Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Sep 11;15(17):7081–7090. doi: 10.1093/nar/15.17.7081

Characterization of the small RNA of the bacteriophage phi 29 DNA packaging machine.

P X Guo 1, S Bailey 1, J W Bodley 1, D Anderson 1
PMCID: PMC306194  PMID: 3116499

Abstract

The prohead connector of the bacteriophage luminal diameter 29 DNA packaging machine was reconstructed with the small RNA that regulates DNA packaging in vitro. The complete sequence of the 120 nucleotide RNA proved its origination from the promoter PE1(A1) of the left early region of phi 29 DNA, the end packaged first during assembly. The prohead RNA was clearly distinct from eubacterial 5S rRNA in sequence and composition.

Full text

PDF
7081

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazinet C., King J. The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol. 1985;39:109–129. doi: 10.1146/annurev.mi.39.100185.000545. [DOI] [PubMed] [Google Scholar]
  2. Bjornsti M. A., Reilly B. E., Anderson D. L. Bacteriophage phi 29 proteins required for in vitro DNA-gp3 packaging. J Virol. 1984 Jun;50(3):766–772. doi: 10.1128/jvi.50.3.766-772.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjornsti M. A., Reilly B. E., Anderson D. L. In vitro assembly of the Bacillus subtilis bacteriophage phi 29. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5861–5865. doi: 10.1073/pnas.78.9.5861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjornsti M. A., Reilly B. E., Anderson D. L. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: DNA-gp3 intermediate in in vivo and in vitro assembly. J Virol. 1982 Feb;41(2):508–517. doi: 10.1128/jvi.41.2.508-517.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjornsti M. A., Reilly B. E., Anderson D. L. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA protein gp3. J Virol. 1983 Jan;45(1):383–396. doi: 10.1128/jvi.45.1.383-396.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bjornsti M. A., Reilly B. E., Anderson D. L. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: prohead restoration for DNA-gp3 packaging and assembly. J Virol. 1985 Mar;53(3):858–861. doi: 10.1128/jvi.53.3.858-861.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boguski M. S., Hieter P. A., Levy C. C. Identification of a cytidine-specific ribonuclease from chicken liver. J Biol Chem. 1980 Mar 10;255(5):2160–2163. [PubMed] [Google Scholar]
  8. Brownlee G. G., Sanger F., Barrell B. G. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature. 1967 Aug 12;215(5102):735–736. doi: 10.1038/215735a0. [DOI] [PubMed] [Google Scholar]
  9. Camacho A., Jiménez F., De La Torre J., Carrascosa J. L., Mellado R. P., Vásquez C., Viñuela E., Salas M. Assembly of Bacillus subtilis phage phi29. 1. Mutants in the cistrons coding for the structural proteins. Eur J Biochem. 1977 Feb 15;73(1):39–55. doi: 10.1111/j.1432-1033.1977.tb11290.x. [DOI] [PubMed] [Google Scholar]
  10. Carrascosa J. L., Viñuela E., García N., Santisteban A. Structure of the head-tail connector of bacteriophage phi 29. J Mol Biol. 1982 Jan 15;154(2):311–324. doi: 10.1016/0022-2836(82)90066-3. [DOI] [PubMed] [Google Scholar]
  11. Coombs D. H., Pearson G. D. Filter-binding assay for covalent DNA-protein complexes: adenovirus DNA-terminal protein complex. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5291–5295. doi: 10.1073/pnas.75.11.5291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. García J. A., Méndez E., Salas M. Cloning, nucleotide sequence and high level expression of the gene coding for the connector protein of Bacillus subtilis phage phi 29. Gene. 1984 Oct;30(1-3):87–98. doi: 10.1016/0378-1119(84)90108-2. [DOI] [PubMed] [Google Scholar]
  14. Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
  15. Guo P., Grimes S., Anderson D. A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage phi 29. Proc Natl Acad Sci U S A. 1986 May;83(10):3505–3509. doi: 10.1073/pnas.83.10.3505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hagen E. W., Reilly B. E., Tosi M. E., Anderson D. L. Analysis of gene function of bacteriophage phi 29 of Bacillus subtilis: identification of cistrons essential for viral assembly. J Virol. 1976 Aug;19(2):501–517. doi: 10.1128/jvi.19.2.501-517.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ibáez C., García J. A., Carrascosa J. L., Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Res. 1984 Mar 12;12(5):2351–2365. doi: 10.1093/nar/12.5.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jiménez J., Santisteban A., Carazo J. M., Carrascosa J. L. Computer graphic display method for visualizing three-dimensional biological structures. Science. 1986 May 30;232(4754):1113–1115. doi: 10.1126/science.3754654. [DOI] [PubMed] [Google Scholar]
  19. Kawamura F., Ito J. Transcription of the genome of bacteriophage phi 29: isolation and mapping of the major early mRNA synthesized in vivo and in vitro. J Virol. 1977 Sep;23(3):562–577. doi: 10.1128/jvi.23.3.562-577.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. King T. C., Sirdeskmukh R., Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev. 1986 Dec;50(4):428–451. doi: 10.1128/mr.50.4.428-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mellado R. P., Barthelemy I., Salas M. In vivo transcription of bacteriophage phi 29 DNA early and late promoter sequences. J Mol Biol. 1986 Sep 20;191(2):191–197. doi: 10.1016/0022-2836(86)90256-1. [DOI] [PubMed] [Google Scholar]
  22. Mellado R. P., Moreno F., Viñuela E., Salas M., Reilly B. E., Anderson D. L. Genetic analysis of bacteriophage phi 29 of Bacillus subtilis: integration and mapping of reference mutants of two collections. J Virol. 1976 Aug;19(2):495–500. doi: 10.1128/jvi.19.2.495-500.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salas M. A new mechanism for the initiation of replication of phi 29 and adenovirus DNA: priming by the terminal protein. Curr Top Microbiol Immunol. 1984;109:89–106. doi: 10.1007/978-3-642-69460-8_4. [DOI] [PubMed] [Google Scholar]
  25. Sogo J. M., Inciarte M. R., Corral J., Viñuela E., Salas M. RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J Mol Biol. 1979 Feb 5;127(4):411–436. doi: 10.1016/0022-2836(79)90230-4. [DOI] [PubMed] [Google Scholar]
  26. Thomas C. A., Jr, Saigo K., McLeod E., Ito J. The separation of DNA segments attached to proteins. Anal Biochem. 1979 Feb;93(1):158–166. [PubMed] [Google Scholar]
  27. Yoshikawa H., Ito J. Nucleotide sequence of the major early region of bacteriophage phi 29. Gene. 1982 Mar;17(3):323–335. doi: 10.1016/0378-1119(82)90149-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES