Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Nov 11;15(21):8679–8691. doi: 10.1093/nar/15.21.8679

An alternative protein factor which binds the internal promoter of Xenopus 5S ribosomal RNA genes.

P Barrett 1, J Sommerville 1
PMCID: PMC306398  PMID: 3684570

Abstract

In small oocytes of Xenopus species, two sets of 5S RNA genes, oocyte-type and somatic-type, are fully activated. The 5S RNA transcripts are temporarily stored, half in association with TFIIIA to form a 7S particle, the other half in association with tRNA and two proteins (p48 and p43) to form a 42S particle. It has been established previously that TFIIIA binds to the internal control region of 5S RNA genes and promotes their transcription. Here we show that protein can be translocated from the 42S particles to 5S RNA genes, but only after treatment of the particles with ribonuclease. Nevertheless, once transferred, stable protein-DNA complexes are formed and DNase-protection experiments show that binding is specific to the gene promoter, covering exactly the same sequence as TFIIIA. The DNA-binding protein is identified as p48 which, after isolation by ion-exchange chromatography, will bind to 5S RNA genes in the absence of ribonuclease.

Full text

PDF
8679

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett P., Johnson R. M., Sommerville J. Immunological identity of proteins that bind stored 5S RNA in Xenopus oocytes. Exp Cell Res. 1984 Aug;153(2):299–307. doi: 10.1016/0014-4827(84)90602-5. [DOI] [PubMed] [Google Scholar]
  2. Barrett P., Kloetzel P. M., Sommerville J. Specific interaction of proteins with 5 S RNA and tRNA in the 42 S storage particle of Xenopus oocytes. Biochim Biophys Acta. 1983 Sep 9;740(4):347–354. doi: 10.1016/0167-4781(83)90081-7. [DOI] [PubMed] [Google Scholar]
  3. Bieker J. J., Martin P. L., Roeder R. G. Formation of a rate-limiting intermediate in 5S RNA gene transcription. Cell. 1985 Jan;40(1):119–127. doi: 10.1016/0092-8674(85)90315-0. [DOI] [PubMed] [Google Scholar]
  4. Bogenhagen D. F., Brown D. D. Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell. 1981 Apr;24(1):261–270. doi: 10.1016/0092-8674(81)90522-5. [DOI] [PubMed] [Google Scholar]
  5. Bogenhagen D. F., Sakonju S., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell. 1980 Jan;19(1):27–35. doi: 10.1016/0092-8674(80)90385-2. [DOI] [PubMed] [Google Scholar]
  6. Ciliberto G., Raugei G., Costanzo F., Dente L., Cortese R. Common and interchangeable elements in the promoters of genes transcribed by RNA polymerase iii. Cell. 1983 Mar;32(3):725–733. doi: 10.1016/0092-8674(83)90058-2. [DOI] [PubMed] [Google Scholar]
  7. Denis H., Mairy M. Recherches biochimiques sur l'oogenèse. 1. Distribution intracellulaire du RNA dans les petits oocytes de Xenopus laevis. Eur J Biochem. 1972 Feb;25(3):524–534. doi: 10.1111/j.1432-1033.1972.tb01724.x. [DOI] [PubMed] [Google Scholar]
  8. Denis H., Wegnez M. Biochemical research on oogenesis. Oocytes and liver cells of the teleost fish Tinca tinca contain different kinds of 5S RNA. Dev Biol. 1977 Sep;59(2):228–236. doi: 10.1016/0012-1606(77)90256-1. [DOI] [PubMed] [Google Scholar]
  9. Denis H., le Maire M. Thesaurisomes, a novel kind of nucleoprotein particle. Subcell Biochem. 1983;9:263–297. doi: 10.1007/978-1-4613-3533-7_3. [DOI] [PubMed] [Google Scholar]
  10. Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
  11. Ford P. J. Non-coordinated accumulation and synthesis of 5S ribonucleic acid by ovaries of Xenopus laevis. Nature. 1971 Oct 22;233(5321):561–564. doi: 10.1038/233561a0. [DOI] [PubMed] [Google Scholar]
  12. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Galas D. J., Schmitz A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 1978 Sep;5(9):3157–3170. doi: 10.1093/nar/5.9.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilbert D. M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc Natl Acad Sci U S A. 1986 May;83(9):2924–2928. doi: 10.1073/pnas.83.9.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harrison S. C. Gene regulation. Fingers and DNA half-turns. Nature. 1986 Aug 14;322(6080):597–598. doi: 10.1038/322597a0. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. M., Barrett P., Sommerville J. Distribution and utilization of 5 S-RNA-binding proteins during the development of Xenopus oocytes. Eur J Biochem. 1984 Nov 2;144(3):503–508. doi: 10.1111/j.1432-1033.1984.tb08494.x. [DOI] [PubMed] [Google Scholar]
  17. Korn L. J., Gurdon J. B. The reactivation of developmentally inert 5S genes in somatic nuclei injected into Xenopus oocytes. Nature. 1981 Feb 5;289(5797):461–465. doi: 10.1038/289461a0. [DOI] [PubMed] [Google Scholar]
  18. Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Müller F., Clarkson S. G., Galas D. J. Sequence of a 3.18 kb tandem repeat of Xenopus laevis DNA containing 8 tRNA genes. Nucleic Acids Res. 1987 Sep 11;15(17):7191–7191. doi: 10.1093/nar/15.17.7191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pelham H. R., Wormington W. M., Brown D. D. Related 5S RNA transcription factors in Xenopus oocytes and somatic cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1760–1764. doi: 10.1073/pnas.78.3.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Picard B., Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci U S A. 1979 Jan;76(1):241–245. doi: 10.1073/pnas.76.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Picard B., le Maire M., Wegnez M., Denis H. Biochemical Research on oogenesis. Composition of the 42-S storage particles of Xenopus laevix oocytes. Eur J Biochem. 1980 Aug;109(2):359–368. doi: 10.1111/j.1432-1033.1980.tb04802.x. [DOI] [PubMed] [Google Scholar]
  23. Reynolds W. F., Bloomer L. S., Gottesfeld J. M. Control of 5S RNA transcription in Xenopus somatic cell chromatin: activation with an oocyte extract. Nucleic Acids Res. 1983 Jan 11;11(1):57–75. doi: 10.1093/nar/11.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakonju S., Bogenhagen D. F., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region. Cell. 1980 Jan;19(1):13–25. doi: 10.1016/0092-8674(80)90384-0. [DOI] [PubMed] [Google Scholar]
  25. Sakonju S., Brown D. D. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell. 1982 Dec;31(2 Pt 1):395–405. doi: 10.1016/0092-8674(82)90133-7. [DOI] [PubMed] [Google Scholar]
  26. Segall J., Matsui T., Roeder R. G. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem. 1980 Dec 25;255(24):11986–11991. [PubMed] [Google Scholar]
  27. Shastry B. S., Honda B. M., Roeder R. G. Altered levels of a 5 S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. J Biol Chem. 1984 Sep 25;259(18):11373–11382. [PubMed] [Google Scholar]
  28. Wolffe A. P., Jordan E., Brown D. D. A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it. Cell. 1986 Feb 14;44(3):381–389. doi: 10.1016/0092-8674(86)90459-9. [DOI] [PubMed] [Google Scholar]
  29. Wormington W. M., Bogenhagen D. F., Jordan E., Brown D. D. A quantitative assay for Xenopus 5S RNA gene transcription in vitro. Cell. 1981 Jun;24(3):809–817. doi: 10.1016/0092-8674(81)90106-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES