Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Feb;89(2):294–298. doi: 10.1128/jb.89.2.294-298.1965

Transduction of Sporogenesis in Bacillus subtilis

I Takahashi 1
PMCID: PMC305507  PMID: 14255693

Abstract

Takahashi, I. (McMaster University, Hamilton, Ontario, Canada). Transduction of sporogenesis in Bacillus subtilis. J. Bacteriol. 89:294–298. 1965.—A number of asporogenous mutants of Bacillus subtilis were isolated and genetic analyses with these mutants were carried out by means of transduction mediated by bacteriophage PBS 1. The ability to form spores could be restored by transduction in all mutants examined, with the exception of SpH12-3, although they were not transformable under my experimental conditions. The results of reciprocal transduction suggest that genetic loci at which a mutation can affect sporulation are numerous. A spore marker (sp 1) was transduced jointly with prototrophy and some antibiotic resistance markers (streptomycin, erythromycin, and neomycin). Other spore markers (sp N2-2, sp 170-2, and sp H12-4) were also linked to auxotrophic markers (ser, tyr, and phe) at a fairly high frequency. This linkage relationship indicates that genes controlling the formation of spores are located along the chromosome far apart from each other. The result also suggests that blocks in a variety of biochemical processes may result in the expression of the asporogenous phenotype.

Full text

PDF
294

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAGNOSTOPOULOS C., CRAWFORD I. P. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Mar 15;47:378–390. doi: 10.1073/pnas.47.3.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
  4. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. NESTER E. W., LEDERBERG J. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc Natl Acad Sci U S A. 1961 Jan 15;47:52–55. doi: 10.1073/pnas.47.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SCHAEFFER P., IONESCO H. [Contribution to the genetic study of bacterial sporogenesis]. C R Hebd Seances Acad Sci. 1960 Dec 19;251:3125–3127. [PubMed] [Google Scholar]
  7. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. TAKAHASHI I. Genetic transduction in Bacillus subtilis. Biochem Biophys Res Commun. 1961 Jun 28;5:171–175. doi: 10.1016/0006-291x(61)90104-8. [DOI] [PubMed] [Google Scholar]
  9. TAKAHASHI I. Transducing phages for Bacillus subtilis. J Gen Microbiol. 1963 May;31:211–217. doi: 10.1099/00221287-31-2-211. [DOI] [PubMed] [Google Scholar]
  10. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES