Abstract
Genetic determinants of HDL cholesterol (HDL-C) levels in the general population are poorly understood. We previously described plasma cholesteryl ester transfer protein (CETP) deficiency due to an intron 14 G(+1)-to-A mutation(Int14 A) in several families with very high HDL-C levels in Japan. Subjects with HDL-C > or = 100 mg/dl (n = 130) were screened by PCR single strand conformational polymorphism analysis of the CETP gene. Two other mutations were identified by DNA sequencing or primer-mediated restriction map modification of PCR products: a novel intron 14 splice donor site mutation caused by a T insertion at position +3 from the exon14/intron14 boundary (Int14 T) and a missense mutation (Asp442 to Gly) within exon 15 (D442G). The Int14 T mutation was only found in one family. However, the D442G and Int14 A mutations were highly prevalent in subjects with HDL-C > or = 60 mg/dl, with combined allele frequencies of 9%, 12%, 21% and 43% for HDL-C 60-79, 80-99, 100-119, and > or = 120 mg/dl, respectively. Furthermore, prevalences of the D442G and Int14 A mutations were extremely high in a general sample of Japanese men (n = 236), with heterozygote frequencies of 7% and 2%, respectively. These two mutations accounted for about 10% of the total variance of HDL-C in this population. The phenotype in a genetic compound heterozygote (Int14 T and Int14 A) was similar to that of Int14 A homozygotes (no detectable CETP and markedly increased HDL-C), indicating that the Int14 T produces a null allele. In four D442G homozygotes, mean HDL-C levels (86 +/- 26 mg/dl) were lower than in Int14 A homozygotes (158 +/- 35 mg/dl), reflecting residual CETP activity in plasma. In 47 D442G heterozygotes, mean HDL-C levels were 91 +/- 23 mg/dl, similar to the level in D442G homozygotes, and significantly greater than mean HDL-C levels in Int14 A heterozygotes (69 +/- 15 mg/dl). Thus, the D442G mutation acts differently to the null mutations with weaker effects on HDL in the homozygous state and stronger effects in the heterozygotes, suggesting dominant expression of a partially defective allele. CETP deficiency, reflecting two prevalent mutations (D442G and Int14 A), is the first example of a genetic deficiency state which is sufficiently common to explain a significant fraction of the variation in HDL-C in the general population.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agellon L. B., Quinet E. M., Gillette T. G., Drayna D. T., Brown M. L., Tall A. R. Organization of the human cholesteryl ester transfer protein gene. Biochemistry. 1990 Feb 13;29(6):1372–1376. doi: 10.1021/bi00458a004. [DOI] [PubMed] [Google Scholar]
- Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
- Amos C. I., Elston R. C., Srinivasan S. R., Wilson A. F., Cresanta J. L., Ward L. J., Berenson G. S. Linkage and segregation analyses of apolipoproteins A1 and B, and lipoprotein cholesterol levels in a large pedigree with excess coronary heart disease: the Bogalusa Heart Study. Genet Epidemiol. 1987;4(2):115–128. doi: 10.1002/gepi.1370040206. [DOI] [PubMed] [Google Scholar]
- Blangero J., MacCluer J. W., Kammerer C. M., Mott G. E., Dyer T. D., McGill H. C., Jr Genetic analysis of apolipoprotein A-I in two dietary environments. Am J Hum Genet. 1990 Sep;47(3):414–428. [PMC free article] [PubMed] [Google Scholar]
- Bowry V. W., Stanley K. K., Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10316–10320. doi: 10.1073/pnas.89.21.10316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breslow J. L. Genetic basis of lipoprotein disorders. J Clin Invest. 1989 Aug;84(2):373–380. doi: 10.1172/JCI114176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. L., Inazu A., Hesler C. B., Agellon L. B., Mann C., Whitlock M. E., Marcel Y. L., Milne R. W., Koizumi J., Mabuchi H. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature. 1989 Nov 23;342(6248):448–451. doi: 10.1038/342448a0. [DOI] [PubMed] [Google Scholar]
- Callen D. F., Hildebrand C. E., Reeders S. Report of the Second International Workshop on Human Chromosome 16 Mapping. Cytogenet Cell Genet. 1992;60(3-4):158–167. [PubMed] [Google Scholar]
- Castelli W. P., Cooper G. R., Doyle J. T., Garcia-Palmieri M., Gordon T., Hames C., Hulley S. B., Kagan A., Kuchmak M., McGee D. Distribution of triglyceride and total, LDL and HDL cholesterol in several populations: a cooperative lipoprotein phenotyping study. J Chronic Dis. 1977 Mar;30(3):147–169. doi: 10.1016/0021-9681(77)90082-0. [DOI] [PubMed] [Google Scholar]
- Drayna D., Jarnagin A. S., McLean J., Henzel W., Kohr W., Fielding C., Lawn R. Cloning and sequencing of human cholesteryl ester transfer protein cDNA. Nature. 1987 Jun 18;327(6123):632–634. doi: 10.1038/327632a0. [DOI] [PubMed] [Google Scholar]
- Fleisher L. N., Tall A. R., Witte L. D., Miller R. W., Cannon P. J. Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem. 1982 Jun 25;257(12):6653–6655. [PubMed] [Google Scholar]
- Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499–502. [PubMed] [Google Scholar]
- Goldbourt U., Holtzman E., Neufeld H. N. Total and high density lipoprotein cholesterol in the serum and risk of mortality: evidence of a threshold effect. Br Med J (Clin Res Ed) 1985 Apr 27;290(6477):1239–1243. doi: 10.1136/bmj.290.6477.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D. J., Rifkind B. M. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med. 1989 Nov 9;321(19):1311–1316. doi: 10.1056/NEJM198911093211907. [DOI] [PubMed] [Google Scholar]
- Gotoda T., Kinoshita M., Shimano H., Harada K., Shimada M., Ohsuga J., Teramoto T., Yazaki Y., Yamada N. Cholesteryl ester transfer protein deficiency caused by a nonsense mutation detected in the patient's macrophage mRNA. Biochem Biophys Res Commun. 1993 Jul 15;194(1):519–524. doi: 10.1006/bbrc.1993.1850. [DOI] [PubMed] [Google Scholar]
- Hegele R. A., Little J. A., Vezina C., Maguire G. F., Tu L., Wolever T. S., Jenkins D. J., Connelly P. W. Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler Thromb. 1993 May;13(5):720–728. doi: 10.1161/01.atv.13.5.720. [DOI] [PubMed] [Google Scholar]
- Inazu A., Brown M. L., Hesler C. B., Agellon L. B., Koizumi J., Takata K., Maruhama Y., Mabuchi H., Tall A. R. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990 Nov 1;323(18):1234–1238. doi: 10.1056/NEJM199011013231803. [DOI] [PubMed] [Google Scholar]
- Inazu A., Koizumi J., Haraki T., Yagi K., Wakasugi T., Takegoshi T., Mabuchi H., Takeda R. Rapid detection and prevalence of cholesteryl ester transfer protein deficiency caused by an intron 14 splicing defect in hyperalphalipoproteinemia. Hum Genet. 1993 Mar;91(1):13–16. doi: 10.1007/BF00230214. [DOI] [PubMed] [Google Scholar]
- Inazu A., Koizumi J., Mabuchi H., Kajinami K., Takeda R. Enhanced cholesteryl ester transfer protein activities and abnormalities of high density lipoproteins in familial hypercholesterolemia. Horm Metab Res. 1992 Jun;24(6):284–288. doi: 10.1055/s-2007-1003314. [DOI] [PubMed] [Google Scholar]
- Inazu A., Quinet E. M., Wang S., Brown M. L., Stevenson S., Barr M. L., Moulin P., Tall A. R. Alternative splicing of the mRNA encoding the human cholesteryl ester transfer protein. Biochemistry. 1992 Mar 3;31(8):2352–2358. doi: 10.1021/bi00123a021. [DOI] [PubMed] [Google Scholar]
- Jacobs D. R., Jr, Mebane I. L., Bangdiwala S. I., Criqui M. H., Tyroler H. A. High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am J Epidemiol. 1990 Jan;131(1):32–47. doi: 10.1093/oxfordjournals.aje.a115483. [DOI] [PubMed] [Google Scholar]
- Jiang X. C., Moulin P., Quinet E., Goldberg I. J., Yacoub L. K., Agellon L. B., Compton D., Schnitzer-Polokoff R., Tall A. R. Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA. J Biol Chem. 1991 Mar 5;266(7):4631–4639. [PubMed] [Google Scholar]
- Koizumi J., Inazu A., Yagi K., Koizumi I., Uno Y., Kajinami K., Miyamoto S., Moulin P., Tall A. R., Mabuchi H. Serum lipoprotein lipid concentration and composition in homozygous and heterozygous patients with cholesteryl ester transfer protein deficiency. Atherosclerosis. 1991 Oct;90(2-3):189–196. doi: 10.1016/0021-9150(91)90114-i. [DOI] [PubMed] [Google Scholar]
- Kushwaha R. S., Hasan S. Q., McGill H. C., Jr, Getz G. S., Dunham R. G., Kanda P. Characterization of cholesteryl ester transfer protein inhibitor from plasma of baboons (Papio sp.). J Lipid Res. 1993 Aug;34(8):1285–1297. [PubMed] [Google Scholar]
- Marotti K. R., Castle C. K., Boyle T. P., Lin A. H., Murray R. W., Melchior G. W. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993 Jul 1;364(6432):73–75. doi: 10.1038/364073a0. [DOI] [PubMed] [Google Scholar]
- Mohabeer A. J., Hiti A. L., Martin W. J. Non-radioactive single strand conformation polymorphism (SSCP) using the Pharmacia 'PhastSystem'. Nucleic Acids Res. 1991 Jun 11;19(11):3154–3154. doi: 10.1093/nar/19.11.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moll P. P., Michels V. V., Weidman W. H., Kottke B. A. Genetic determination of plasma apolipoprotein AI in a population-based sample. Am J Hum Genet. 1989 Jan;44(1):124–139. [PMC free article] [PubMed] [Google Scholar]
- Noma A., Hata Y., Goto Y. Quantitation of serum apolipoprotein A-I, A-II, B, C-II, C-III and E in healthy Japanese by turbidimetric immunoassay: reference values, and age- and sex-related differences. Clin Chim Acta. 1991 Jun 14;199(2):147–157. doi: 10.1016/0009-8981(91)90106-m. [DOI] [PubMed] [Google Scholar]
- Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
- Patsch J. R., Prasad S., Gotto A. M., Jr, Patsch W. High density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest. 1987 Aug;80(2):341–347. doi: 10.1172/JCI113078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prenger V. L., Beaty T. H., Kwiterovich P. O. Genetic determination of high-density lipoprotein-cholesterol and apolipoprotein A-1 plasma levels in a family study of cardiac catheterization patients. Am J Hum Genet. 1992 Nov;51(5):1047–1057. [PMC free article] [PubMed] [Google Scholar]
- Rader D. J., Schaefer J. R., Lohse P., Ikewaki K., Thomas F., Harris W. A., Zech L. A., Dujovne C. A., Brewer H. B., Jr Increased production of apolipoprotein A-I associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-I, and lipoprotein A-I in a patient with familial hyperalphalipoproteinemia. Metabolism. 1993 Nov;42(11):1429–1434. doi: 10.1016/0026-0495(93)90194-s. [DOI] [PubMed] [Google Scholar]
- Rhoads G. G., Gulbrandsen C. L., Kagan A. Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men. N Engl J Med. 1976 Feb 5;294(6):293–298. doi: 10.1056/NEJM197602052940601. [DOI] [PubMed] [Google Scholar]
- Schultz J. R., Verstuyft J. G., Gong E. L., Nichols A. V., Rubin E. M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature. 1993 Oct 21;365(6448):762–764. doi: 10.1038/365762a0. [DOI] [PubMed] [Google Scholar]
- Stampfer M. J., Sacks F. M., Salvini S., Willett W. C., Hennekens C. H. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991 Aug 8;325(6):373–381. doi: 10.1056/NEJM199108083250601. [DOI] [PubMed] [Google Scholar]
- Sugiura M., Oikawa T., Hirano K., Maeda H., Yoshimura H., Sugiyama M., Kuratsu T. A simple colorimetric method for determination of serum triglycerides with lipoprotein lipase and glycerol dehydrogenase. Clin Chim Acta. 1977 Dec 1;81(2):125–130. doi: 10.1016/0009-8981(77)90003-1. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Jiang X. C., Sakai N., Yamashita S., Hirano K., Bujo H., Yamazaki H., Kusunoki J., Miura T., Kussie P. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins. J Clin Invest. 1993 Oct;92(4):2060–2064. doi: 10.1172/JCI116802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tall A. R. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993 Aug;34(8):1255–1274. [PubMed] [Google Scholar]
- Tall A. R. Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. J Clin Invest. 1990 Aug;86(2):379–384. doi: 10.1172/JCI114722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tall A. R., Small D. M. Plasma high-density lipoproteins. N Engl J Med. 1978 Nov 30;299(22):1232–1236. doi: 10.1056/NEJM197811302992207. [DOI] [PubMed] [Google Scholar]
- Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Deng L., Milne R. W., Tall A. R. Identification of a sequence within the C-terminal 26 amino acids of cholesteryl ester transfer protein responsible for binding a neutralizing monoclonal antibody and necessary for neutral lipid transfer activity. J Biol Chem. 1992 Sep 5;267(25):17487–17490. [PubMed] [Google Scholar]
- Warden C. H., Hedrick C. C., Qiao J. H., Castellani L. W., Lusis A. J. Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science. 1993 Jul 23;261(5120):469–472. doi: 10.1126/science.8332912. [DOI] [PubMed] [Google Scholar]
- Weitzman J. B., Vladutiu A. O. Very high values of serum high-density lipoprotein cholesterol. Arch Pathol Lab Med. 1992 Aug;116(8):831–836. [PubMed] [Google Scholar]
- von Eckardstein A., Holz H., Sandkamp M., Weng W., Funke H., Assmann G. Apolipoprotein C-III(Lys58----Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J Clin Invest. 1991 May;87(5):1724–1731. doi: 10.1172/JCI115190. [DOI] [PMC free article] [PubMed] [Google Scholar]