In the United States, 8 million adults have peripheral arterial disease (PAD), a number that is likely to escalate as the population ages.1–3 Lower extremity PAD is a component of systemic atherosclerosis and confers a markedly heightened risk of cardiovascular morbidity and mortality.4–7 It is now established that PAD accelerates functional decline leading to physical disability.8,9 Exercise therapy combined with comprehensive secondary prevention has the potential to benefit patients with PAD by preserving or improving functional capacity and reducing cardiovascular events. Accordingly, this review will address the relation between exercise intolerance and outcomes in patients with PAD; the effects of exercise training in PAD, and the many possible mechanisms of benefit; and the potential role of comprehensive secondary prevention programs in these patients.
PAD as a Marker of Cardiovascular Risk
Traditionally PAD has been viewed as a disease of the lower extremities typified by intermittent claudication. Studies now have demonstrated the malignant cardiovascular course of PAD even in the absence of claudication. The presence of PAD can be readily identified by the ankle-brachial index (ABI), a simple test comparing systolic blood pressure measured in the arm and in the ankle by Doppler.10–12 Among patients with a low ABI (defined as ≤0.90) detected in both population-based and high risk primary care cohorts, only 10–15% have intermittent claudication.13–15 The international ABI Collaboration patient-level meta-analysis of over 48,000 individuals found that a low ABI predicted a doubling of 10 year risk of mortality, cardiovascular mortality, and major coronary events at all levels of Framingham Risk Score.4 Importantly, the German Epidemiologic Study on Ankle Brachial index recently reported that asymptomatic individuals with PAD identified in a primary care screening program had similarly elevated 5-year risk of morbidity and mortality compared to symptomatic PAD patients.16 As has been reviewed elsewhere, the use of ABI testing to detect PAD in asymptomatic patients remains controversial17,18; however, an ABI screening strategy to identify individuals at risk for cardiovascular events and functional decline would allow institution of secondary prevention measures including exercise therapy. Thus, the clinical significance of PAD derives not only from limb symptoms and functional impairment but as a marker of cardiovascular risk.
Functional disability in PAD
Several lines of evidence support the presence of pervasive functional alterations in PAD (see Figure 1). In the past, reduced walking capacity was identified as a consequence of intermittent claudication, the hallmark symptom of PAD. While a minority of patients with PAD experience classic claudication, up to 50% describe atypical leg symptoms that interfere with mobility.13,14 Importantly, PAD limits exercise capacity and hastens physical decline, even in the absence of reported leg symptoms.19–21 Asymptomatic patients, and patients with atypical symptoms who have PAD, experience progressive functional impairment and an increased risk of becoming unable to walk for 6 minutes compared to individuals without PAD.9,22 The physical limitations in asymptomatic patients may reflect self-imposed activity restriction to prevent the occurrence of symptoms.
Figure 1.
Functional consequences of PAD. PAD is characterized by atherosclerotic lesions that limit blood flow manifest as reduced ankle brachial index. Patients with PAD have diminished functional capacity across the spectrum of leg symptoms. Functional impairment has clinical impact including progression to disability and increasing cardiovascular risk. Exercise training has the potential to interrupt functional decline. Further studies are needed to evaluate the impact of exercise training on long-term cardiovascular events in PAD patients.
Impaired walking ability has several important clinical implications. Patients with PAD have markedly reduced health- related quality of life and higher prevalence of depression which is largely related to leg symptoms.23,24 Diminished physical activity in daily life predicts higher overall mortality in PAD.25,26 Functional measures including the 6-minute walk test and treadmill walking time have been associated with increased mortality and risk of cardiovascular events in PAD.27–31 Together these findings suggest that interventions that augment exercise performance in PAD may have wide-ranging health benefits.
Effects of Exercise Training on Functional Status in PAD
Supervised exercise programs have been recommended as first line therapy for treatment of claudication.32–34 Recent evidence demonstrates benefits of exercise training even among those patients with PAD who do not have claudication.35 Exercise programs combined with risk factor modification offer the possibility of altering the clinical trajectory of PAD. The goals of comprehensive prevention strategies including exercise are threefold: 1) to reduce limb symptoms; 2) to improve exercise capacity and prevent or lessen physical disability; and 3) to decrease the occurrence of cardiovascular events.
Exercise training markedly improves walking ability in PAD patients with intermittent claudication. A meta-analysis performed in 1995 that included uncontrolled trials suggested clinical efficacy of exercise in ameliorating claudication symptoms indicating that supervised exercise increased pain-free walking distance by 180%.36 A rigorous systematic review including only controlled clinical trials encompassing 22 studies with over 1200 participants conducted by the Cochrane group in 2008 compared supervised exercise programs to usual care in the treatment of claudication.37 Exercise produced clinically relevant increases in walking time (5 minutes) and walking distance (>100 meters). While all studies show exercise-related improvements in treadmill based measures, the degree of benefit varies across studies and individuals. Differences in exercise intensity as well as adherence to exercise programs may account for the observed variability in treatment effect. The magnitude of functional benefit derived from exercise training exceeds that observed in drug therapy trials with both pentoxifylline and cilostazol;38 however, there are limited data that directly compare the two treatment modalities. Improvements in treadmill performance appear to translate to improved physical activity and quality of life. In randomized trials of exercise rehabilitation in patients with claudication, exercise has been shown to increase daily activity levels measured by accelerometer39, and patient perceived health-related quality of life.40,41 Increased physical activity may translate to slower functional decline and potentially to reduced cardiovascular risk.25,42,43
Limited controlled data are available comparing revascularization with exercise training for intermittent claudication. In a single randomized trial, both exercise training and lower limb bypass surgery improved maximal walking distance to a similar degree at one year.44A second study indicated greater walking distance at one year in a combined surgical and endovascular revascularization group compared to an exercise trained group; however, the compliance with exercise training was poor with less than 2/3 of assigned patients completing the exercise program.45In a study performed more than 20 years ago, exercise training induced a greater increase in walking distance compared to angioplasty particularly in patients with superficial femoral artery lesions.46However, a more contemporary trial showed greater benefit of endovascular therapy compared to supervised exercise training at 6 months but no difference at one year.47 The Claudication: Exercise vs. Endoluminal Revascularization (CLEVER) study is an ongoing National Institutes of Health funded multi-center randomized trial comparing medical therapy, stenting, and exercise training in patients with claudication and aortoiliac obstructive disease.48,49 The results from this important study using contemporary endovascular and exercise training techniques are anticipated to provide additional information that may guide choices about optimal therapy to improve functional outcomes in PAD patients.
Exercise training has been incorporated into current guidelines for the management of PAD. Multiple societal guidelines including American College of Cardiology/American Heart Association 2005 Practice Guidelines for the Management of Patients with Peripheral Arterial Disease, American Association of Cardiovascular and Pulmonary Rehabilitation 2004 Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs, Inter-society Consensus for the Management of PAD (TASC II), and American College of Sports Medicine 2010 Guidelines for Exercise Testing and Prescription all recommend supervised exercise training in the treatment of claudication symptoms in PAD.33 34 50,51
A recent seminal study extends the therapeutic impact of exercise training to the larger population of PAD patients without classic claudication symptoms. McDermott and colleagues conducted a randomized trial of supervised treadmill exercise compared to strength training and usual care in 156 PAD patients.35 The symptom pattern corresponded to the observed distribution in clinical practice: 18% had claudication and 82% had atypical symptoms or were asymptomatic. At 6 months, patients in the treadmill exercise group increased exercise performance as evidenced by a longer 6 minute walk distance (+20.9m) compared to a decline in the control group (−15m). Lower extremity resistance training improved leg strength as well as maximum treadmill walking time without an increase in 6-minute walk distance. Both treadmill and resistance exercise training improved physical functioning- associated quality of life measures. However, increases in exercise tolerance in both training groups were not associated with a change in daily physical activity as measured by accelerometer. Perhaps additional behavioral interventions are needed to attain such increases. Thus, the findings support 1) recommending supervised exercise programs for all patients with PAD regardless of symptom status; and 2) the notion that exercise training can interrupt functional deterioration in PAD.
Mechanisms of Functional Impairment and Benefits of Exercise in PAD
Multiple mechanisms contribute to reduced exercise capacity in PAD. Atherosclerotic disease exists in the presence of pathophysiologic processes that together may contribute to impaired walking ability. Similarly, the functional benefits of exercise are likely attributable to amelioration of diverse maladaptive responses. Potential mechanisms are outlined in Table 1 and the available evidence supporting the role of arterial obstruction, endothelial dysfunction, altered skeletal muscle phenotype including mitochondrial dysfunction, and inflammatory activation in limiting exercise ability in PAD is discussed in this section. Exercise has the potential to reverse these pathologic events and thereby interrupt the clinical course toward disability.
Table 1.
Potential Mechanisms of Functional Impairment and Benefits of Exercise in PAD
Pathophysiologic Process | Functional Consequence | Effect of Exercise |
---|---|---|
Arterial Obstruction | Reduced blood flow | Minimal increase in collateral flow |
Endothelial Dysfunction | Decreased vasodilator function | Improved nitric oxide-dependent vasodilation |
Increased arterial stiffness | ||
Impaired hyperemic response | ||
Impaired arterial remodeling | ||
Increased inflammatory activation | ||
Mitochondrial Dysfunction | Impaired energy production | Improved mitochondrial energetics |
Impaired oxygen utilization | Increase in mitochondrial biogenesis in animal models | |
Increased reactive oxygen species | ||
Reduced skeletal muscle content | ||
Inflammatory Activation | Adverse skeletal muscle remodeling | Decreased markers of systemic inflammation |
Increased atherosclerotic progression |
Arterial obstruction and blood flow limitation
Functional limitation in PAD traditionally has been ascribed to diminished blood flow induced by arterial obstruction from atherosclerotic stenoses. Typical intermittent claudication could theoretically be attributed to ischemia induced by an oxygen demand and supply imbalance. Certainly, fixed atherosclerotic lesions reflected in a diminished ankle-brachial index are the precipitating event that leads to functional abnormalities in PAD. However, multiple findings indicate that the pathophysiology of functional decline in PAD and the improvement with exercise is more complex.
The association between the severity of arterial obstruction and function status in PAD is inconsistent. Compared with individuals with normal ABI, patients with PAD have reduced self-reported and measured walking ability.8,52 Select studies have demonstrated a moderate association between ABI and walking distance among PAD patients,53–56 while others have reported no association of ABI with functional measures.57,58 Similarly, calf blood flow measured with a magnetic resonance based technique was shown to be only modestly associated with walking distance (unadjusted r= 0.3, p<0.01).59 In contrast, calf blood flow assessed by plethysmography did not correlate with baseline treadmill walking time or the subsequent 3-month change in walking time in an intervention study.57 In an observational, longitudinal study of 676 individuals with and without PAD, the presence of an abnormal ABI predicted a greater decline walking measures at two years, thus confirming the clinical relevance of PAD to functional outcomes.9 However, the relation between severity of ABI reduction and functional decline in PAD patients remains ill-defined. Overall, the lack of consistency in the prior studies suggests that there are additional factors beyond anatomic disease that contribute to development of functional impairment in PAD.
Theoretically, enhanced distal blood flow due to vascular adaptations could underlie the benefits of exercise therapy in PAD. In animal models of arterial insufficiency, available evidence indicates that exercise training augments peripheral arterial supply.60–63 Restoration of blood flow after arterial occlusion involves multiple complex processes that produce vascular growth.64 Tissue ischemia in the underperfused muscle induces growth factors, including vascular endothelial growth factor and hypoxia inducible factor-1alpha, leading to angiogenesis.65,66 Recent studies demonstrate that exercise stimulates gains in collateral blood flow after femoral occlusion in rodent models through collateral enlargement.60,67,68 Collateral growth induced by exercise reflects vascular structural remodeling, a process that depends on both growth factor activity and increased nitric oxide bioavailability via shear stress stimulation of endothelial nitric oxide synthase.60,67,69
In contrast, studies in patients with PAD have not convincingly demonstrated that exercise training produces clinically relevant gains in peripheral blood flow. Maximal hyperemic blood flow increased in some 70 71,72but not all exercise training studies73,74. In addition, an association between the increase in blood flow and walking time has not been shown.70 In a trial comparing surgical revascularization to exercise training, the change in maximal calf blood flow after exercise at 13 month follow-up was not associated with the change in walking distance.44 In a study of angioplasty compared to exercise, angioplasty produced an immediate increase in ABI whereas exercise-training improved walking time after a longer time period with more sustained efficacy.46 The results of this study indicate a divergence between improvements in arterial flow and functional parameters with exercise intervention. Several factors may explain the apparent contradiction between the animal and human studies. Patients with PAD typically have multi-level disease of the vascular tree that may impede sufficient collateral growth. Concomitant endothelial dysfunction may inhibit shear-stress mediated vascular remodeling in PAD patients.75,76 Finally, it remains possible that more sophisticated measures of collateral flow are required to detect exercise-mediated changes in humans. However, a recent meta-analysis of 7 exercise training studies demonstrated no change in the resting ABI, a cumulative measure of blood supply to the lower extremity.37 Taken together, the studies in PAD patients indicate that an anatomic model of increased blood supply does not appear to account for the functional benefits of exercise.
Disruption of endothelial function
Functional limitations in PAD likely reflect an integration of abnormal vascular function with severity of arterial obstruction. Normal vascular function depends on a healthy endothelium that elaborates vasoprotective factors including nitric oxide to regulate arterial flow.77 Reduced nitric oxide bioavailability in the skeletal muscle microcirculation diminishes the hyperemic flow response to ischemia and may impede augmentation of blood flow during exercise in PAD. 78 79 As has been observed in coronary arteries, endothelial dysfunction could also lead to peripheral arterial vasoconstriction and limit vasodilator responses to flow, which would tend to exacerbate blood flow limitation during exercise.80–82
Consistent with these potential links between vascular function and functional status, a number of studies have demonstrated impaired endothelial vasodilator responses in PAD. Patients with PAD have attenuated flow-mediated dilation of the brachial artery as well as reduced acetylcholine-induced vasodilation, both consistent with the loss of nitric oxide activity.83–86 In a cross-sectional study, greater physical activity during daily life was associated with greater brachial artery flow-mediated dilation in 111 patients with PAD, supporting a relation between functional status and vascular function.87 Importantly, vascular dysfunction has been observed in the brachial artery of PAD patients indicating the presence of systemic endothelial abnormalities induced by cardiovascular risk factors and inflammation.88,89 Vascular stiffness measures including pulse pressure and augmentation index that depend in part on nitric oxide bioavailability have also been associated with walking time.90 The question of whether endothelial dysfunction contributes to functional decline over time in PAD has not been evaluated.
Two studies have demonstrated an improvement in endothelial function with exercise training in PAD. A supervised exercise program increased endothelium-dependent flow-mediated dilation of the brachial artery by 65% in 19 elderly patients with intermittent claudication.91 In this small study, no correlation was observed between gains in walking time and vasomotor function. In the randomized trial comparing treadmill exercise to lower extremity strength training and to usual care in PAD discussed above, McDermott and colleagues evaluated the effect of each exercise regimen on flow-mediated dilation of the brachial artery. Treadmill exercise but not lower extremity strength training augmented flow-mediated dilation consistent with improvement in endothelial health.35 The lack of improvement in endothelial function with resistance training contrasts with a recent randomized trial in patients following myocardial infarction, and suggests that further study is needed to clarify the impact of strength training on endothelial function.92 The ability of exercise to reverse endothelial dysfunction may reflect sustained increases in shear-stress that stimulate nitric oxide bioactivity.93 A study in coronary disease patients showed that exercise rehabilitation induced favorable effects on coronary endothelial function associated with increased endothelial nitric oxide synthase expression and activation.94 As impaired endothelial function predicts higher risk for cardiovascular events among patients with PAD,76,95 the exercise-induced improvement in vasodilator function may have the potential to reduce cardiovascular risk.
Altered skeletal muscle phenotype and mitochondrial dysfunction
It is increasingly clear that vascular obstruction has adverse consequences on the distal skeletal muscle tissue in PAD. Metabolic dysfunction at the skeletal muscle level superimposed on compromised blood flow has the potential to magnify physical limitation. Episodic ischemia in concert with chronically low physical activity levels alters skeletal muscle phenotype in PAD patients.96 Imaging studies demonstrate gross structural changes in calf muscle tissue including reduced overall area, decreased muscle density, and increased fat content.20,97 At the cellular level, there is evidence of increased muscle apoptosis, reduced type I fibers, and reduced capillary density.98,99
Altered skeletal muscle energetics in PAD has been linked to mitochondrial dysfunction. Intermediate metabolites of substrate oxidation, including acylcarnitines, accumulate in the blood and muscle of PAD patients and are consistent with impaired metabolism at the mitochondrial level.100 Whereas muscle mitochondrial content is higher, aberrant mitochondrial function impedes energy production and favors reactive oxygen species generation.101–104 Abnormal mitochondrial function may interfere with skeletal muscle oxygen utilization and accelerate endothelial damage.105,106 Further studies are needed to elucidate the contribution of mitochondrial abnormalities to vascular dysfunction in PAD.
Growing evidence relates adverse skeletal muscle changes, including mitochondrial dysfunction, to functional impairment in PAD.107 Decreased calf muscle area and lower type I fiber content are associated with impairments in functional performance measures.97,99 Abnormal mitochondrial function evidenced by delayed phosphocreatine recovery on magnetic resonance spectroscopy, has been shown to be associated with treadmill exercise time, though not with 6 minute walk distance.59 The level of muscle acylcarnitine accumulation appears related to exercise intolerance.100 In a prospective study, PAD patients with adverse calf muscle characteristics including higher calf muscle fat and lower calf muscle density had a heightened risk of functional decline over two years.108
Exercise training has the potential to enhance skeletal muscle metabolism and mitochondrial function. In experimental models of ischemia, peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), a key regulator of mitochondrial biogenesis, is critical to blood vessel recovery.109 Interestingly, exercise-induced capillary growth in skeletal muscle also depends on PGC-1α, suggesting a connection between mitochondrial function and exercise adaptations relevant to PAD.110 Higher levels of physical activity in daily life are related to more favorable calf muscle traits, an association that is likely bidirectional.111 In PAD patients, exercise training has been shown to restore carnitine metabolism in association with improved treadmill walking.70,103 Whether exercise training improves mitochondrial energy production or calf muscle characteristics in PAD remains to be evaluated.
Inflammatory Activation
Chronic inflammation participates in the atherosclerotic process. Systemic markers of inflammation including C-reactive protein and soluble intracellular adhesion molecule-1 (sICAM-1) increase the risk of developing PAD.112,113 Higher levels of inflammation are associated with disease progression and with adverse cardiac and lower extremity outcomes.114–116 Inflammation may accelerate functional impairment in PAD by favoring plaque growth and inducing skeletal muscle injury. In addition, endothelial inflammatory activation reduces nitric oxide bioavailability and may impede vasodilatory function during exercise.117
A number of studies have assessed associations of functional measures and inflammation in PAD. Higher levels of inflammatory markers including C-reactive protein, interleukin 6, and soluble vascular cellular adhesion molecule-1 (sVCAM-1) are related to poorer walking ability in PAD patients.118,119 Systemic inflammation may also impair functional status through adverse skeletal muscle remodeling. Multiple inflammatory markers were associated with lower calf muscle area and higher calf muscle fat content in a computed tomography study.120 In longitudinal follow-up, both higher levels of inflammatory markers and an increase in C-reactive protein have been shown to predict functional decline among individuals with PAD.121
Physical activity may have favorable effects in PAD by suppressing inflammatory activation. Extensive epidemiologic data demonstrate lower inflammatory marker levels in individuals who participate in regular physical activity compared to those who are sedentary.122 Similarly in PAD, physical activity has an inverse association with C-reactive protein, IL-6, fibrinogen, sICAM-1, and sVCAM-1.123 While, acute bouts of exercise increase inflammatory markers in claudicants, chronic exercise training appears to curb inflammation.124 A 3-month exercise program ameliorated neutrophil activation after treadmill exercise in 46 PAD patients with claudication. 125 Whether reduced inflammation produced by chronic exercise training underlies increased walking ability and translates to decreased events remains to be determined.
Exercise Rehabilitation Programs for PAD
Clinical studies have defined the optimal methods for implementing exercise training in PAD. Supervised exercise programs appear to deliver a greater improvement in functional measures compared to unsupervised training. A Cochrane review in 2006 of 8 small randomized trials with a total of 319 participants concluded that supervised exercise training was superior to non-supervised exercise, and yielded a 150m greater improvement in walking time.126 The American College of Cardiology/American Heart Association 2005 Practice Guidelines for the Management of Patients with Peripheral Arterial Disease provide a Class I recommendation for supervised exercise training, but only a Class IIb recommendation for unsupervised training. They note that there is limited supporting symptom-based evidence for simply advising patients to walk more independently,33 although increased daily physical activity may have other health benefits.127 The differences between supervised and unsupervised training may be related to better patient adherence and greater intensity of treadmill exercise compared to normal walking. Results from the ongoing National Institute on Aging randomized controlled trial of home-based versus supervised exercise for people with claudication promise to provide further information on this important area.128
Supervised exercise programs commence with a baseline assessment of functional status. The American Heart Association and the American College of Cardiology, the American College of Sports Medicine, and the American Association of Cardiovascular and Pulmonary Rehabilitation all recommend an exercise treadmill test prior to exercise training in order to evaluate walking capacity and to assess the degree of exercise limitation (Class I; level of evidence B).33,50,51 However, some patients may have symptoms that are so limiting as to preclude the performance of an exercise test. As PAD patients frequently have co-existent coronary artery disease, exercise testing may identify potential cardiovascular complications including exercise - related ischemia and arrhythmias. It should be noted that exercise stress testing may have reduced sensitivity for ischemic chest pain or arrhythmias in PAD patients as the leg symptoms may limit ability to achieve adequate cardiac workload.129 Exercise testing protocols, including individualized ramp protocols, that begin at low workrates and have low workrate increments per stage may be useful among patients with severe claudication symptoms. Treadmill testing serves as a guide to tailor initial exercise intensity levels. While the data are sparse, adverse event rates are low, but not absent during exercise training.35 As patients walk farther and at higher intensity levels, cardiac signs and symptoms may be unmasked.
Exercise training using treadmill walking has been used most frequently in clinical trials.126 The treadmill walking exercise prescription for patients with PAD and symptoms of intermittent claudication is outlined in Table 2.48 Patients with leg symptoms are instructed exercise to mild to moderate pain (3–4 of 5 on the claudication scale) and then stop. When claudication has resolved, the patient begins walking on the treadmill again.48PAD patients without intermittent claudication should follow the exercise prescription for patients with cardiovascular disease as outlined in Table 3, where exercise intensity is guided by exercise tolerance test using heart rate reserve or oxygen uptake reserve.50,51In all patients with PAD, treadmill walking exercise is the preferred modality, but supplemental exercise using other exercise modalities including resistance training as recommended for patients with cardiovascular disease (Table 3) may be of additional benefit.50,130
Table 2.
Exercise Prescription for Supervised Endurance Training in PAD Patients with Intermittent Claudication
Endurance Training | ||
---|---|---|
Frequency: | 3–5 d·wk−1 | Modality: |
|
||
Intensity: | Exercise at a given workrate at which the patient experiences the onset of claudication; continue walking until the patient has an ischemic leg pain symptom score of mild-moderate (3–4 out of maximum 5 points); then stop until pain completely subsides; resume exercise again at similar intensity; repeat rest/exercise bouts. Progress to a higher workrate when the patient is able to walk for 8 minute bouts without the need to stop for leg symptoms. | |
Duration: | Total exercise time (including rest periods) should equal 50 min·day−1 |
Adapted From Reference48
Table 3.
Exercise Prescription for Endurance and Resistance Training for Patients with Cardiovascular Disease
Endurance Training | ||
---|---|---|
Frequency: | 3–5 d·wk−1 | Modality: |
For patients with intermittent claudication symptoms see Table 2 | ||
|
||
Intensity: | 40 – <60% heart rate reserve + resting HR or 40 – <60% VO2 reserve + resting VO2 | |
Duration: | 30–60 min·day−1 | |
Resistance Training | ||
Frequency: | ≥2–3 d·wk−1 | All Major Muscle Groups |
Arms/Shoulders: | ||
Intensity: | 1–3sets of 8–15 RM for muscle group |
|
Chest/back: | ||
|
||
Legs: | ||
|
Modalities listed above are not all inclusive.
HR = heart rate
Maximum HR= peak HR on exercise test
HRR = heart rate reserve = (peak-resting HR)
RM = maximum number of times a load can be lifted before fatigue
VO2 = measured oxygen uptake
VO2 reserve = (peak VO2-resting VO2)
Several studies have investigated alternate exercise training approaches. Arm ergometry exercise increases walking performance in patients with claudication and may be an appropriate exercise modality especially in patients with difficulty perform treadmill walking including patients with prior leg amputation.131–133 Polestriding has also been shown to have efficacy in increasing walking performance in claudicants.134 135 Low intensity exercise and painfree walking have both been shown to increase walking time in small studies.136,137 138
Patients can be gradually transitioned to independent, unsupervised exercise over time, if independent exercise is deemed safe by the program staff and if the patient understands the basic principles of self –monitoring, as outlined in detail in elsewhere.50,51 At the completion of the supervised training program, patients should be given a home exercise prescription to maintain activity levels, as it is expected that exercise training should be continued as a life-long activity. However, as yet, the benefits of home exercise in patients with PAD remain unproven. Patients should be encouraged to contact the exercise program staff or their physician for any questions or concerns that they may have, and to periodically update the exercise prescription.
Barriers to Exercise Training in PAD
While there are a number of barriers that restrict or prevent patients with PAD from participation in supervised exercise programs, a major impediment is the lack of coverage for such programs by medical insurance. In 2001, the proven clinical efficacy of exercise in the treatment of claudication resulted in the creation of a Current Procedural Terminology Code (CPT 93,668) for PAD Rehabilitation. However, both Medicare and most private insurers still do not provide exercise training for PAD as a covered benefit. It is important to note that the lack of insurance coverage is incongruent with the clear clinical efficacy of exercise training in PAD. At this time, many patient and professional groups continue to advocate for expanded coverage to include PAD as a primary qualifying diagnosis. Patients who have a concurrent eligible cardiac condition may qualify for exercise rehabilitation on this basis. Additional patient and physician related factors may limit the use of supervised exercise including: physician referral; patient willingness to participate; availability of programs; time constraints and logistical issues; and medical co-morbidities. Patients with foot ulcers or rest pain, or those who are planned to undergo revascularization should defer exercise training until their condition has been treated and stabilized.
Comprehensive Vascular Rehabilitation and Secondary Prevention Programs in PAD
Comprehensive cardiovascular rehabilitation that includes exercise training is a model for expanded delivery of secondary prevention in PAD.43,130Prevention strategies have potential to improve cardiovascular health for patients with PAD and the medical therapy of PAD has been reviewed elsewhere.38,139We have included a brief discussion of secondary prevention therapies here to emphasize the potential benefit of a multifaceted exercise-based intervention to improve risk profile in PAD patients. As outlined in Table 4, multiple interventions to reduce cardiovascular risk have proven efficacy in PAD.38,139 Even among patients with clinically identified PAD, utilization of guideline-based risk factor interventions remains low in comparison to patients with coronary artery disease.33,34,140,141 In a meta-analysis of over 30,000 PAD patients described in studies between 1999 and 2008, there was low penetration of optimal therapies including only 63% of patients on antiplatelet agents and 45% on lipid-lowering medications.142 Amongst PAD patients undergoing vascular surgery, only 41% achieved guideline-based medication therapy, while the use of recommended therapies was associated with reduced 3 year mortality.143 Implementation of secondary prevention in PAD is vital to mitigating the high cardiovascular risk in this population. Accordingly patients with PAD may derive additional favorable effects from exercise training combined with comprehensive risk reduction interventions. Cardiac rehabilitation programs serve as a coordinating center for the implementation of secondary prevention therapies in patients with coronary artery disease, and could readily assimilate patients with PAD. The American Heart Association/American Association of Cardiovascular and Pulmonary Rehabilitation Core Components of Cardiac Rehabilitation/Secondary Prevention Programs outline the comprehensive nature of such programs with the ultimate goal of reducing physical disability and cardiovascular risk, while restoring optimal physical, psychological and social functioning. Such programs integrate exercise into the overall treatment plan that includes lipid management, blood pressure control, smoking cessation, nutrition education and weight reduction, diabetes treatment and psychosocial intervention.130 Using this multifaceted approach, cardiac rehabilitation/secondary prevention programs have been associated with up to a 56% improvement in survival among patients after myocardial infarction and a 28% reduction in risk of recurrent myocardial infarction.144 Such benefits are seen despite age, gender and ethnic background.145 Furthermore, the benefits of such programs appear to be dose-related in that patients who attend 36 sessions have a 14%, 22% and 47% lower risk of mortality than those who attended 24 sessions, 12 sessions and 1 session, respectively.146 However, no study has yet been conducted to evaluate the effect of exercise rehabilitation in PAD patients on mortality. Nonetheless, given the elevated cardiovascular risk and the proven benefit of multiple secondary prevention measures in PAD patients, it is reasonable to anticipate analogous reductions in risk among those who actively participate in comprehensive rehabilitation.
Table 4.
Secondary Prevention to Reduce Cardiovascular Events in PAD
Lipid-lowering therapy | Treatment with statin for all PAD patients to target LDL cholesterol<100mg/dl |
Target LDL cholesterol < 70mg/dl for high risk patients | |
Hypertension Treatment | Treat to target blood pressure <140/90mmHg (<130/80mmHg for patients with diabetes or chronic kidney disease) |
Consider ACE inhibitor in hypertensive patients | |
Use of beta-blockers is not contraindicated in PAD | |
Smoking Cessation | Provide comprehensive smoking intervention program |
Consider pharmacotherapy to support smoking cessation | |
Antiplatelet Therapy | Treat with aspirin 75–325mg or clopidogrel 75mg |
Treat with aspirin+thienopyridine in patients with acute coronary syndrome or coronary or peripheral stent |
LDL: low-density lipoprotein, ACE: angiotensin converting enzyme
Adapted from American College of Cardiology/American Heart Association 2005 Practice Guidelines for the Management of Patients with Peripheral Arterial Disease (33)
Acknowledgments
Funding Sources
Dr. Hamburg is supported by the Boston University Leadership Program in Vascular Medicine (K12 HL083781) and by NIH HL102299.
Footnotes
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Subject codes: [17] Peripheral vascular disease, [26] Exercise/exercise testing/rehabilitation, [122] Secondary prevention, [135] Risk Factors, [95] Endothelium/vascular type/nitric oxide,
Conflict of Interest Disclosures
None
Reference List
- 1.Lloyd-Jones D, Adams R, Carnethon M, de Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O'Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:480–486. doi: 10.1161/CIRCULATIONAHA.108.191259. [DOI] [PubMed] [Google Scholar]
- 2.Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation. 2004;110:738–743. doi: 10.1161/01.CIR.0000137913.26087.F0. [DOI] [PubMed] [Google Scholar]
- 3.Ostchega Y, Paulose-Ram R, Dillon CF, Gu Q, Hughes JP. Prevalence of peripheral arterial disease and risk factors in persons aged 60 and older: data from the National Health and Nutrition Examination Survey 1999–2004. J Am Geriatr Soc. 2007;55:583–589. doi: 10.1111/j.1532-5415.2007.01123.x. [DOI] [PubMed] [Google Scholar]
- 4.Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, Folsom AR, Hirsch AT, Dramaix M, deBacker G, Wautrecht JC, Kornitzer M, Newman AB, Cushman M, Sutton-Tyrrell K, Fowkes FG, Lee AJ, Price JF, D'Agostino RB, Murabito JM, Norman PE, Jamrozik K, Curb JD, Masaki KH, Rodriguez BL, Dekker JM, Bouter LM, Heine RJ, Nijpels G, Stehouwer CD, Ferrucci L, McDermott MM, Stoffers HE, Hooi JD, Knottnerus JA, Ogren M, Hedblad B, Witteman JC, Breteler MM, Hunink MG, Hofman A, Criqui MH, Langer RD, Fronek A, Hiatt WR, Hamman R, Resnick HE, Guralnik J, McDermott MM. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208. doi: 10.1001/jama.300.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, Browner D. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–386. doi: 10.1056/NEJM199202063260605. [DOI] [PubMed] [Google Scholar]
- 6.Murabito JM, Evans JC, Larson MG, Nieto K, Levy D, Wilson PW. The ankle-brachial index in the elderly and risk of stroke, coronary disease, and death: the Framingham Study. Arch Intern Med. 2003;163:1939–1942. doi: 10.1001/archinte.163.16.1939. [DOI] [PubMed] [Google Scholar]
- 7.Steg PG, Bhatt DL, Wilson PW, D'Agostino R, Sr, Ohman EM, Rother J, Liau CS, Hirsch AT, Mas JL, Ikeda Y, Pencina MJ, Goto S. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297:1197–1206. doi: 10.1001/jama.297.11.1197. [DOI] [PubMed] [Google Scholar]
- 8.McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, Chan C, Martin GJ, Schneider J, Pearce WH, Taylor LM, Clark E. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002;136:873–883. doi: 10.7326/0003-4819-136-12-200206180-00008. [DOI] [PubMed] [Google Scholar]
- 9.McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, Pearce WH, Schneider JR, Ferrucci L, Celic L, Taylor LM, Vonesh E, Martin GJ, Clark E. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–461. doi: 10.1001/jama.292.4.453. [DOI] [PubMed] [Google Scholar]
- 10.Criqui MH, Denenberg JO, Bird CE, Fronek A, Klauber MR, Langer RD. The correlation between symptoms and non-invasive test results in patients referred for peripheral arterial disease testing. Vasc Med. 1996;1:65–71. doi: 10.1177/1358863X9600100112. [DOI] [PubMed] [Google Scholar]
- 11.Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344:1608–1621. doi: 10.1056/NEJM200105243442108. [DOI] [PubMed] [Google Scholar]
- 12.Feigelson HS, Criqui MH, Fronek A, Langer RD, Molgaard CA. Screening for peripheral arterial disease: the sensitivity, specificity, and predictive value of noninvasive tests in a defined population. Am J Epidemiol. 1994;140:526–534. doi: 10.1093/oxfordjournals.aje.a117279. [DOI] [PubMed] [Google Scholar]
- 13.Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–1324. doi: 10.1001/jama.286.11.1317. [DOI] [PubMed] [Google Scholar]
- 14.McDermott MM, Greenland P, Liu K, Guralnik JM, Criqui MH, Dolan NC, Chan C, Celic L, Pearce WH, Schneider JR, Sharma L, Clark E, Gibson D, Martin GJ. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA. 2001;286:1599–1606. doi: 10.1001/jama.286.13.1599. [DOI] [PubMed] [Google Scholar]
- 15.Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler Thromb Vasc Biol. 1998;18:185–192. doi: 10.1161/01.atv.18.2.185. [DOI] [PubMed] [Google Scholar]
- 16.Diehm C, Allenberg JR, Pittrow D, Mahn M, Tepohl G, Haberl RL, Darius H, Burghaus I, Trampisch HJ. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009;120:2053–2061. doi: 10.1161/CIRCULATIONAHA.109.865600. [DOI] [PubMed] [Google Scholar]
- 17.Perlstein TS, Creager MA. The ankle-brachial index as a biomarker of cardiovascular risk: it's not just about the legs. Circulation. 2009;120:2033–2035. doi: 10.1161/CIRCULATIONAHA.109.907238. [DOI] [PubMed] [Google Scholar]
- 18.Criqui MH, Alberts MJ, Fowkes FG, Hirsch AT, O'Gara PT, Olin JW. Atherosclerotic Peripheral Vascular Disease Symposium II: screening for atherosclerotic vascular diseases: should nationwide programs be instituted?; Circulation; 2008. pp. 2830–2836. [DOI] [PubMed] [Google Scholar]
- 19.McDermott MM, Ferrucci L, Simonsick EM, Balfour J, Fried L, Ling S, Gibson D, Guralnik JM. The ankle brachial index and change in lower extremity functioning over time: the Women's Health and Aging Study. J Am Geriatr Soc. 2002;50:238–246. doi: 10.1046/j.1532-5415.2002.50054.x. [DOI] [PubMed] [Google Scholar]
- 20.McDermott MM, Guralnik JM, Ferrucci L, Tian L, Liu K, Liao Y, Green D, Sufit R, Hoff F, Nishida T, Sharma L, Pearce WH, Schneider JR, Criqui MH. Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication. Circulation. 2008;117:2484–2491. doi: 10.1161/CIRCULATIONAHA.107.736108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Gardner AW, Montgomery PS, Scott KJ, Afaq A, Blevins SM. Patterns of ambulatory activity in subjects with and without intermittent claudication. J Vasc Surg. 2007;46:1208–1214. doi: 10.1016/j.jvs.2007.07.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.McDermott MM, Guralnik JM, Tian L, Liu K, Ferrucci L, Liao Y, Sharma L, Criqui MH. Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study) J Am Coll Cardiol. 2009;53:1056–1062. doi: 10.1016/j.jacc.2008.09.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Regensteiner JG, Hiatt WR, Coll JR, Criqui MH, Treat-Jacobson D, McDermott MM, Hirsch AT. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS) Program. Vasc Med. 2008;13:15–24. doi: 10.1177/1358863X07084911. [DOI] [PubMed] [Google Scholar]
- 24.Smolderen KG, Hoeks SE, Pedersen SS, Van Domburg RT, de Liefde II, Poldermans D. Lower-leg symptoms in peripheral arterial disease are associated with anxiety, depression, and anhedonia. Vasc Med. 2009;14:297–304. doi: 10.1177/1358863X09104658. [DOI] [PubMed] [Google Scholar]
- 25.Garg PK, Tian L, Criqui MH, Liu K, Ferrucci L, Guralnik JM, Tan J, McDermott MM. Physical activity during daily life and mortality in patients with peripheral arterial disease. Circulation. 2006;114:242–248. doi: 10.1161/CIRCULATIONAHA.105.605246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Gardner AW, Montgomery PS, Parker DE. Physical activity is a predictor of all-cause mortality in patients with intermittent claudication. J Vasc Surg. 2008;47:117–122. doi: 10.1016/j.jvs.2007.09.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.McDermott MM, Tian L, Liu K, Guralnik JM, Ferrucci L, Tan J, Pearce WH, Schneider JR, Criqui MH. Prognostic value of functional performance for mortality in patients with peripheral artery disease. J Am Coll Cardiol. 2008;51:1482–1489. doi: 10.1016/j.jacc.2007.12.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Olin JW. Can functional performance be used as a simple prognostic indicator in peripheral arterial disease? Nat Clin Pract Cardiovasc Med. 2008;5:686–687. doi: 10.1038/ncpcardio1341. [DOI] [PubMed] [Google Scholar]
- 29.de Liefde II, Hoeks SE, van Gestel YR, Klein J, Bax JJ, Verhagen HJ, Van Domburg RT, Poldermans D. The prognostic value of impaired walking distance on long-term outcome in patients with known or suspected peripheral arterial disease. Eur J Vasc Endovasc Surg. 2009;38:482–487. doi: 10.1016/j.ejvs.2009.02.022. [DOI] [PubMed] [Google Scholar]
- 30.de Liefde II, Van Domburg RT, Bax JJ, Klein J, Verhagen HJ, Poldermans D. A decline in walking distance predicts long-term outcome in patients with known or suspected peripheral artery disease. Eur J Cardiovasc Prev Rehabil. 2009 doi: 10.1097/HJR.0b013e32833254ce. [DOI] [PubMed] [Google Scholar]
- 31.Schiano V, Brevetti G, Sirico G, Silvestro A, Giugliano G, Chiariello M. Functional status measured by walking impairment questionnaire and cardiovascular risk prediction in peripheral arterial disease: results of the Peripheral Arteriopathy and Cardiovascular Events (PACE) study. Vasc Med. 2006;11:147–154. doi: 10.1177/1358863x06074830. [DOI] [PubMed] [Google Scholar]
- 32.Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT. Exercise training for claudication. N Engl J Med. 2002;347:1941–1951. doi: 10.1056/NEJMra021135. [DOI] [PubMed] [Google Scholar]
- 33.Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM, Jr, White CJ, White J, White RA, Antman EM, Smith SC, Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic) Circulation. 2006;113:e463–e654. doi: 10.1161/CIRCULATIONAHA.106.174526. [DOI] [PubMed] [Google Scholar]
- 34.Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) J Vasc Surg. 2007;45 Suppl S:S5–S67. doi: 10.1016/j.jvs.2006.12.037. [DOI] [PubMed] [Google Scholar]
- 35.McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, Nelson M, Lloyd-Jones D, Van Horn L, Garside D, Kibbe M, Domanchuk K, Stein JH, Liao Y, Tao H, Green D, Pearce WH, Schneider JR, McPherson D, Laing ST, McCarthy WJ, Shroff A, Criqui MH. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–174. doi: 10.1001/jama.2008.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995;274:975–980. [PubMed] [Google Scholar]
- 37.Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008 doi: 10.1002/14651858.CD000990.pub2. CD000990. [DOI] [PubMed] [Google Scholar]
- 38.Hankey GJ, Norman PE, Eikelboom JW. Medical treatment of peripheral arterial disease. JAMA. 2006;295:547–553. doi: 10.1001/jama.295.5.547. [DOI] [PubMed] [Google Scholar]
- 39.Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, Goldberg AP. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49:755–762. doi: 10.1046/j.1532-5415.2001.49152.x. [DOI] [PubMed] [Google Scholar]
- 40.Tsai JC, Chan P, Wang CH, Jeng C, Hsieh MH, Kao PF, Chen YJ, Liu JC. The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease. J Intern Med. 2002;252:448–455. doi: 10.1046/j.1365-2796.2002.01055.x. [DOI] [PubMed] [Google Scholar]
- 41.Spronk S, Bosch JL, Veen HF, den Hoed PT, Hunink MG. Intermittent claudication: functional capacity and quality of life after exercise training or percutaneous transluminal angioplasty--systematic review. Radiology. 2005;235:833–842. doi: 10.1148/radiol.2353040457. [DOI] [PubMed] [Google Scholar]
- 42.Garg PK, Liu K, Tian L, Guralnik JM, Ferrucci L, Criqui MH, Tan J, McDermott MM. Physical activity during daily life and functional decline in peripheral arterial disease. Circulation. 2009;119:251–260. doi: 10.1161/CIRCULATIONAHA.108.791491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med. 2001;345:892–902. doi: 10.1056/NEJMra001529. [DOI] [PubMed] [Google Scholar]
- 44.Lundgren F, Dahllof AG, Lundholm K, Schersten T, Volkmann R. Intermittent claudication--surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209:346–355. doi: 10.1097/00000658-198903000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Gelin J, Jivegard L, Taft C, Karlsson J, Sullivan M, Dahllof AG, Sandstrom R, Arfvidsson B, Lundholm K. Treatment efficacy of intermittent claudication by surgical intervention, supervised physical exercise training compared to no treatment in unselected randomised patients I: one year results of functional and physiological improvements. Eur J Vasc Endovasc Surg. 2001;22:107–113. doi: 10.1053/ejvs.2001.1413. [DOI] [PubMed] [Google Scholar]
- 46.Perkins JM, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplasty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovasc Surg. 1996;11:409–413. doi: 10.1016/s1078-5884(96)80171-7. [DOI] [PubMed] [Google Scholar]
- 47.Spronk S, Bosch JL, den Hoed PT, Veen HF, Pattynama PM, Hunink MG. Intermittent claudication: clinical effectiveness of endovascular revascularization versus supervised hospital-based exercise training--randomized controlled trial. Radiology. 2009;250:586–595. doi: 10.1148/radiol.2501080607. [DOI] [PubMed] [Google Scholar]
- 48.Bronas UG, Hirsch AT, Murphy T, Badenhop D, Collins TC, Ehrman JK, Ershow AG, Lewis B, Treat-Jacobson DJ, Walsh ME, Oldenburg N, Regensteiner JG. Design of the multicenter standardized supervised exercise training intervention for the claudication: exercise vs endoluminal revascularization (CLEVER) study. Vasc Med. 2009;14:313–321. doi: 10.1177/1358863X09102295. [DOI] [PubMed] [Google Scholar]
- 49.Murphy TP, Hirsch AT, Ricotta JJ, Cutlip DE, Mohler E, Regensteiner JG, Comerota AJ, Cohen DJ. The Claudication: Exercise Vs. Endoluminal Revascularization (CLEVER) study: rationale and methods. J Vasc Surg. 2008;47:1356–1363. doi: 10.1016/j.jvs.2007.12.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. Philadelphia: Lippincott Williams and Wilkens; 2010. [Google Scholar]
- 51.American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs. Champaign: Human Kinetics; 2004. [Google Scholar]
- 52.McDermott MM, Mehta S, Liu K, Guralnik JM, Martin GJ, Criqui MH, Greenland P. Leg symptoms, the ankle-brachial index, and walking ability in patients with peripheral arterial disease. J Gen Intern Med. 1999;14:173–181. doi: 10.1046/j.1525-1497.1999.00309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Izquierdo-Porrera AM, Gardner AW, Bradham DD, Montgomery PS, Sorkin JD, Powell CC, Katzel LI. Relationship between objective measures of peripheral arterial disease severity to self-reported quality of life in older adults with intermittent claudication. J Vasc Surg. 2005;41:625–630. doi: 10.1016/j.jvs.2005.01.012. [DOI] [PubMed] [Google Scholar]
- 54.Feinglass J, McCarthy WJ, Slavensky R, Manheim LM, Martin GJ. Effect of lower extremity blood pressure on physical functioning in patients who have intermittent claudication. The Chicago Claudication Outcomes Research Group. J Vasc Surg. 1996;24:503–511. doi: 10.1016/s0741-5214(96)70066-6. [DOI] [PubMed] [Google Scholar]
- 55.Arfvidsson B, Wennmalm A, Gelin J, Dahllof AG, Hallgren B, Lundholm K. Co-variation between walking ability and circulatory alterations in patients with intermittent claudication. Eur J Vasc Surg. 1992;6:642–646. doi: 10.1016/s0950-821x(05)80843-6. [DOI] [PubMed] [Google Scholar]
- 56.Long J, Modrall JG, Parker BJ, Swann A, Welborn MB, III, Anthony T. Correlation between ankle-brachial index, symptoms, and health-related quality of life in patients with peripheral vascular disease. J Vasc Surg. 2004;39:723–727. doi: 10.1016/j.jvs.2003.12.006. [DOI] [PubMed] [Google Scholar]
- 57.Szuba A, Oka RK, Harada R, Cooke JP. Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vasc Med. 2006;11:155–163. doi: 10.1177/1358863x06074828. [DOI] [PubMed] [Google Scholar]
- 58.Carter SA, Hamel ER, Paterson JM, Snow CJ, Mymin D. Walking ability and ankle systolic pressures: observations in patients with intermittent claudication in a short-term walking exercise program. J Vasc Surg. 1989;10:642–649. [PubMed] [Google Scholar]
- 59.Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, Harthun NL, Weltman A, Dimaria JM, West AM, Kramer CM. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–635. doi: 10.1016/j.jacc.2009.01.080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Prior BM, Lloyd PG, Ren J, Li H, Yang HT, Laughlin MH, Terjung RL. Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. Am J Physiol Heart Circ Physiol. 2004;287:H2434–H2447. doi: 10.1152/ajpheart.00398.2004. [DOI] [PubMed] [Google Scholar]
- 61.Yang HT, Dinn RF, Terjung RL. Training increases muscle blood flow in rats with peripheral arterial insufficiency. J Appl Physiol. 1990;69:1353–1359. doi: 10.1152/jappl.1990.69.4.1353. [DOI] [PubMed] [Google Scholar]
- 62.Yang HT, Ren J, Laughlin MH, Terjung RL. Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol Heart Circ Physiol. 2002;282:H301–H310. doi: 10.1152/ajpheart.00160.2001. [DOI] [PubMed] [Google Scholar]
- 63.Yang HT, Prior BM, Lloyd PG, Taylor JC, Li Z, Laughlin MH, Terjung RL. Training-induced vascular adaptations to ischemic muscle. J Physiol Pharmacol. 2008;59 Suppl 7:57–70. [PMC free article] [PubMed] [Google Scholar]
- 64.Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem. 2007;102:840–847. doi: 10.1002/jcb.21523. [DOI] [PubMed] [Google Scholar]
- 65.Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol. 1997;273:H1255–H1265. doi: 10.1152/ajpheart.1997.273.3.H1255. [DOI] [PubMed] [Google Scholar]
- 66.Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann LV. Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res. 2005;68:144–154. doi: 10.1016/j.cardiores.2005.05.002. [DOI] [PubMed] [Google Scholar]
- 67.Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol. 2001;281:H2528–H2538. doi: 10.1152/ajpheart.2001.281.6.H2528. [DOI] [PubMed] [Google Scholar]
- 68.Yang HT, Ogilvie RW, Terjung RL. Training increases collateral-dependent muscle blood flow in aged rats. Am J Physiol. 1995;268:H1174–H1180. doi: 10.1152/ajpheart.1995.268.3.H1174. [DOI] [PubMed] [Google Scholar]
- 69.Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A. 2005;102:10999–11004. doi: 10.1073/pnas.0501444102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation. 1990;81:602–609. doi: 10.1161/01.cir.81.2.602. [DOI] [PubMed] [Google Scholar]
- 71.Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, Goldberg AP. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49:755–762. doi: 10.1046/j.1532-5415.2001.49152.x. [DOI] [PubMed] [Google Scholar]
- 72.Gardner AW, Katzel LI, Sorkin JD, Goldberg AP. Effects of long-term exercise rehabilitation on claudication distances in patients with peripheral arterial disease: a randomized controlled trial. J Cardiopulm Rehabil. 2002;22:192–198. doi: 10.1097/00008483-200205000-00011. [DOI] [PubMed] [Google Scholar]
- 73.Dahllof AG, Holm J, Schersten T, Sivertsson R. Peripheral arterial insufficiency, effect of physical training on walking tolerance, calf blood flow, and blood flow resistance. Scand J Rehabil Med. 1976;8 UNKNOWN. [PubMed] [Google Scholar]
- 74.Larsen OA, Lassen NA. Effect of daily muscular exercise in patients with intermittent claudication. Lancet. 1966;2:1093–1096. doi: 10.1016/s0140-6736(66)92191-x. [DOI] [PubMed] [Google Scholar]
- 75.Vita JA, Holbrook M, Palmisano J, Shenouda SM, Chung WB, Hamburg NM, Eskenazi BR, Joseph L, Shapira OM. Flow-induced arterial remodeling relates to endothelial function in the human forearm. Circulation. 2008;117:3126–3133. doi: 10.1161/CIRCULATIONAHA.108.778472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Gokce N, Keaney JF, Jr, Menzoian JO, Watkins M, Hunter L, Duffy SJ, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. Circulation. 2002;105:1567–1572. doi: 10.1161/01.cir.0000012543.55874.47. [DOI] [PubMed] [Google Scholar]
- 77.Widlansky ME, Gokce N, Keaney JF, Jr, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–1160. doi: 10.1016/s0735-1097(03)00994-x. [DOI] [PubMed] [Google Scholar]
- 78.Gordon MB, Jain R, Beckman JA, Creager MA. The contribution of nitric oxide to exercise hyperemia in the human forearm. Vasc Med. 2002;7:163–168. doi: 10.1191/1358863x02vm439oa. [DOI] [PubMed] [Google Scholar]
- 79.Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA. Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol. 1996;270:H1435–H1440. doi: 10.1152/ajpheart.1996.270.4.H1435. [DOI] [PubMed] [Google Scholar]
- 80.Gokce N, Vita JA, Bader DS, Sherman DL, Hunter LM, Holbrook M, O'Malley C, Keaney JF, Jr, Balady GJ. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am J Cardiol. 2002;90:124–127. doi: 10.1016/s0002-9149(02)02433-5. [DOI] [PubMed] [Google Scholar]
- 81.Vita JA, Treasure CB, Yeung AC, Vekshtein VI, Fantasia GM, Fish RD, Ganz P, Selwyn AP. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation. 1992;85:1390–1397. doi: 10.1161/01.cir.85.4.1390. [DOI] [PubMed] [Google Scholar]
- 82.Gordon JB, Ganz P, Nabel EG, Fish RD, Zebede J, Mudge GH, Alexander RW, Selwyn AP. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J Clin Invest. 1989;83:1946–1952. doi: 10.1172/JCI114103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Liao JK, Bettmann MA, Sandor T, Tucker JI, Coleman SM, Creager MA. Differential Impairment of Vasodilator Responsiveness of Peripheral Resistance and Conduit Vessels in Humans With Atherosclerosis. Circ Res. 1991;68:1027–1034. doi: 10.1161/01.res.68.4.1027. [DOI] [PubMed] [Google Scholar]
- 84.Fronek A, DiTomasso DG, Allison M. Noninvasive assessment of endothelial activity in patients with peripheral arterial disease and cardiovascular risk factors. Endothelium. 2007;14:199–205. doi: 10.1080/10623320701547158. [DOI] [PubMed] [Google Scholar]
- 85.Yataco AR, Corretti MC, Gardner AW, Womack CJ, Katzel LI. Endothelial reactivity and cardiac risk factors in older patients with peripheral arterial disease. Am J Cardiol. 1999;83:754–758. doi: 10.1016/s0002-9149(98)00984-9. [DOI] [PubMed] [Google Scholar]
- 86.Poredos P, Golob M, Jensterle M. Interrelationship between peripheral arterial occlusive disease, carotid atherosclerosis and flow mediated dilation of the brachial artery. Int Angiol. 2003;22:83–87. [PubMed] [Google Scholar]
- 87.Payvandi L, Dyer A, McPherson D, Ades P, Stein J, Liu K, Ferrucci L, Criqui MH, Guralnik JM, Lloyd-Jones D, Kibbe MR, Liang ST, Kane B, Pearce WH, Verta M, McCarthy WJ, Schneider JR, Shroff A, McDermott MM. Physical activity during daily life and brachial artery flow-mediated dilation in peripheral arterial disease. Vasc Med. 2009;14:193–201. doi: 10.1177/1358863X08101018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.McDermott MM, Lloyd-Jones DM. The role of biomarkers and genetics in peripheral arterial disease. J Am Coll Cardiol. 2009;54:1228–1237. doi: 10.1016/j.jacc.2009.04.081. [DOI] [PubMed] [Google Scholar]
- 89.Vita JA, Hamburg NM. Does endothelial dysfunction contribute to the clinical status of patients with peripheral arterial disease? Can J Cardiol. 2010;26 Suppl A:45A–50A. doi: 10.1016/s0828-282x(10)71062-x. [DOI] [PubMed] [Google Scholar]
- 90.Brewer LC, Chai HS, Bailey KR, Kullo IJ. Measures of arterial stiffness and wave reflection are associated with walking distance in patients with peripheral arterial disease. Atherosclerosis. 2007;191:384–390. doi: 10.1016/j.atherosclerosis.2006.03.038. [DOI] [PubMed] [Google Scholar]
- 91.Brendle DC, Joseph LJ, Corretti MC, Gardner AW, Katzel LI. Effects of exercise rehabilitation on endothelial reactivity in older patients with peripheral arterial disease. Am J Cardiol. 2001;87:324–329. doi: 10.1016/s0002-9149(00)01367-9. [DOI] [PubMed] [Google Scholar]
- 92.Vona M, Codeluppi GM, Iannino T, Ferrari E, Bogousslavsky J, von Segesser LK. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119:1601–1608. doi: 10.1161/CIRCULATIONAHA.108.821736. [DOI] [PubMed] [Google Scholar]
- 93.Thijssen DH, Maiorana AJ, O'Driscoll G, Cable NT, Hopman MT, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2009 doi: 10.1007/s00421-009-1260-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–3158. doi: 10.1161/01.CIR.0000074229.93804.5C. [DOI] [PubMed] [Google Scholar]
- 95.Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: Additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation. 2003;108:2093–2098. doi: 10.1161/01.CIR.0000095273.92468.D9. [DOI] [PubMed] [Google Scholar]
- 96.Brass EP, Hiatt WR. Acquired skeletal muscle metabolic myopathy in atherosclerotic peripheral arterial disease. Vasc Med. 2000;5:55–59. doi: 10.1177/1358836X0000500109. [DOI] [PubMed] [Google Scholar]
- 97.McDermott MM, Hoff F, Ferrucci L, Pearce WH, Guralnik JM, Tian L, Liu K, Schneider JR, Sharma L, Tan J, Criqui MH. Lower extremity ischemia, calf skeletal muscle characteristics, and functional impairment in peripheral arterial disease. J Am Geriatr Soc. 2007;55:400–406. doi: 10.1111/j.1532-5415.2007.01092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Mitchell RG, Duscha BD, Robbins JL, Redfern SI, Chung J, Bensimhon DR, Kraus WE, Hiatt WR, Regensteiner JG, Annex BH. Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease. Vasc Med. 2007;12:285–290. doi: 10.1177/1358863X07084858. [DOI] [PubMed] [Google Scholar]
- 99.Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J Vasc Surg. 2005;41:802–807. doi: 10.1016/j.jvs.2005.01.037. [DOI] [PubMed] [Google Scholar]
- 100.Hiatt WR, Wolfel EE, Regensteiner JG, Brass EP. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease. J Appl Physiol. 1992;73:346–353. doi: 10.1152/jappl.1992.73.1.346. [DOI] [PubMed] [Google Scholar]
- 101.Pipinos II, Sharov VG, Shepard AD, Anagnostopoulos PV, Katsamouris A, Todor A, Filis KA, Sabbah HN. Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease. J Vasc Surg. 2003;38:827–832. doi: 10.1016/s0741-5214(03)00602-5. [DOI] [PubMed] [Google Scholar]
- 102.Pipinos II, Judge AR, Zhu Z, Selsby JT, Swanson SA, Johanning JM, Baxter BT, Lynch TG, Dodd SL. Mitochondrial defects and oxidative damage in patients with peripheral arterial disease. Free Radic Biol Med. 2006;41:262–269. doi: 10.1016/j.freeradbiomed.2006.04.003. [DOI] [PubMed] [Google Scholar]
- 103.Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol. 1996;81:780–788. doi: 10.1152/jappl.1996.81.2.780. [DOI] [PubMed] [Google Scholar]
- 104.Greiner A, Esterhammer R, Messner H, Biebl M, Muhlthaler H, Fraedrich G, Jaschke WR, Schocke MF. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg. 2006;43:978–986. doi: 10.1016/j.jvs.2006.01.020. [DOI] [PubMed] [Google Scholar]
- 105.Bauer TA, Brass EP, Hiatt WR. Impaired muscle oxygen use at onset of exercise in peripheral arterial disease. J Vasc Surg. 2004;40:488–493. doi: 10.1016/j.jvs.2004.06.025. [DOI] [PubMed] [Google Scholar]
- 106.Bauer TA, Brass EP, Barstow TJ, Hiatt WR. Skeletal muscle StO2 kinetics are slowed during low work rate calf exercise in peripheral arterial disease. Eur J Appl Physiol. 2007;100:143–151. doi: 10.1007/s00421-007-0412-0. [DOI] [PubMed] [Google Scholar]
- 107.Brass EP, Hiatt WR, Green S. Skeletal muscle metabolic changes in peripheral arterial disease contribute to exercise intolerance: a point-counterpoint discussion. Vasc Med. 2004;9:293–301. doi: 10.1191/1358863x04vm572ra. [DOI] [PubMed] [Google Scholar]
- 108.McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, Liao Y, Criqui MH. Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease. Circulation. 2009;120:1048–1055. doi: 10.1161/CIRCULATIONAHA.108.842328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–1012. doi: 10.1038/nature06613. [DOI] [PubMed] [Google Scholar]
- 110.Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009;106:21401–21406. doi: 10.1073/pnas.0909131106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.McDermott MM, Guralnik JM, Ferrucci L, Tian L, Pearce WH, Hoff F, Liu K, Liao Y, Criqui MH. Physical activity, walking exercise, and calf skeletal muscle characteristics in patients with peripheral arterial disease. J Vasc Surg. 2007;46:87–93. doi: 10.1016/j.jvs.2007.02.064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA. 2001;285:2481–2485. doi: 10.1001/jama.285.19.2481. [DOI] [PubMed] [Google Scholar]
- 113.Pradhan AD, Shrivastava S, Cook NR, Rifai N, Creager MA, Ridker PM. Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk. Circulation. 2008;117:823–831. doi: 10.1161/CIRCULATIONAHA.107.719369. [DOI] [PubMed] [Google Scholar]
- 114.Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation. 2005;112:976–983. doi: 10.1161/CIRCULATIONAHA.104.513085. [DOI] [PubMed] [Google Scholar]
- 115.Vidula H, Tian L, Liu K, Criqui MH, Ferrucci L, Pearce WH, Greenland P, Green D, Tan J, Garside DB, Guralnik J, Ridker PM, Rifai N, McDermott MM. Biomarkers of inflammation and thrombosis as predictors of near-term mortality in patients with peripheral arterial disease: a cohort study. Ann Intern Med. 2008;148:85–93. doi: 10.7326/0003-4819-148-2-200801150-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Beckman JA, Preis O, Ridker PM, Gerhard-Herman M. Comparison of usefulness of inflammatory markers in patients with versus without peripheral arterial disease in predicting adverse cardiovascular outcomes (myocardial infarction, stroke, and death) Am J Cardiol. 2005;96:1374–1378. doi: 10.1016/j.amjcard.2005.07.041. [DOI] [PubMed] [Google Scholar]
- 117.Huang AL, Vita JA. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med. 2006;16:15–20. doi: 10.1016/j.tcm.2005.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.McDermott MM, Liu K, Ferrucci L, Tian L, Guralnik JM, Green D, Tan J, Liao Y, Pearce WH, Schneider JR, McCue K, Ridker P, Rifai N, Criqui MH. Circulating blood markers and functional impairment in peripheral arterial disease. J Am Geriatr Soc. 2008;56:1504–1510. doi: 10.1111/j.1532-5415.2008.01797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Nylaende M, Kroese A, Stranden E, Morken B, Sandbaek G, Lindahl AK, Arnesen H, Seljeflot I. Markers of vascular inflammation are associated with the extent of atherosclerosis assessed as angiographic score and treadmill walking distances in patients with peripheral arterial occlusive disease. Vasc Med. 2006;11:21–28. doi: 10.1191/1358863x06vm662oa. [DOI] [PubMed] [Google Scholar]
- 120.McDermott MM, Ferrucci L, Guralnik JM, Tian L, Green D, Liu K, Tan J, Liao Y, Pearce WH, Schneider JR, Ridker P, Rifai N, Hoff F, Criqui MH. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol. 2007;50:897–905. doi: 10.1016/j.jacc.2007.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.McDermott MM, Ferrucci L, Liu K, Criqui MH, Greenland P, Green D, Guralnik JM, Ridker PM, Taylor LM, Rifai N, Tian L, Zheng J, Pearce WH, Schneider JR, Vonesh E. D-dimer and inflammatory markers as predictors of functional decline in men and women with and without peripheral arterial disease. J Am Geriatr Soc. 2005;53:1688–1696. doi: 10.1111/j.1532-5415.2005.53510.x. [DOI] [PubMed] [Google Scholar]
- 122.Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45:1563–1569. doi: 10.1016/j.jacc.2004.12.077. [DOI] [PubMed] [Google Scholar]
- 123.Craft LL, Guralnik JM, Ferrucci L, Liu K, Tian L, Criqui MH, Tan J, McDermott MM. Physical activity during daily life and circulating biomarker levels in patients with peripheral arterial disease. Am J Cardiol. 2008;102:1263–1268. doi: 10.1016/j.amjcard.2008.06.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Tisi PV, Shearman CP. Biochemical and inflammatory changes in the exercising claudicant. Vasc Med. 1998;3:189–198. doi: 10.1177/1358836X9800300303. [DOI] [PubMed] [Google Scholar]
- 125.Turton EP, Coughlin PA, Kester RC, Scott DJ. Exercise training reduces the acute inflammatory response associated with claudication. Eur J Vasc Endovasc Surg. 2002;23:309–316. doi: 10.1053/ejvs.2002.1599. [DOI] [PubMed] [Google Scholar]
- 126.Bendermacher BL, Willigendael EM, Teijink JA, Prins MH. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2006 doi: 10.1002/14651858.CD005263.pub2. CD005263. [DOI] [PubMed] [Google Scholar]
- 127.Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, Berra K, Blair SN, Costa F, Franklin B, Fletcher GF, Gordon NF, Pate RR, Rodriguez BL, Yancey AK, Wenger NK. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity) Circulation. 2003;107:3109–3116. doi: 10.1161/01.CIR.0000075572.40158.77. [DOI] [PubMed] [Google Scholar]
- 128.Home –based vs Supervised Exercise for People with Claudication. Sponsor: National Institute on Aging. 2010 Identifier: NCT00618670. http://clinicaltrials.gov/ct2/results?term=NCT00618670 5-23-2010.
- 129.Gibbons RJ, Balady GJ, Timothy BJ, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O'Reilly MG, Winters WL, Jr, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC., Jr ACC/AHA 2002 Guideline Update for Exercise Testing: Summary Article: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines) Circulation. 2002;106:1883–1892. doi: 10.1161/01.cir.0000034670.06526.15. [DOI] [PubMed] [Google Scholar]
- 130.Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, Franklin B, Sanderson B, Southard D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115:2675–2682. doi: 10.1161/CIRCULATIONAHA.106.180945. [DOI] [PubMed] [Google Scholar]
- 131.Zwierska I, Walker RD, Choksy SA, Male JS, Pockley AG, Saxton JM. Upper- vs lower-limb aerobic exercise rehabilitation in patients with symptomatic peripheral arterial disease: a randomized controlled trial. J Vasc Surg. 2005;42:1122–1130. doi: 10.1016/j.jvs.2005.08.021. [DOI] [PubMed] [Google Scholar]
- 132.Treat-Jacobson D, Bronas UG, Leon AS. Efficacy of arm-ergometry versus treadmill exercise training to improve walking distance in patients with claudication. Vasc Med. 2009;14:203–213. doi: 10.1177/1358863X08101858. [DOI] [PubMed] [Google Scholar]
- 133.Walker RD, Nawaz S, Wilkinson CH, Saxton JM, Pockley AG, Wood RF. Influence of upper- and lower-limb exercise training on cardiovascular function and walking distances in patients with intermittent claudication. J Vasc Surg. 2000;31:662–669. doi: 10.1067/mva.2000.104104. [DOI] [PubMed] [Google Scholar]
- 134.Langbein WE, Collins EG, Orebaugh C, Maloney C, Williams KJ, Littooy FN, Edwards LC. Increasing exercise tolerance of persons limited by claudication pain using polestriding. J Vasc Surg. 2002;35:887–893. doi: 10.1067/mva.2002.123756. [DOI] [PubMed] [Google Scholar]
- 135.Collins EG, Langbein WE, Orebaugh C, Bammert C, Hanson K, Reda D, Edwards LC, Littooy FN. Cardiovascular training effect associated with polestriding exercise in patients with peripheral arterial disease. J Cardiovasc Nurs. 2005;20:177–185. doi: 10.1097/00005082-200505000-00009. [DOI] [PubMed] [Google Scholar]
- 136.Pena KE, Stopka CB, Barak S, Gertner HR, Jr, Carmeli E. Effects of low-intensity exercise on patients with peripheral artery disease. Phys Sportsmed. 2009;37:106–110. doi: 10.3810/psm.2009.04.1689. [DOI] [PubMed] [Google Scholar]
- 137.Mika P, Spodaryk K, Cencora A, Unnithan VB, Mika A. Experimental model of pain-free treadmill training in patients with claudication. Am J Phys Med Rehabil. 2005;84:756–762. doi: 10.1097/01.phm.0000176346.94747.49. [DOI] [PubMed] [Google Scholar]
- 138.Gardner AW, Montgomery PS, Flinn WR, Katzel LI. The effect of exercise intensity on the response to exercise rehabilitation in patients with intermittent claudication. J Vasc Surg. 2005;42:702–709. doi: 10.1016/j.jvs.2005.05.049. [DOI] [PubMed] [Google Scholar]
- 139.Gornik HL, Creager MA. Contemporary management of peripheral arterial disease: I. Cardiovascular risk-factor modification. Cleve Clin J Med. 2006;73 Suppl 4:S30–S37. doi: 10.3949/ccjm.73.suppl_4.s30. [DOI] [PubMed] [Google Scholar]
- 140.Bhatt DL, Steg PG, Ohman EM, Hirsch AT, Ikeda Y, Mas JL, Goto S, Liau CS, Richard AJ, Rother J, Wilson PW. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA. 2006;295:180–189. doi: 10.1001/jama.295.2.180. [DOI] [PubMed] [Google Scholar]
- 141.Zeymer U, Parhofer KG, Pittrow D, Binz C, Schwertfeger M, Limbourg T, Rother J. Risk factor profile, management and prognosis of patients with peripheral arterial disease with or without coronary artery disease: results of the prospective German REACH registry cohort. Clin Res Cardiol. 2009;98:249–256. doi: 10.1007/s00392-009-0754-1. [DOI] [PubMed] [Google Scholar]
- 142.Flu HC, Tamsma JT, Lindeman JH, Hamming JF, Lardenoye JH. A Systematic Review of Implementation of Established Recommended Secondary Prevention Measures in Patients with PAOD. Eur J Vasc Endovasc Surg. 2009 doi: 10.1016/j.ejvs.2009.09.027. [DOI] [PubMed] [Google Scholar]
- 143.Hoeks SE, Scholte op Reimer WJ, van Gestel YR, Schouten O, Lenzen MJ, Flu WJ, van Kuijk JP, Latour C, Bax JJ, van Urk H, Poldermans D. Medication underuse during long-term follow-up in patients with peripheral arterial disease. Circ Cardiovasc Qual Outcomes. 2009;2:338–343. doi: 10.1161/CIRCOUTCOMES.109.868505. [DOI] [PubMed] [Google Scholar]
- 144.Witt BJ, Jacobsen SJ, Weston SA, Killian JM, Meverden RA, Allison TG, Reeder GS, Roger VL. Cardiac rehabilitation after myocardial infarction in the community. J Am Coll Cardiol. 2004;44:988–996. doi: 10.1016/j.jacc.2004.05.062. [DOI] [PubMed] [Google Scholar]
- 145.Suaya JA, Stason WB, Ades PA, Normand SL, Shepard DS. Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol. 2009;54:25–33. doi: 10.1016/j.jacc.2009.01.078. [DOI] [PubMed] [Google Scholar]
- 146.Hammill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121:63–70. doi: 10.1161/CIRCULATIONAHA.109.876383. [DOI] [PMC free article] [PubMed] [Google Scholar]