2.8700
O6···O4iv 2.8654 (18) C8···H1Cii 2.7800
O7···C6vi 3.402 (2) H1A···O1 2.7600
O7···O3iii 3.103 (2) H1A···O9i 2.7000
O7···C7vii 3.311 (3) H1A···O2 1.8900
O8···C3viii 3.365 (3) H1A···O4 2.6100
O9···O6ix 2.890 (2) H1A···C8 2.8700
O9···O5ix 2.9263 (17) H1B···C5i 2.9400
O9···N1ii 3.017 (2) H1B···C6i 2.9500
O9···O2 2.6703 (19) H1B···O4 2.7600
O1···H1A 2.7600 H1B···O1 2.3500
O1···H1B 2.3500 H1C···H6 2.3800
O2···H1Cii 1.8700 H1C···O9i 2.5800
O2···H1A 1.8900 H1C···C8i 2.7800
O2···H6ii 2.7600 H1C···O2i 1.8700
O3···H7Bv 2.9100 H3···H7A 2.3700
O3···H4x 2.8000 H3···H7C 2.3800
O4···H1B 2.7600 H3···O8xii 2.7000
O4···H7Bv 2.7000 H3···C7 2.5800
O4···H1A 2.6100 H4···O3xiii 2.8000
O6···H6vi 2.8800 H5···N3 2.5400
O6···H5 1.9500 H5···O9vi 2.2900
O7···H7Cvii 2.7900 H5···O6 1.9500
O7···H12 2.3900 H5A···O7ix 2.8900
O7···H6vi 2.8400 H6···H1C 2.3800
O7···H5Avi 2.8900 H6···O6ix 2.8800
O8···H3vii 2.7000 H6···O7ix 2.8400
O8···H12 2.3400 H6···O2i 2.7600
O9···H1Aii 2.7000 H6···C8i 3.0300
O9···H5ix 2.2900 H7A···H3 2.3700
O9···H1Cii 2.5800 H7A···C3 2.7900
N1···O9i 3.017 (2) H7B···O4v 2.7000
N1···O2 2.7408 (16) H7B···O3v 2.9100
N1···O1 2.6221 (18) H7C···O7xii 2.7900
N1···O4 3.0974 (19) H7C···H3 2.3800
N1···O2i 2.7569 (16) H7C···C5ii 2.9700
N2···O5 2.6733 (17) H7C···C3 2.7900
N2···O2 2.7068 (15) H12···O7 2.3900
N3···O4iv 2.8670 (18) H12···O8 2.3400
N3···O5 2.9560 (18)
C2—O1—C7 117.97 (14) C5—C4—H4 119.00
C10—O5—H5 109.00 C6—C5—H5A 120.00
H1B—N1—H1C 109.00 C4—C5—H5A 120.00
C1—N1—H1B 109.00 C5—C6—H6 120.00
C1—N1—H1A 109.00 C1—C6—H6 120.00
H1A—N1—H1C 110.00 O1—C7—H7C 109.00
C1—N1—H1C 109.00 O1—C7—H7B 109.00
H1A—N1—H1B 109.00 H7B—C7—H7C 109.00
O4—N2—C9 117.47 (13) H7A—C7—H7B 110.00
O3—N2—C9 118.49 (13) H7A—C7—H7C 110.00
O3—N2—O4 124.01 (14) O1—C7—H7A 109.00
O6—N3—C11 117.97 (12) O2—C8—C9 120.43 (12)
O7—N3—C11 119.17 (12) C9—C8—C13 112.71 (11)
O6—N3—O7 122.86 (13) O2—C8—C13 126.84 (12)
O8—N4—O9 121.62 (15) N2—C9—C10 117.74 (12)
O9—N4—C13 119.50 (14) C8—C9—C10 126.76 (13)
O8—N4—C13 118.86 (13) N2—C9—C8 115.50 (11)
C2—C1—C6 121.49 (14) O5—C10—C11 126.23 (13)
N1—C1—C6 121.27 (13) C9—C10—C11 116.42 (12)
N1—C1—C2 117.21 (13) O5—C10—C9 117.35 (13)
C1—C2—C3 118.89 (15) N3—C11—C12 118.13 (12)
O1—C2—C1 114.58 (13) C10—C11—C12 120.54 (13)
O1—C2—C3 126.53 (15) N3—C11—C10 121.33 (12)
C2—C3—C4 119.60 (17) C11—C12—C13 121.00 (13)
C3—C4—C5 121.20 (19) N4—C13—C12 116.74 (12)
C4—C5—C6 119.71 (18) C8—C13—C12 122.57 (12)
C1—C6—C5 119.10 (16) N4—C13—C8 120.69 (12)
C4—C3—H3 120.00 C11—C12—H12 119.00
C2—C3—H3 120.00 C13—C12—H12 120.00
C3—C4—H4 119.00
C7—O1—C2—C1 179.98 (15) C3—C4—C5—C6 −1.4 (3)
C7—O1—C2—C3 −0.4 (2) C4—C5—C6—C1 0.8 (3)
O4—N2—C9—C10 105.00 (16) O2—C8—C9—C10 178.89 (14)
O3—N2—C9—C8 102.38 (16) C13—C8—C9—C10 0.3 (2)
O4—N2—C9—C8 −75.60 (17) O2—C8—C13—N4 0.7 (2)
O3—N2—C9—C10 −77.02 (18) C9—C8—C13—N4 179.16 (13)
O7—N3—C11—C10 −173.12 (14) C13—C8—C9—N2 −179.01 (12)
O6—N3—C11—C12 −171.69 (14) O2—C8—C13—C12 −178.89 (14)
O7—N3—C11—C12 7.5 (2) C9—C8—C13—C12 −0.44 (19)
O6—N3—C11—C10 7.7 (2) O2—C8—C9—N2 −0.45 (19)
O8—N4—C13—C8 178.25 (17) N2—C9—C10—O5 −1.3 (2)
O9—N4—C13—C8 −3.1 (2) C8—C9—C10—C11 −0.1 (2)
O8—N4—C13—C12 −2.1 (2) N2—C9—C10—C11 179.24 (12)
O9—N4—C13—C12 176.54 (18) C8—C9—C10—O5 179.33 (14)
N1—C1—C6—C5 178.46 (16) C9—C10—C11—N3 −179.46 (13)
C2—C1—C6—C5 0.6 (2) C9—C10—C11—C12 −0.1 (2)
N1—C1—C2—C3 −179.29 (13) O5—C10—C11—C12 −179.44 (15)
C6—C1—C2—O1 178.32 (14) O5—C10—C11—N3 1.2 (2)
N1—C1—C2—O1 0.41 (19) C10—C11—C12—C13 0.0 (2)
C6—C1—C2—C3 −1.4 (2) N3—C11—C12—C13 179.36 (13)
C1—C2—C3—C4 0.8 (2) C11—C12—C13—N4 −179.30 (13)
O1—C2—C3—C4 −178.90 (17) C11—C12—C13—C8 0.3 (2)
C2—C3—C4—C5 0.6 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1, −y, −z+1; (v) −x, −y, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x+1, y, z; (viii) x+1, −y+1/2, z−1/2; (ix) −x+1, y+1/2, −z+1/2; (x) −x, y−1/2, −z+1/2; (xi) x−1, −y+1/2, z+1/2; (xii) x−1, y, z; (xiii) −x, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.89 1.89 2.7408 (16) 158
N1—H1C···O2i 0.89 1.87 2.7569 (16) 177
N1—H1C···O9i 0.89 2.58 3.017 (2) 111
O5—H5···O6 0.82 1.95 2.6311 (18) 140
O5—H5···N3 0.82 2.54 2.9560 (18) 112
O5—H5···O9vi 0.82 2.29 2.9263 (17) 135
C12—H12···O8 0.93 2.34 2.663 (2) 100

Symmetry codes: (i) x, −y+1/2, z+1/2; (vi) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2174).

References

  1. Abashev, G. G., Kazheva, O. N., Dyachenko, O. A., Gritsenko, V. V., Tanishev, A. G., Nishimura, K. & Saito, G. (2001). Mendeleev Commun. 4, 1225–1227.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021–2028.
  4. Cui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177–185.
  5. Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698. [DOI] [PMC free article] [PubMed]
  6. Liu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155–1159.
  7. Orbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459–466.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tenishev, A. G., Dyachenko, O. A. & Physica, E. (2002). Physica E, 13, 1268–1270.
  11. Vogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.
  12. Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Sun, Y. H. (2006a). Wuji Huaxue Xuebao, 22, 346–350.
  13. Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845–848.
  14. Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811005708/bv2174sup1.cif

e-67-0o686-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005708/bv2174Isup2.hkl

e-67-0o686-Isup2.hkl (236.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES