Abstract
We recently demonstrated that the plant amino acid, mimosine, is an extremely efficacious inhibitor of DNA replication in mammalian cells [P. A. Dijkwel and J. L. Hamlin (1992) Mol. Cell. Biol. 12, 3715-3722; P. J. Mosca et al. (1992) Mol. Cell. Biol. 12, 4375-4383]. Several of its properties further suggested that mimosine might target initiation at origins of replication, which would make it a unique and very useful inhibitor for studying the regulation of DNA synthesis. However, mimosine is known to chelate iron, a cofactor for ribonucleotide reductase. Thus, the possibility arose that mimosine functions in vivo simply by lowering intracellular deoxyribonucleotide pools. In the present study, we show that, in fact, it is possible to override mimosine inhibition in vivo by adding excess iron; however, copper, which is not a substitute for iron in ribonucleotide reductase, is equally effective. Evidence is presented that mimosine functions instead by binding to an intracellular protein. We show that radiolabeled mimosine can be specifically cross-linked to a 50 kDa polypeptide (termed p50) in vitro. Binding to p50 is virtually undetectable in CHO cells selected for resistance to 1 mM mimosine, arguing that p50 is the biologically relevant target. p50 is not associated with the cellular membrane fraction and, hence, is probably not a channel protein. Furthermore, the binding activity does not vary markedly as a function of cell cycle position, arguing that p50 is not a cyclin. Finally, both iron and copper are able to reverse the mimosine-p50 interaction in vitro, probably explaining why both metal ions are able to overcome mimosine's inhibitory effect on DNA synthesis in vivo.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anachkova B., Hamlin J. L. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element. Mol Cell Biol. 1989 Feb;9(2):532–540. doi: 10.1128/mcb.9.2.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burhans W. C., Vassilev L. T., Caddle M. S., Heintz N. H., DePamphilis M. L. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell. 1990 Sep 7;62(5):955–965. doi: 10.1016/0092-8674(90)90270-o. [DOI] [PubMed] [Google Scholar]
- CROUNSE R. G., MAXWELL J. D., BLANK H. Inhibition of growth of hair by mimosine. Nature. 1962 May 19;194:694–695. doi: 10.1038/194694b0. [DOI] [PubMed] [Google Scholar]
- CROUNSE R. G., MAXWELL J. D., BLANK H. Inhibition of growth of hair by mimosine. Nature. 1962 May 19;194:694–695. doi: 10.1038/194694b0. [DOI] [PubMed] [Google Scholar]
- Caddle M. S., Calos M. P. Analysis of the autonomous replication behavior in human cells of the dihydrofolate reductase putative chromosomal origin of replication. Nucleic Acids Res. 1992 Nov 25;20(22):5971–5978. doi: 10.1093/nar/20.22.5971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chitambar C. R., Matthaeus W. G., Antholine W. E., Graff K., O'Brien W. J. Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood. 1988 Dec;72(6):1930–1936. [PubMed] [Google Scholar]
- Cozzarelli N. R. The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem. 1977;46:641–668. doi: 10.1146/annurev.bi.46.070177.003233. [DOI] [PubMed] [Google Scholar]
- DeWys W. D., Hall T. C. Anti-tumor effect of the amino acid minosine. Eur J Cancer. 1973 Apr;9(4):281–283. doi: 10.1016/0014-2964(73)90094-7. [DOI] [PubMed] [Google Scholar]
- Dijkwel P. A., Hamlin J. L. Initiation of DNA replication in the dihydrofolate reductase locus is confined to the early S period in CHO cells synchronized with the plant amino acid mimosine. Mol Cell Biol. 1992 Sep;12(9):3715–3722. doi: 10.1128/mcb.12.9.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamlin J. L., Mosca P. J., Dijkwel P. A., Lin H. B. Initiation of replication at a mammalian chromosomal origin. Cold Spring Harb Symp Quant Biol. 1993;58:467–474. doi: 10.1101/sqb.1993.058.01.053. [DOI] [PubMed] [Google Scholar]
- Handeli S., Klar A., Meuth M., Cedar H. Mapping replication units in animal cells. Cell. 1989 Jun 16;57(6):909–920. doi: 10.1016/0092-8674(89)90329-2. [DOI] [PubMed] [Google Scholar]
- Hashiguchi H., Takahashi H. Inhibition of two copper-containing enzymes, tyrosinase and dopamine beta-hydroxylase, by L-mimosine. Mol Pharmacol. 1977 Mar;13(2):362–367. [PubMed] [Google Scholar]
- Heintz N. H., Hamlin J. L. An amplified chromosomal sequence that includes the gene for dihydrofolate reductase initiates replication within specific restriction fragments. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4083–4087. doi: 10.1073/pnas.79.13.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyes K. P., Hider R. C., Porter J. B. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4-one iron chelators in leukemia cell lines. Cancer Res. 1992 Sep 1;52(17):4591–4599. [PubMed] [Google Scholar]
- Huberman J. A. New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase alpha. Cell. 1981 Mar;23(3):647–648. doi: 10.1016/0092-8674(81)90426-8. [DOI] [PubMed] [Google Scholar]
- Kontoghiorghes G. J., Piga A., Hoffbrand A. V. Cytotoxic and DNA-inhibitory effects of iron chelators on human leukaemic cell lines. Hematol Oncol. 1986 Jul-Sep;4(3):195–204. doi: 10.1002/hon.2900040303. [DOI] [PubMed] [Google Scholar]
- Kontoghiorghes G. J., Piga A., Hoffbrand A. V. Cytotoxic and DNA-inhibitory effects of iron chelators on human leukaemic cell lines. Hematol Oncol. 1986 Jul-Sep;4(3):195–204. doi: 10.1002/hon.2900040303. [DOI] [PubMed] [Google Scholar]
- Lalande M. A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res. 1990 Feb;186(2):332–339. doi: 10.1016/0014-4827(90)90313-y. [DOI] [PubMed] [Google Scholar]
- Larner J. M., Lee H., Hamlin J. L. Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol Cell Biol. 1994 Mar;14(3):1901–1908. doi: 10.1128/mcb.14.3.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larner J. M., Lee H., Hamlin J. L. Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol Cell Biol. 1994 Mar;14(3):1901–1908. doi: 10.1128/mcb.14.3.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leu T. H., Hamlin J. L. High-resolution mapping of replication fork movement through the amplified dihydrofolate reductase domain in CHO cells by in-gel renaturation analysis. Mol Cell Biol. 1989 Feb;9(2):523–531. doi: 10.1128/mcb.9.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levenson V., Hamlin J. L. A general protocol for evaluating the specific effects of DNA replication inhibitors. Nucleic Acids Res. 1993 Aug 25;21(17):3997–4004. doi: 10.1093/nar/21.17.3997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Megarrity R. G. An automated colorimetric method for mimosine in Leucaena leaves. J Sci Food Agric. 1978 Feb;29(2):182–186. doi: 10.1002/jsfa.2740290216. [DOI] [PubMed] [Google Scholar]
- Milbrandt J. D., Heintz N. H., White W. C., Rothman S. M., Hamlin J. L. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6043–6047. doi: 10.1073/pnas.78.10.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosca P. J., Dijkwel P. A., Hamlin J. L. The plant amino acid mimosine may inhibit initiation at origins of replication in Chinese hamster cells. Mol Cell Biol. 1992 Oct;12(10):4375–4383. doi: 10.1128/mcb.12.10.4375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosca P. J., Dijkwel P. A., Hamlin J. L. The plant amino acid mimosine may inhibit initiation at origins of replication in Chinese hamster cells. Mol Cell Biol. 1992 Oct;12(10):4375–4383. doi: 10.1128/mcb.12.10.4375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozols J. Preparation of membrane fractions. Methods Enzymol. 1990;182:225–235. doi: 10.1016/0076-6879(90)82019-x. [DOI] [PubMed] [Google Scholar]
- Reichard P. From RNA to DNA, why so many ribonucleotide reductases? Science. 1993 Jun 18;260(5115):1773–1777. doi: 10.1126/science.8511586. [DOI] [PubMed] [Google Scholar]
- Reis P. J. Effects of intravenous infusion of mimosine on wool growth of Merino sheep. Aust J Biol Sci. 1975 Dec;28(5-6):483–493. doi: 10.1071/bi9750483. [DOI] [PubMed] [Google Scholar]
- Reis P. J. Effects of intravenous infusion of mimosine on wool growth of Merino sheep. Aust J Biol Sci. 1975 Dec;28(5-6):483–493. doi: 10.1071/bi9750483. [DOI] [PubMed] [Google Scholar]
- Sevastopoulos C. G., Wehr C. T., Glaser D. A. Large-scale automated isolation of Escherichia coli mutants with thermosensitive DNA replication. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3485–3489. doi: 10.1073/pnas.74.8.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sevastopoulos C. G., Wehr C. T., Glaser D. A. Large-scale automated isolation of Escherichia coli mutants with thermosensitive DNA replication. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3485–3489. doi: 10.1073/pnas.74.8.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherr C. J. Mammalian G1 cyclins. Cell. 1993 Jun 18;73(6):1059–1065. doi: 10.1016/0092-8674(93)90636-5. [DOI] [PubMed] [Google Scholar]
- Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
- Tiwari H. P., Spenser I. D. Precursors of mimosine in Mimosa pudica. Can J Biochem. 1965 Oct;43(10):1687–1691. doi: 10.1139/o65-186. [DOI] [PubMed] [Google Scholar]
- Tsai W. C., Ling K. H. Effect of metals on the absorption and excretion of mimosine and and 3, 4-dihydroxypyridine in rat in vivo. Taiwan Yi Xue Hui Za Zhi. 1974 Sep;73(9):543–549. [PubMed] [Google Scholar]
- Vassilev L. T., Burhans W. C., DePamphilis M. L. Mapping an origin of DNA replication at a single-copy locus in exponentially proliferating mammalian cells. Mol Cell Biol. 1990 Sep;10(9):4685–4689. doi: 10.1128/mcb.10.9.4685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughn J. P., Dijkwel P. A., Hamlin J. L. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell. 1990 Jun 15;61(6):1075–1087. doi: 10.1016/0092-8674(90)90071-l. [DOI] [PubMed] [Google Scholar]
- Walters R. A., Tobey R. A., Hildebrand C. E. Hydroxyurea does not prevent synchronized G1 chinese hamster cells from entering the DNA synthetic period. Biochem Biophys Res Commun. 1976 Mar 8;69(1):212–217. doi: 10.1016/s0006-291x(76)80294-x. [DOI] [PubMed] [Google Scholar]
- Walters R. A., Tobey R. A., Hildebrand C. E. Hydroxyurea does not prevent synchronized G1 chinese hamster cells from entering the DNA synthetic period. Biochem Biophys Res Commun. 1976 Mar 8;69(1):212–217. doi: 10.1016/s0006-291x(76)80294-x. [DOI] [PubMed] [Google Scholar]
- Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]





