Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Oct 26;15(20):8333–8349. doi: 10.1093/nar/15.20.8333

Guanine modification during chemical DNA synthesis.

J S Eadie 1, D S Davidson 1
PMCID: PMC306363  PMID: 3671086

Abstract

Base modification during solid-phase phosphoramidite synthesis of oligodeoxynucleotides has been investigated. We have discovered chemical modification that converts dG and dG-containing oligomers to a fluorescent form. This modification has been linked to N,N-dimethylaminopyridine (DMAP), an acylation catalyst, which can displace phosphate triester adducts at the 6-position of guanine. Further, we have found that this fluorescent intermediate can be converted in ammonium hydroxide solution to 2,6 diaminopurine deoxyribonucleoside (2,6 DAP), a potentially mutagenic nucleoside analog. We have shown that N-methylimidazole (NMI) in place of DMAP eliminates the fluorescent species and reduces 2,6 DAP contamination.

Full text

PDF
8333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDERSON T. THE MUTAGENIC ACTIVITY OF 2-AMINOPURINE AND 2,6-DIAMINOPURINE ON PHAGE T4 GROWN ON NON-INHIBITED AND CHLORAMPHENICOL-INHIBITED CELLS OF ESCHERICHIA COLI B. Mutat Res. 1964 Jul;106:205–208. doi: 10.1016/0027-5107(64)90024-7. [DOI] [PubMed] [Google Scholar]
  2. Adamiak R. W., Biała E., Skalski B. New, ionic side-products in oligonucleotide synthesis: formation and reactivity of fluorescent N-/purin-6-yl/pyridinium salts. Nucleic Acids Res. 1985 Apr 25;13(8):2989–3003. doi: 10.1093/nar/13.8.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borowy-Borowski H., Chambers R. W. A study of side reactions occurring during synthesis of oligodeoxynucleotides containing O6-alkyldeoxyguanosine residues at preselected sites. Biochemistry. 1987 May 5;26(9):2465–2471. doi: 10.1021/bi00383a010. [DOI] [PubMed] [Google Scholar]
  4. Chow F., Kempe T., Palm G. Synthesis of oligodeoxyribonucleotides on silica gel support. Nucleic Acids Res. 1981 Jun 25;9(12):2807–2817. doi: 10.1093/nar/9.12.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eadie J. S., McBride L. J., Efcavitch J. W., Hoff L. B., Cathcart R. High-performance liquid chromatographic analysis of oligodeoxyribonucleotide base composition. Anal Biochem. 1987 Sep;165(2):442–447. doi: 10.1016/0003-2697(87)90294-6. [DOI] [PubMed] [Google Scholar]
  6. Efimov V. A., Buryakova A. A., Reverdatto S. V., Chakhmakhcheva O. G., Ovchinnikov YuA Rapid synthesis of long-chain deoxyribooligonucleotides by the N-methylimidazolide phosphotriester method. Nucleic Acids Res. 1983 Dec 10;11(23):8369–8387. doi: 10.1093/nar/11.23.8369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Efimov V. A., Reverdatto S. V., Chakhmakhcheva O. G. New effective method for the synthesis of oligonucleotides via phosphotriester intermediates. Nucleic Acids Res. 1982 Nov 11;10(21):6675–6694. doi: 10.1093/nar/10.21.6675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaffney B. L., Marky L. A., Jones R. A. Synthesis and characterization of a set of four dodecadeoxyribonucleoside undecaphosphates containing O6-methylguanine opposite adenine, cytosine, guanine, and thymine. Biochemistry. 1984 Nov 20;23(24):5686–5691. doi: 10.1021/bi00319a004. [DOI] [PubMed] [Google Scholar]
  9. Kirnos M. D., Khudyakov I. Y., Alexandrushkina N. I., Vanyushin B. F. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature. 1977 Nov 24;270(5635):369–370. doi: 10.1038/270369a0. [DOI] [PubMed] [Google Scholar]
  10. Kuzmich S., Marky L. A., Jones R. A. Specifically alkylated DNA fragments. Synthesis and physical characterization of d[CGC(O6Me)GCG] and d[CGT(O6Me)GCG]. Nucleic Acids Res. 1983 May 25;11(10):3393–3403. doi: 10.1093/nar/11.10.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McClain W. H., Foss K., Mittelstadt K. L., Schneider J. Variants in clones of gene-machine-synthesized oligodeoxynucleotides. Nucleic Acids Res. 1986 Aug 26;14(16):6770–6770. doi: 10.1093/nar/14.16.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pon R. T., Damha M. J., Ogilvie K. K. Modification of guanine bases by nucleoside phosphoramidite reagents during the solid phase synthesis of oligonucleotides. Nucleic Acids Res. 1985 Sep 25;13(18):6447–6465. doi: 10.1093/nar/13.18.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pon R. T., Usman N., Damha M. J., Ogilvie K. K. Prevention of guanine modification and chain cleavage during the solid phase synthesis of oligonucleotides using phosphoramidite derivatives. Nucleic Acids Res. 1986 Aug 26;14(16):6453–6470. doi: 10.1093/nar/14.16.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ronen A. 2-Aminopurine. Mutat Res. 1980 Jan;75(1):1–47. doi: 10.1016/0165-1110(80)90026-3. [DOI] [PubMed] [Google Scholar]
  15. Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Urdea M. S., Ku L., Horn T., Gee Y. G., Warner B. D. Base modification and cloning efficiency of oligodeoxyribonucleotides synthesized by the phosphoramidite method: methyl versus cyanoethyl phosphorus protection. Nucleic Acids Symp Ser. 1985;(16):257–260. [PubMed] [Google Scholar]
  17. Zhou X. X., Welch C. J., Chattopadhyaya J. Pyridyl groups for protection of the imide functions of uridine and guanosine. Exploration of their displacement reactions for site-specific modifications of uracil and guanine bases. Acta Chem Scand B. 1986 Nov;40(10):806–816. doi: 10.3891/acta.chem.scand.40b-0806. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES