Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Aug 25;15(16):6315–6329. doi: 10.1093/nar/15.16.6315

Site specificity of bleomycin cleavage in purified and intracellular simian virus 40 DNA.

J E Grimwade, E B Cason, T A Beerman
PMCID: PMC306108  PMID: 2442726

Abstract

The sites of bleomycin-induced cleavage of purified and intracellular simian virus 40 DNA were examined. Breaks in purified DNA were mapped to several discrete sites that were distributed throughout the viral genome, but were not associated with a common genetic element. Double-stranded breaks were made in positions of the first single-stranded nick, and regions of cuts were unaffected by changes in DNA superhelicity. Bleomycin cut intracellular chromosomes at the same sites that were cleaved in purified DNA. These results indicate that SV40 DNA contains DNA secondary structures that are highly preferred sites for BLM cleavage. These conformations appear to be unaffected by nucleoproteins bound to DNA.

Full text

PDF
6315

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crooke S. T., Bradner W. T. Bleomycin, a review. J Med. 1976;7(5):333–428. [PubMed] [Google Scholar]
  2. D'Andrea A. D., Haseltine W. A. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3608–3612. doi: 10.1073/pnas.75.8.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fiers W., Contreras R., Haegemann G., Rogiers R., Van de Voorde A., Van Heuverswyn H., Van Herreweghe J., Volckaert G., Ysebaert M. Complete nucleotide sequence of SV40 DNA. Nature. 1978 May 11;273(5658):113–120. doi: 10.1038/273113a0. [DOI] [PubMed] [Google Scholar]
  4. Flick J. T., Eissenberg J. C., Elgin S. C. Micrococcal nuclease as a DNA structural probe: its recognition sequences, their genomic distribution and correlation with DNA structure determinants. J Mol Biol. 1986 Aug 20;190(4):619–633. doi: 10.1016/0022-2836(86)90247-0. [DOI] [PubMed] [Google Scholar]
  5. Grimwade J. E., Beerman T. A. Measurement of bleomycin, neocarzinostatin, and auromomycin cleavage of cell-free and intracellular simian virus 40 DNA and chromatin. Mol Pharmacol. 1986 Oct;30(4):358–363. [PubMed] [Google Scholar]
  6. Haidle C. W., Weiss K. K., Kuo M. T. Release of free bases from deoxyribonucleic acid after reaction with bleomycin. Mol Pharmacol. 1972 Sep;8(5):531–537. [PubMed] [Google Scholar]
  7. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  8. Kelly T. J., Jr, Nathans D. The genome of simian virus 40. Adv Virus Res. 1977;21:85–173. doi: 10.1016/s0065-3527(08)60762-9. [DOI] [PubMed] [Google Scholar]
  9. Kuo M. T., Hsu T. C. Bleomycin causes release of nucleosomes from chromatin and chromosomes. Nature. 1978 Jan 5;271(5640):83–84. doi: 10.1038/271083a0. [DOI] [PubMed] [Google Scholar]
  10. Kuo M. T. Preferential damage of active chromatin by bleomycin. Cancer Res. 1981 Jun;41(6):2439–2443. [PubMed] [Google Scholar]
  11. Lloyd R. S., Haidle C. W., Robberson D. L. Bleomycin-specific fragmentation of double-stranded DNA. Biochemistry. 1978 May 16;17(10):1890–1896. doi: 10.1021/bi00603a014. [DOI] [PubMed] [Google Scholar]
  12. Mirabelli C. K., Beattie W. G., Huang C. H., Prestayko A. W., Crooke S. T. Comparison of the sequences at specific sites on DNA cleaved by the antitumor antibiotics talisomycin and bleomycin. Cancer Res. 1982 Apr;42(4):1399–1404. [PubMed] [Google Scholar]
  13. Mirabelli C. K., Huang C. H., Crooke S. T. Role of deoxyribonucleic acid topology in altering the site/sequence specificity of cleavage of deoxyribonucleic acid by bleomycin and talisomycin. Biochemistry. 1983 Jan 18;22(2):300–306. doi: 10.1021/bi00271a011. [DOI] [PubMed] [Google Scholar]
  14. Mirabelli C., Mong S., Huang C. H., Crooke S. T. Comparison of bleomycin A2 and talisomycin A specific fragmentation of linear duplex DNA. Biochem Biophys Res Commun. 1979 Dec 14;91(3):871–877. doi: 10.1016/0006-291x(79)91960-0. [DOI] [PubMed] [Google Scholar]
  15. Murray V., Martin R. F. Comparison of the sequence specificity of bleomycin cleavage in two slightly different DNA sequences. Nucleic Acids Res. 1985 Mar 11;13(5):1467–1481. doi: 10.1093/nar/13.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray V., Martin R. F. The sequence specificity of bleomycin-induced DNA damage in intact cells. J Biol Chem. 1985 Sep 5;260(19):10389–10391. [PubMed] [Google Scholar]
  17. Povirk L. F., Köhnlein W., Hutchinson F. Specificity of DNA base release by bleomycin. Biochim Biophys Acta. 1978 Nov 21;521(1):126–133. doi: 10.1016/0005-2787(78)90255-1. [DOI] [PubMed] [Google Scholar]
  18. Reddy V. B., Thimmappaya B., Dhar R., Subramanian K. N., Zain B. S., Pan J., Ghosh P. K., Celma M. L., Weissman S. M. The genome of simian virus 40. Science. 1978 May 5;200(4341):494–502. doi: 10.1126/science.205947. [DOI] [PubMed] [Google Scholar]
  19. Saragosti S., Cereghini S., Yaniv M. Fine structure of the regulatory region of simian virus 40 minichromosomes revealed by DNAase I digestion. J Mol Biol. 1982 Sep 15;160(2):133–146. doi: 10.1016/0022-2836(82)90171-1. [DOI] [PubMed] [Google Scholar]
  20. Saragosti S., Moyne G., Yaniv M. Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell. 1980 May;20(1):65–73. doi: 10.1016/0092-8674(80)90235-4. [DOI] [PubMed] [Google Scholar]
  21. Sausville E. A., Horwitz S. B. Inhibition of SV40 DNA synthesis by camptothecin and neocarzinostatin. Mol Pharmacol. 1978 Nov;14(6):1156–1166. [PubMed] [Google Scholar]
  22. Sausville E. A., Peisach J., Horwitz S. B. A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem Biophys Res Commun. 1976 Dec 6;73(3):814–822. doi: 10.1016/0006-291x(76)90882-2. [DOI] [PubMed] [Google Scholar]
  23. Scott W. A., Wigmore D. J. Sites in simian virus 40 chromatin which are preferentially cleaved by endonucleases. Cell. 1978 Dec;15(4):1511–1518. doi: 10.1016/0092-8674(78)90073-9. [DOI] [PubMed] [Google Scholar]
  24. Sheflin L. G., Kowalski D. Altered DNA conformations detected by mung bean nuclease occur in promoter and terminator regions of supercoiled pBR322 DNA. Nucleic Acids Res. 1985 Sep 11;13(17):6137–6154. doi: 10.1093/nar/13.17.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Takeshita M., Kappen L. S., Grollman A. P., Eisenberg M., Goldberg I. H. Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry. 1981 Dec 22;20(26):7599–7606. doi: 10.1021/bi00529a039. [DOI] [PubMed] [Google Scholar]
  27. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
  28. Wang J. C., Peck L. J., Becherer K. DNA supercoiling and its effects on DNA structure and function. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):85–91. doi: 10.1101/sqb.1983.047.01.011. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES